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Abstract: The latest meta-analysis of genome-wide linkage studies (GWLS) identified nine cytogenetic
locations suggestive of a linkage with diabetic nephropathy (DN) due to type 1 diabetes mellitus
(T1DM) and seven locations due to type 2 diabetes mellitus (T2DM). In order to gain biological insight
about the functional role of the genes located in these regions and to prioritize the most significant
genetic loci for further research, we conducted a gene ontology analysis with an over representation
test for the functional annotation of the protein coding genes. Protein analysis through evolutionary
relationships (PANTHER) version 16.0 software and Cytoscape with the relevant plugins were used
for the gene ontology analysis, and the overrepresentation test and STRING database were used for
the construction of the protein network. The findings of the over-representation test highlight the
contribution of immune related molecules like immunoglobulins, cytokines, and chemokines with
regard to the most overrepresented protein classes, whereas the most enriched signaling pathways
include the VEGF signaling pathway, the Cadherin pathway, the Wnt pathway, the angiogenesis
pathway, the p38 MAPK pathway, and the EGF receptor signaling pathway. The common section of
T1DM and T2DM results include the significant over representation of immune related molecules,
and the Cadherin and Wnt signaling pathways that could constitute potential therapeutic targets for
the treatment of DN, irrespective of the type of diabetes.

Keywords: diabetic nephropathy; meta-analysis; gene ontology; protein network; genes; signaling
pathway

1. Introduction

The genetic background of diabetic nephropathy (DN) remains obscure, although
unquestionable [1–3]. Many loci have been implicated in the genetic architecture of DN
through different methodological approaches [4–6]. Genetic linkage studies and genetic
association studies are the two main approaches used in the genetic dissection of DN and
other complex traits [7,8].

Three genome wide linkage studies (GWLS) were conducted in probands with DN
due to T1DM [9–11]. The primary findings of Rogus et al. was on chromosome 19q, with a
secondary peak on chromosome 2q [11]. A novel locus at cytogenetic location 22q11 was
identified as significant of linkage with DN. In addition, this study confirms the importance
of previously indicated DN loci on 3q21–q25 and 19q13 [9]. Finally, Österholm et al. suggest
that the locus on 3q harbors a susceptibility gene for DN [10].

Several GWLS have also been conducted for the genetic dissection of DN due to
T2DM. Strong and suggestive evidence for a linkage with DN was detected in 6p and 7p,
respectively [12]. Bowden et al. (2004) concluded that maybe a susceptibility locus for DN
due to T2DM is located on chromosome 7p [13]. Other regions suggestive of a linkage with
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DN secondary to T2DM are the chromosomal regions 3q and 18q [13]. Lastly, one more
study detected strong evidence for linkage to DN at 7q, and suggestive evidence at 3q, 9q,
and 20p [14].

However, the findings of the individual genetic linkage studies have been inconclu-
sive. In an effort to produce more consistent evidence, a meta-analysis of GWLS was
performed [15]. With regard to DN due to T1DM, the meta-analysis identified nine regions
as suggestive of linkage to DN, which are located on seven chromosomes [15]. Regarding
DN due to T2DM, the meta-analysis revealed significance of linkage to DN at seven regions
that are located on five different chromosomes.

GWLS often produce many cytogenetic locations as suggestive for linkage with a trait
or a disease harboring hundreds or even thousands of genetic loci. The next step is the
prioritization of the most promising genes for biological validation [16,17]. Because proteins
do not act individually, it is extremely informative to explore protein−protein interactions
(PPIs) in complex protein networks. STRING is a web tool that provides a network view
of a set of proteins and is very useful when one seeks insight into the biological functions
and signaling pathways that might be involved in the pathogenesis of a disease, because it
provides the gene ontology (GO) analysis of the inputted set of proteins and also the most
deregulated signaling pathways of KEGG and/or the Reactome database [18–20].

In order to prioritize the most relevant genes among the genes harbored in specific
locations identified by a meta-analysis of GWLS, we performed both gene ontology and
enrichment analysis, as well as protein network analysis, for the identification of the key
genes in DN secondary to T1DM or T2DM exclusively.

