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The alteration of neurovascular coupling (NVC), where acute localized blood flow increases 
following neural activity, plays a key role in several neurovascular processes including aging and 
neurodegeneration. While not equivalent to NVC, the coupling between simultaneously measured 
cerebral blood flow (CBF) with arterial spin labeling (ASL) and blood oxygenation dependent (BOLD) 
signals, can also be affected. Moreover, the acquisition of BOLD data allows the assessment of resting 
state (RS) fMRI metrics. In this study a multiband, multi-echo (MBME) pseudo-continuous ASL (pCASL) 
sequence was used to collect simultaneous BOLD and ASL data in a group of healthy control subjects, 
and the patterns of BOLD-CBF coupling were evaluated. Coupling was also correlated with the BOLD 
RS measures. The variability, reproducibility, and reliability of the metrics were also computed in a 
multi-session subgroup. Areas of higher coupling were observed in the visual, motor, parietal, and 
frontal cortices and corresponded to major brain networks. Areas of significant correlation between 
coupling and BOLD RS measures corresponded to areas of heightened coupling. Higher variability and 
lower reliability were found for coupling metrics compared to BOLD RS metrics. These results indicate 
BOLD-CBF coupling metrics may be useful for studying neurovascular physiology.
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Neurovascular coupling (NVC) is vital for cerebral homeostasis1,2. NVC, where acute localized blood flow is 
altered following neural activity, is the basis for the Blood Oxygenation Level-Dependent (BOLD) response 
in functional magnetic resonance imaging (fMRI)3. In this process, neural activity results in increased oxygen 
demand leading to increased blood flow and oxygen supply to that region. Since the increased oxygen supply 
is typically more than the cerebral metabolic rate of oxygenation [CMRO2]) the oxygenated to deoxygenated 
hemoglobin ratio is increased. Since oxygenated hemoglobin has lower magnetic susceptibility compared to 
deoxygenated hemoglobin, the magnetic resonance signal increases in that region. Emerging research suggests 
that impaired NVC plays a critical role in several neurovascular pathological processes. For example, research 
has shown NVC is a factor in cognitive decline in aging and neurodegeneration4 and suggests that neurovascular 
uncoupling is associated with microvascular pathophysiological alterations and has a causal role in developing 
Alzheimer’s Disease (AD) and AD-related cognitive decline4–7.

Arterial spin labeling (ASL), a non-invasive MRI technique used to measure CBF, and blood oxygenation 
dependent (BOLD) contrasts can be collected simultaneously using single shot multi-echo sequences8–12. 
Using these sequences, the correlation between the ASL and BOLD time series (BOLD-CBF coupling) can 
be directly calculated. While not equivalent to NVC, BOLD-CBF coupling can provide insight into brain 
physiology10,11,13,14. For example, Tak et al. showed the degree of positive BOLD-CBF coupling decreased 
with the brain microvasculature fraction11 and positively correlated with resting state functional connectivity 
(RSFC) within functional networks10. Champagne et al. showed BOLD-CBF coupling played a significant role 
in RSFC strength differences between young and old participants while other measures such as baseline CBF 
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and cerebrovascular reactivity (CVR) did not show such an effect15. In addition, these sequences allow calibrated 
fMRI, which separates oxygen metabolism changes from blood flow and volume changes, to be performed using 
the Davis model16.

Furthermore, resting state fluctuation metrics quantify the characteristics of spontaneous brain fluctuations. 
For example, the amplitude of low-frequency fluctuations (ALFF) metric calculates the power of low-frequency 
oscillations in the BOLD signal17. These low-frequency signals are usually the basis of RSFC18. ALFF and 
RSFC provide complementary information, with ALFF measuring local neural activity and RSFC measuring 
long-range brain connections. For example, higher ALFF values have been associated with stronger network 
connectivity in several brain networks19. ALFF has also allowed differentiating between physiological states20. 
For instance, ALFF was significantly increased for an eyes open vs. eyes closed task in the visual cortex20. One 
study also evaluated the coupling of CBF and ALFF showing that the metrics are indeed significantly coupled, 
and showed regional changes in CBF-ALFF coupling with age while also being affected by sex and executive 
function21.