2. Results

In the nine cytogenetic locations that were revealed to be significant in the T1DM
subgroup meta-analysis of GWLS (1q43–1q44, 3q21.2–3q25.32, 5q11.2–5q14.3, 5q14.3–5q23.2,
16p12.3–16q12.2, 17q24.3–17q25.3, 19q13.33–19q13.43, 22p13–22q12.3, and 22q12.3–22q13.3),
3500 genetic loci were harbored, out of which 1827 loci were protein coding genes (Table 1).
In the seven cytogenetic locations that were revealed to be significant in the T2DM subgroup
meta-analysis of GWLS (4p14–4q13.3, 5q14.3–5q23.2, 5q23.2–5q34, 7p22.3–7p15.3, 7q22.3–
7q34, 15q11.2–15p13, and 22p13–22q12.3), 2619 genetic loci were included, out of which
1211 protein coding genes were located. The common section of the protein coding genes
in T1DM and T2DM constituted 346 genes (Figure 1, Table S1).

Table 1. Identification of gene type.

Gene Type T1DM (# Genes) T2DM (# Genes)

protein coding 1827 1211

pseudo 1004 818

ncRNA 584 363

snRNA 3 2

snoRNA 31 104

rRNA − 1

other 51 120

Total 3500 2619
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Figure 1. Venn diagram regarding the protein coding genes in T1DM and T2DM.

2.1. GO Analysis and over Representation Test
2.1.1. GO Analysis Results

In T1DM and regarding the principal molecular functions of the genes, most of the
genes are involved in the binding process, catalytic activity, molecular function regulation,
and transporter and molecular transducer activity. With regard to the principal biological
processes, most of the genes are implicated in a cellular and metabolic process, in biological
regulation, in response to stimulus, and in localization. Regarding the principal cellular
components, most gene products are localized in a cellular anatomical entity, intracellularly,
and in a protein-containing complex. The five protein classes with the most genes are a
metabolite interconversion enzyme, a protein modifying enzyme, a gene-specific transcrip-
tional regulator, a transmembrane signal receptor, and a nucleic acid metabolism protein.
The majority of the genes are involved in certain signaling pathways, like angiogenesis,
integrin signaling pathway, inflammation mediated by chemokine and cytokine signaling
pathway, Gonadotropin-releasing hormone receptor pathway, and EGF receptor signaling
pathway (Table 2) (Figures S1–S5).

Table 2. The top five GO terms per type of diabetes.

GO Term T1DM-DN T2DM-DN

GO Term Top 5 GO Terms # of Genes Top 5 GO Terms # of Genes

Molecular
Function

binding (GO:0005488) 592 binding (GO:0005488) 330

catalytic activity
(GO:0003824) 378 catalytic activity

(GO:0003824) 242

molecular function regulator
(GO:0098772) 281 molecular function regulator

(GO:0098772) 114

transporter activity
(GO:0005215) 79 transporter activity

(GO:0005215) 65

molecular transducer activity
(GO:0060089) 54 molecular transducer activity

(GO:0060089) 53

Biological
Process

cellular process (GO:0009987) 938 cellular process (GO:0009987) 605

metabolic process
(GO:0008152) 621 metabolic process

(GO:0008152) 343

biological regulation
(GO:0065007) 567 biological regulation

(GO:0065007) 313
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Table 2. Cont.

GO Term T1DM-DN T2DM-DN

GO Term Top 5 GO Terms # of Genes Top 5 GO Terms # of Genes

response to stimulus
(GO:0050896) 240 response to stimulus

(GO:0050896) 169

localization (GO:0051179) 212 localization (GO:0051179) 165

Cellular
Component

cellular anatomical entity
(GO:0110165) 1035 cellular anatomical entity

(GO:0110165) 720

intracellular (GO:0005622) 822 intracellular (GO:0005622) 484

protein-containing complex
(GO:0032991) 249 protein-containing complex

(GO:0032991) 171

Protein
Class

metabolite interconversion
enzyme (PC00262) 197 metabolite interconversion

enzyme (PC00262) 115

protein modifying enzyme
(PC00260) 134 protein modifying enzyme

(PC00260) 83

gene-specific transcriptional
regulator (PC00264) 133 transporter (PC00227) 74

transmembrane signal
receptor (PC00197) 103 cell adhesion molecule

(PC00069) 62

nucleic acid metabolism
protein (PC00171) 98 gene-specific transcriptional

regulator (PC00264) 55

Pathway

Angiogenesis (P00005) 26 Wnt signaling pathway
(P00057) 71

Integrin signalling pathway
(P00034) 24 Cadherin signaling pathway

(P00012) 62

Inflammation mediated by
chemokine and cytokine

signaling pathway (P00031)
24 EGF receptor signaling

pathway (P00018) 15

Gonadotropin-releasing
hormone receptor pathway

(P06664)
20

Gonadotropin-releasing
hormone receptor pathway

(P06664)
14

EGF receptor signaling
pathway (P00018) 20 Angiogenesis (P00005) 14

In T2DM, the principal molecular functions, biological processes, and cellular com-
ponents of the genes are identical to these of T1DM. Regarding the five protein classes
with the most genes, these are a metabolite interconversion enzyme, a protein modifying
enzyme, transporters, cell adhesion molecules, and gene-specific transcriptional regulators.
The signaling pathways with the most of the genes involved are the Wnt signaling path-
way, cadherin signaling pathway, EGF receptor signaling pathway, gonadotropin-releasing
hormone receptor pathway, and angiogenesis (Table 2) (Figures S6–S10).

2.1.2. Over Representation Test Results

An overrepresentation test with PANTHER v16.0 followed the GO analysis. In T1DM,
the top five most enriched biological processes are heterocycle biosynthetic process, biosyn-
thetic process, aromatic compound biosynthetic process, organic substance biosynthetic
process, and transcription by RNA polymerase II. The top five molecular functions are the
RNA polymerase II cis-regulatory region sequence-specific DNA binding and, more specifi-
cally, the cis-regulatory region sequence-specific DNA binding, the transcription regulatory
region sequence-specific DNA binding, the regulatory region nucleic acid binding, and the
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nucleic acid binding. Regarding the most enriched cellular components, these include a
secretory granule, a secretory vesicle, a membrane-bounded organelle, an organelle, and
an intracellular organelle. With regard to the top five statistically significant enriched
protein classes, these are the immunoglobulin superfamily cell adhesion molecule, the
immunoglobulin receptor superfamily, the C2H2 zinc finger transcription factor, the zinc
finger transcription factor, and the serine protease. Regarding the most enriched signaling
pathways, the VEGF signaling pathway, the Cadherin signaling pathway, the angiogenesis
pathway, the p38 MAPK pathway, and the EGF receptor signaling pathway (Table 3).

Table 3. The top five results of the over-representation test in T1DM-DN.

Homo
Sapiens

(REF)
Client Text Box Input (Hierarchy )

PANTHER GO-Slim Biological Process # # Expected Fold
Enrichment +/− Raw p Value FDR

heterocycle biosynthetic process 2322 277 208.24 1.33 + 3.52 × 10−6 1.10 × 10−3

biosynthetic process 3011 346 270.03 1.28 + 4.13 × 10−6 1.13 × 10−3

aromatic compound biosynthetic process 2323 276 208.33 1.32 + 5.06 × 10−6 1.23 × 10−3

organic substance biosynthetic process 3004 346 269.40 1.28 + 3.44 × 10−6 1.25 × 10−3

transcription by RNA polymerase II 1635 205 146.63 1.40 + 5.95 × 10−6 1.30 × 10−3

PANTHER GO-Slim Molecular Function # # Expected Fold
Enrichment +/− Raw p Value FDR