Regional homogeneity (ReHo) is another common resting state metric that describes the temporal coherence 
of the signal in a voxel with the voxel’s neighbors22,23. It has been shown to be related to ALFF24. In addition, 
CBF-ReHo correlations and the CBF/ReHo ratio have been found altered in disease25,26. Similar to ALFF, ReHo 
and RSFC provide complementary information with ReHo measuring local synchronization of brain activity. 
However, one study found changes in ReHo were associated with changes in RSFC27.

While most studies on BOLD-CBF coupling use a dual-echo approach, with a short echo time (~ 10ms) to 
obtain a perfusion-weighted signal, and a longer echo time (~ 30ms) for T2*-weighted BOLD contrasts, Cohen 
and colleagues combined a multiband acquisition with four echoes28. The collection of multiple echoes allowed 
data denoising with multi-echo independent component analysis (ME-ICA)29–35. This technique classifies 
spatially independent components as either BOLD or non-BOLD based on whether or not their amplitudes 
are linearly dependent on TE, respectively. The non-BOLD components can then be removed from the data 
via nuisance regression or treated as regressors of non-interest in task analysis36. Using this multiband, multi-
echo (MBME) pCASL/BOLD sequence, they found BOLD-CBF coupling strength was higher and the area of 
significant coupling was larger for the denoised multi-echo combined data compared to multi-echo combined 
data without ME-ICA denoising28.

Although there have been a limited number of studies investigating BOLD-CBF coupling, especially with 
MBME pCASL/BOLD sequences28, the reproducibility of BOLD-CBF coupling metrics, in particular, has not 
been studied. The relationship between BOLD-CBF coupling and traditional RSFC metrics, including ReHo and 
ALFF, is also unknown. Therefore, in this study resting state fMRI data was collected using a MBME pCASL/
BOLD sequence with four echoes in a group of healthy volunteers. Building on previous research investigating 
the relationship between BOLD-CBF coupling and RSFC, here BOLD-CBF coupling metrics were computed 
and then correlated with ReHo and ALFF. A subset of subjects returned within two weeks for a repeat scan to 
assess the variability, reproducibility, and reliability of these measures.

Materials and methods
Subjects
This study was approved by the Medical College of Wisconsin Institutional Review Board and was conducted 
in accordance with the Declaration of Helsinki. All subjects provided written informed consent prior to 
participation in this study. In total, 28 healthy volunteer subjects (Mean Age = 28.0 y.o., Range 20–46 y.o., 9 Male, 
19 Female) participated in this study. Of those, 19 subjects returned (Mean Age = 27.2 y.o., Range 20–46 y.o., 7 
Male, 12 Female) within two weeks to repeat the study resulting in 47 imaging sessions. Subjects were instructed 
to refrain from caffeine and tobacco for six hours prior to imaging.

Imaging
Imaging was performed on a 3T scanner (Signa Premier, GE Healthcare, Waukesha, WI) with a body transmit 
coil and a 32-channel NOVA (Nova Medical, Wilmington, MA) receive head coil. Maximum gradient strength 
was 70mT/m and the maximum slew rate was 170 mT/m/ms. A 3D T1-weighted MPRAGE anatomical image was 
acquired with TR/TE = 2200/2.8ms, FOV = 24 cm, matrix size = 240 × 240 × 128, slice thickness = 1.0 mm, voxel 
size = 1 × 1 × 1 mm3 zero-filled to 512 × 512 × 256, and FA = 8°. Each subject underwent a MBME simultaneous 
pCASL/BOLD resting state fMRI acquisition (Cohen et al., 2017; Cohen et al., 2018) with the following 
parameters: TR/TE = 3500/11,30,49,67ms, FOV = 24  cm, matrix size = 80 × 80 with slice thickness = 3  mm 
(3 × 3 × 3 mm voxel size), 11 excitations with multiband factor = 4 (i.e. 44 total slices in total), FA = 90°, partial 
Fourier factor = 0.85, effective echo spacing = 0.25ms, readout length = 20.0ms. Fat suppression was used. The 
sequence also incorporated an unbalanced pCASL labeling scheme with labeling time = 1.5s and PLD = 1.0s. 
Resting state scans used a single shot EPI readout with in-plane acceleration (R) = 2 and lasted six minutes 
resulting in 103 volumes. During the resting state scans, subjects were instructed to close their eyes, but remain 
awake, refrain from any motion, and not think about anything in particular.