RNA polymerase II cis-regulatory region
sequence-specific DNA binding 1054 162 94.52 1.71 + 7.14 × 10−10 3.96 × 1−7

cis-regulatory region sequence-specific DNA binding 1057 162 94.79 1.71 + 7.55 × 10−10 2.09 × 10−7

transcription regulatory region sequence-specific DNA
binding 1377 188 123.49 1.52 + 8.28 × 10−8 5.11 × 10−6

regulatory region nucleic acid binding 1377 188 123.49 1.52 + 8.28 × 10−8 4.60 × 10−6

nucleic acid binding 2248 274 201.61 1.36 + 8.13 × 10−7 3.76 × 10−5

PANTHER GO-Slim Cellular Component # # Expected Fold
Enrichment +/− Raw p Value FDR

secretory granule 64 18 5.74 3.14 + 9.85 × 10−5 6.25 × 10−3

secretory vesicle 146 31 13.09 2.37 + 5.17 × 10−5 4.38 × 10−3

membrane-bounded organelle 5999 636 538.00 1.18 + 2.42 × 10−6 4.09 × 10−4

organelle 6781 714 608.13 1.17 + 7.48 × 10−7 3.80 × 10−4

intracellular organelle 6633 692 594.86 1.16 + 5.06 × 10−6 6.43 × 10−4

PANTHER Protein Class # # Expected Fold
Enrichment +/− Raw p Value FDR

immunoglobulin superfamily cell adhesion molecule 24 12 2.15 5.58 + 1.80 × 10−5 1.16 × 10−3

immunoglobulin receptor superfamily 191 36 17.13 2.10 + 1.34 × 10−4 6.44 × 10−3

C2H2 zinc finger transcription factor 460 84 41.25 2.04 + 2.04 × 10−8 3.94 × 10−6

zinc finger transcription factor 541 89 48.52 1.83 + 4.55 × 10−7 4.39 × 10−5

serine protease 198 33 17.76 1.86 + 1.65 × 10−3 4.55 × 10−2

PANTHER Pathways # # Expected Fold
Enrichment +/− Raw p Value FDR

VEGF signaling pathway 68 14 6.10 2.30 + 7.61 × 10−3 1.00

Cadherin signaling pathway 164 5 14.71 .34 − 1.04 × 10−2 8.73 × 10−1

Angiogenesis 175 26 15.69 1.66 + 1.98 × 10−2 1.00

p38 MAPK pathway 41 8 3.68 2.18 + 6.01 × 10−2 1.00

EGF receptor signaling pathway 141 20 12.65 1.58 + 6.02 × 10−2 1.00

In T2DM, the most enriched biological processes include biological adhesion, cell
adhesion, peptidyl-tyrosine modification, cellular response to stimulus, and response to
a molecule of bacterial origin. The most overrepresented molecular functions include
the chloride transmembrane transporter activity and, more specifically, inorganic anion
transmembrane transporter activity and anion transmembrane transporter activity, while
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the most enriched cellular components include integral and intrinsic components of the
plasma membrane. The most overrepresented protein classes include cadherins, cell
adhesion molecules, chemokines, cytokines, and intercellular signal molecules. Lastly,
the most enriched pathways include those of the Cadherin and Wnt signaling pathways
(Table 4).

Table 4. The top five results of the over-representation test in T2DM-DN.

Client Text Box Input (Hierarchy)

PANTHER GO-Slim Biological Process # # Expected Fold
Enrichment +/− Raw p Value FDR

biological adhesion 366 75 21.82 3.44 + 5.83 × 10−1 6.36 × 10−15

cell adhesion 366 75 21.82 3.44 + 5.83 × 10−18 1.27 × 10−14

peptidyl-tyrosine modification 53 13 3.16 4.11 + 6.68 × 10−5 2.08 × 10−2

cellular response to biotic stimulus 41 12 2.44 4.91 + 2.97 × 10−5 2.16 × 10−2

response to molecule of bacterial origin 45 12 2.68 4.47 + 6.39 × 10−5 2.32 × 10−2

PANTHER GO-Slim Molecular Function # # Expected Fold
Enrichment +/− Raw p Value FDR

chloride transmembrane transporter activity 79 15 4.71 3.18 + 2.32 × 10−4 6.44 × 10−2

inorganic anion transmembrane transporter activity 91 17 5.43 3.13 + 1.09 × 10−4 6.03 × 10−2

anion transmembrane transporter activity 221 29 13.18 2.20 + 2.43 × 10−4 4.50 × 10−2

PANTHER GO-Slim Cellular Component # # Expected Fold
Enrichment +/− Raw p Value FDR

integral component of plasma membrane 786 110 46.87 2.35 + 1.00 × 10−14 2.55 × 10−12

intrinsic component of plasma membrane 798 111 47.58 2.33 + 8.84 × 10−15 4.49 × 10−12

membrane 4165 304 248.34 1.22 + 1.76 × 10−4 1.78 × 10−2

intrinsic component of membrane 1180 135 70.36 1.92 + 6.44 × 10−12 8.18 × 10−10

integral component of membrane 1151 133 68.63 1.94 + 5.50 × 10−12 9.32 × 10−10

PANTHER Protein Class # # Expected Fold
Enrichment +/− Raw p Value FDR

cadherin 113 57 6.74 8.46 + 2.88 × 10−29 5.56 × 10−27

cell adhesion molecule 203 62 12.10 5.12 + 2.86 × 10−22 2.76 × 10−20

chemokine 24 11 1.43 7.69 + 2.04 × 10−6 1.31 × 10−4

cytokine 102 17 6.08 2.80 + 3.59 × 10−4 1.39 × 10−2

intercellular signal molecule 377 39 22.48 1.73 + 1.72 × 10−3 4.75 × 10−2

PANTHER Pathways # # Expected Fold
Enrichment +/− Raw p Value FDR

Cadherin signaling pathway 164 62 9.78 6.34 + 2.80 × 10−26 4.67 × 10−24

Wnt signaling pathway 317 71 18.90 3.76 + 7.53 × 10−19 6.29 × 10−17

2.2. Protein Network Analysis

Regarding T1DM, in order to further elucidate the function of the 1827 genes, we
constructed a PPI network that includes 1779 nodes and 3761 edges, with an average node
degree of 4.23 by using the STRING database and Cytoscape software (Figure 2). The PPI
enrichment p-value was 6.78× 10−12, which means that the network had significantly more
interactions than expected.
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and physical protein associations) regarding T1DM.

Regarding T2DM, in order to elucidate further the function of the 1211 genes, we
constructed a PPI network that included 1197 nodes and 1313 edges, with an average node
degree of 2.19, by using the STRING database and Cytoscape software (Figure 3). The
PPI enrichment p-value was <1.0 × 10−16, which means that the network had significantly
more interactions than expected.

The protein network analysis by the CytoHubba plugin revealed the following 10
genes as the nodes with the most interactions in T1DM-DN: EP300, RPS11, RPS5, RPS23,
RPS9, GRB2, RPS15A, NHP2L1, CCNB1, and RPL3 (Table 5 and Figure 4). In T2DM, the
10 genes with the most interactions in the protein network are: IL6, ACTB, MAPK1, RAC1,
CYCS, CXCL8 (IL8), SNRPD3, CSF2, RPL9, and HSPA4 (Table 5) (Figure 5). In Table S2, we
report the next top 10 genes per diabetes type.
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Table 5. The 10 nodes with the most edges based on the CytoHubba analysis.

Official Gene Symbol Official Full Name Score Cytogenetic
Location

T1DM-DN

EP300 E1A binding protein p300 43.0 22q13.2

RPS11 ribosomal protein S11 38.0 19q13.33

RPS5 ribosomal protein S5 37.0 19q13.43

RPS23 ribosomal protein S23 35.0 5q14.2

RPS9 ribosomal protein S9 35.0 19q13.42

GRB2 growth factor receptor bound protein 2 34.0 17q25.1

RPS15A ribosomal protein S15a 34.0 16p12.3

NHP2L1 (SNU13) small nuclear ribonucleoprotein 13 31.0 22q13.2

CCNB1 cyclin B1 30.0 5q13.2

RPL3 ribosomal protein L3 30.0 22q13.1

T2DM-DN

IL6 interleukin 6 30.0 7p15.3

ACTB actin beta 26.0 7p22.1

MAPK1 mitogen-activated protein kinase 1 25.0 22q11.22

RAC1 Rac family small GTPase 1 25.0 7p22.1

CYCS cytochrome c, somatic 21.0 7p15.3

CXCL8 (IL8) C-X-C motif chemokine ligand 8 20.0 4q13.3

SNRPD3 small nuclear ribonucleoprotein D3 polypeptide 19.0 22q11.23

CSF2 colony stimulating factor 2 17.0 5q31.1

RPL9 ribosomal protein L9 17.0 4p14

HSPA4 heat shock protein family A (Hsp70) member 4 16.0 5q31.1
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3. Discussion

With the current bioinformatics study, we identified the functional role of the protein
coding genes located in the cytogenetic locations that were statistically significant in a
meta-analysis of genome-wide linkage studies in T1DM or T2DM exclusively, in an effort
to detect these dysregulated pathways and the key genes that are responsible in each type
of diabetes [15]. For this purpose, we conducted a genetic ontology analysis and over-
representation test with PANTHER v16.0 in order to highlight the most over-represented
GO terms of these genes, and analyzed the protein network of these genes in order to find
the hub genes with STRING and Cytoscape apps.

Among the most over-represented protein classes of the protein coding genes in both
T1DM and T2DM analyses are the molecules related to immune responses. More specifically,
in the T1DM analysis, some of the most enriched protein classes include the immunoglobu-
lin superfamily cell adhesion molecule and immunoglobulin receptor superfamily, while in
T2DM, chemokines and cytokines are among the most enriched protein classes. Although
DN is not a classical immune disease, the crucial role of the immune system contribution
in the course of the disease is undoubtedly present. More specifically, immunoglobulin
G (IgG), immunoglobulin M (IgM), and complement deposition are common findings
in the kidneys of patients with DN, as they have been depicted by immunofluorescence
staining [21]. It has been also found that the deposition of glomerular C4c is a predictor
of an unfavorable renal outcome [22]. A meta-analysis of the genetic association studies
regarding patients with DN revealed the significance of variants in CCL2, CCR5, IL6, IL8,
EPO, IL1A, IL1B, IL100, IL1RN, GHRL, MMP9, TGFB1, VEGFA, MMP3, MMP12, IL12RB1,
PRKCE, TNF, and TNFRSF19 genes in the development of DN [5]. Levels of several cy-
tokines, such as IL-6, IL-18, and TNF, are elevated in patients with DN [23–25]. Proteinuria,
a hallmark symptom of DN, is not only evidence of the underlying renal damage, but also
a cause for further injury and immune response to the underlying tissue injury.

In addition, one of the most over-represented pathways is angiogenesis. Indeed,
experimental data indicate that VEGF is responsible for the increase of neovascularization
observed in patients with DN, which is correlated with the expression of VEGF and
angiopoietin [26]. VEGF is expressed mainly in podocytes, distal tubules, and collecting
ducts, while its receptors are harbored on glomerular endothelial cells [27]. Although
hypoxia is the main stimulatory factor of VEGF, several cytokines, growth factors, and other
factors, out of which many are related to DN such as hyperglycemia, advanced glycation
end products (AGEs), prostaglandins, mechanical stress, protein kinase C (PKC), reactive
oxygen species (ROS), angiotensin II, and aldose reductase, also induce VEGF [27,28]. Renal
expression of VEGF and its receptors is up-regulated in patients of both type 1 and type 2
diabetes, especially early in the onset of diabetes, whereas the inhibition of VEGF with anti-
VEGF-antibodies acts beneficially in the renal changes induced by diabetes, indicating a
harmful role of this factor in the pathophysiology of DN [27,29]. VEGFA G405C, -1499C > T,
and -2549 I/D are some of the genetic variants examined in genetic association studies in
patients with DN due to either T1DM or T2DM [30–34]. Nikzamir et al. (2012) identified a
statistically significant association between VEGF +405 GG variant and DN [28]. VEGF-2549
D/I polymorphism, and more specifically the D allele, was associated with susceptibility to
DN in type 1 diabetics [35]. VEGFA is also implicated, except in DN, in polycystic kidney
disease, suggesting that its role is significant for the maintenance of good functioning of
the renal vascular system [36,37].

One of the most significantly enriched signaling pathways either in T1DM or T2DM is
also the Cadherin pathway. This finding confirms the results of our previous in silico study,
which is referred to DN secondary to both types of diabetes, T1DM and T2DM, and demon-
strated the contribution of Wnt and Cadherin signaling pathways in the pathogenesis of
DN [38]. Previous data indicate that an altered cadherin expression is an early biomarker
of DN, as its levels are elevated early in the course of the disease and continue to elevate
during disease progression [39,40]. Dysregulated cadherin expression is also implicated
in DN associated proteinuria because it is involved in epithelial−mesenchymal transition
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(EMT) [41]. The fact that this pathway is enriched in all types of analysis indicates the
potential crucial role of it, and it could possibly serve as a therapeutic target as it seems to be
related with diabetic nephropathy per se, irrespective of the type of the underlying diabetes.

One more finding of the present bioinformatics study with regard to T2DM analysis
confirms the results of our previous in silico analysis about the significant enrichment
of the Wnt signaling pathway [38]. Previous data indicate the convergence between
Wnt, β-catenin, and cadherin pathways [42]. Wnts are growth factor signaling molecules
that are involved in many biological processes, such as cell−cell adhesion, proliferation,
differentiation, and cell migration [42]. Upregulation of the Wnt/β-catenin signaling
pathway dysregulated podocyte function in DN [43–45]. Other lines of evidence come
from studies in several diabetic experimental animals in which the levels of Wnt proteins
were elevated compared to the non diabetic controls [46]. The role of Wnt pathway is more
extensively discussed in our previous analysis [38].

The EGF receptor signaling pathway is also one of the most enriched pathways in DN
due to T1DM. EGF is the most well studied ligand of EGFR which is expressed throughout
the kidney epithelium and interstitium [47]. EGF could serve as a prognostic biomarker of
kidney diseases because it is excreted partially in the urine [48]. It is noteworthy to mention
that EGF levels increase in the serum of patients with DN at all stages of chronic kidney
disease (CKD) compared to healthy controls [49]. More evidence about the implication
of EGFR signaling in DN is the fact that the inhibition of EGFR preserved the podocytes
number and reduced albuminuria [50]. Therefore, the EGFR pathway could function as a
potential therapeutic target. The EGFR pathway also has a crucial role in nephrogenesis,
while in adults, this pathway controls the electrolyte handling and more specifically in
sodium, calcium, and magnesium homeostasis [51]. EGFR pathway activation leads to
activation of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-
kinase (PI3K) signaling pathways [51]. In addition, the expression of p38 MAPK and
Wnt/β-catenin were significantly increased in an animal model of cadmium-induced
diabetic nephropathy [52].

One new or unconventional pathway linked to T1DM-DN or T2DM-DN was the
gonadotropin-releasing hormone receptor pathway. However, after extensive literature
research, we found that this pathway controls miRNAs that are upregulated after hemodial-
ysis. Therefore, the authors concluded that hemodialysis alters the circulating miRNAs
and this alteration affects gonadotropin-releasing hormone receptor, cell cycle, and cell
pluripotency-related pathways, which are associated with subfertility and increased risk
for cancer development, conditions that have been associated with hemodialysis [53].

Novel hub genes, genes with the most interactions in the protein networks, we noticed
in both T1DM-DN and T2DM-DN protein networks. In the case of T1DM, all the hub
genes were novel findings. We searched in the literature for genetic association studies
regarding these genes, but we did not find any studies. On the other hand, in the T2DM-
DN protein network, the hub genes include two genes already examined in the context of
genetic association studies, IL6 and CXCL8. It is interesting that many of the hub genes
are harbored in chromosome 5q, which was one of the common significant regions in both
T1DM and T2DM in the meta-analysis whose data we used in the present study.

It is noteworthy to mention that MODY and ketosis-prone T2DM were not included in
this analysis because there was not a sufficient number of linkage studies regarding MODY
in order to be included in the meta-analysis. Future studies should also investigate the role
of the underlying genetics of these types of diabetes, although the available studies are less
common in the literature than the studies regarding the T1DM and T2DM, and thus it is
not likely to change the results of the current study.

Last, but not least, the importance and the novelty of this study regards the method-
ological approach used, because it offers a new approach in the interpretation of the results
of genetic linkage studies. This approach is more common in the case of the results derived
from genetic association studies. In the context of the present study, we extended the
use of genetic ontology analysis and protein network analysis in the results of linkage
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studies of diabetic nephropathy. It is interesting that we replicated the results from other
methodological approaches. This convergence strengthens our results and constitutes
further evidence for the credibility of our conclusions.

4. Materials and Methods
4.1. Data Sources

The data are derived from the most recent meta-analysis of GWLS in DN [15]. DN was
defined in the presence of persistent micro-/macro-albuminuria and/or chronic renal insuf-
ficiency, whereas other causes of nephropathy, except longstanding T1DM and T2DM were
excluded. GWLS of albuminuria, estimated glomerular filtration rate (eGFR) and serum
creatinine were excluded from the meta-analysis [15]. In order to find which genes are
located in the significantly suggestive regions for linkage with DN, we used the University
of California Santa Cruz (UCSC) Genome Browser (https://genome.ucsc.edu/, accessed on
13 October 2021) and, more particularly, the assembly December 2013 (GRCh38/hg38) [54].
The aforementioned meta-analysis regarding only the T1DM sub-analysis identified nine
cytogenetic locations (1q43–1q44, 3q21.2–3q25.32, 5q11.2–5q14.3, 5q14.3–5q23.2, 16p12.3–
16q12.2, 17q24.3–17q25.3, 19q13.33–19q13.43, 22p13–22q12.3, and 22q12.3–22q13.3) as sig-
nificantly suggestive for linkage with DN in T1DM, and seven regions (4p14–4q13.3, 5q14.3–
5q23.2, 5q23.2–5q34, 7p22.3–7p15.3, 7q22.3–7q34, 15q11.2–15p13, and 22p13–22q12.3) as
significantly suggestive for linkage with DN in T2DM [15].

4.2. GO Analysis and Statistical Significance

In order to delineate the biological role of the genes harbored in the locations iden-
tified from the meta-analysis, we focused on the role of the protein coding genes. For
this purpose, the PANTHER functional classification system was used [55,56]. Statistical
overrepresentation test with PANTHER was performed after the GO analysis. Fisher’s
exact test was used for the calculation of the statistical significance and was adjusted using
the false discovery rate (FDR) for the correction of multiple tests. An FDR-corrected p value
threshold of <0.05 was used.

4.3. PPI Network Construction and Selection of Hub Genes

The STRING (Search Tool for the Retrieval of INteracting Genes) (https://string-db.
org, accessed on 13 October 2021) database was used to construct the protein network
for the protein coding genes located in the locations identified from the meta-analysis of
GWLS [15]. The minimum confidence score was set at 0.700. Cytoscape (version 3.8.2,
https://cytoscape.org/index.html, accessed on 13 October 2021) was used for PPI network
visualization [57]. The CytoHubba app in Cytoscape was used to detect the 10 hub genes
with the highest scores [53].

5. Conclusions

Taken together, in the present study, we analyzed in silico the findings of a meta-
analysis of genome-wide linkage studies and prioritized the most probable candidate genes
involved in DN in the context of T1DM or T2DM. The significance of our findings rests on
the identification of immune-related molecules, as well as the importance of Cadherin and
Wnt signaling pathways. Our findings may indicate potential biomarkers or therapeutic
targets for DN per se, irrespective of the type of underlying diabetes.
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