Analysis
A combination of Freesurfer37, AFNI38,39, FSL40, and Matlab (The Mathworks, R2018a) were used for the data 
analysis. Image preprocessing was conducted based on the HCP minimal preprocessing pipeline modified to 
take into account the multiple echoes41.

Anatomical processing
Anatomical processing used the PreFreeSurferPipeline.sh scripts from the HCP pipeline. First, the anatomical 
image was aligned to the anterior-posterior commissure line (ACPC) using aff2rigid in FSL. Next, a brain mask 
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was created using FNIRT-based brain extraction. This process involved first linearly registering the MPRAGE 
image to MNI space using flirt in FSL with 12 degrees of freedom42, then non-linearly refining the registration 
with fnirt in FSL. Finally, a brain-only reference image in MNI space was inverse warped to native space using the 
transformations determined above and used to mask the MPRAGE image to extract the brain. This MPRAGE 
brain-only image was then registered to MNI space using flirt with 12 degrees of freedom followed by fnirt.

In addition, a FreeSurfer analysis was performed for all subjects using the recon-all command on the ACPC-
aligned MPRAGE dataset. The purpose was to extract individual brain parcellations to use for the ROI-based 
analyses described below.

BOLD preprocessing
The first four volumes were discarded to allow the signal to reach a steady-state magnetization. Next, the data 
was volume registered to the first volume using mcflirt in FSL. Of note, only the first echo was volume registered, 
and subsequent echoes were volume registered using the transformation matrices from the first echo.

Then, ME-ICA was performed using tedana v0.0.11 (https://zenodo.org/record/5541689). A user-defined 
mask, generated using 3dAutomask in AFNI, was applied to the data. An adaptive mask was then generated, 
in which each voxel’s value reflects the number of echoes with ‘good’ data. A two-stage masking procedure was 
applied, in which a liberal mask (including voxels with good data in at least the first echo) was used for optimal 
combination, T2*/S0 estimation, and denoising, while a more conservative mask (restricted to voxels with good 
data in at least the first three echoes) was used for the component classification procedure. A monoexponential 
model was fit to the data at each voxel using log-linear regression in order to estimate T2* and S0 maps. Multi-
echo data were then optimally combined using the T2* combination method43. Principal component analysis 
(PCA) based on the PCA component estimation with a Moving Average (stationary Gaussian) process44 was 
then applied to the optimally combined data for dimensionality reduction, where the number of components 
was chosen according to the MDL criterion. Independent component analysis was then used to decompose the 
dimensionally reduced dataset with an equal number of spatially independent components. Next, component 
selection was performed to identify BOLD, non-BOLD, and uncertain (low-variance) components using the 
Kundu decision tree v2.534, with manual supervision of the automatic results. The accepted and uncertain 
components were then retained, while the rejected components were removed from the timeseries by the 
means of aggressive nuisance regression. No additional motion correction was performed as ICA models have 
been shown to reduce motion-related effects in the signal36. Importantly, for all cases, a perfusion-weighted 
component was identified and regressed from the data. Finally, the denoised data was bandpass filtered with 
0.01 < f < 0.071 Hz corresponding to 1/(4*TR).

ASL preprocessing
The perfusion-weighted signal was also denoised following a similar procedure as presented in Cohen et al.14. 
The following algorithm was applied to the first-echo data prior to highpass filtering and demodulation. First, 
all components identified by the BOLD ME-ICA procedure in were correlated with a timeseries of alternating 
0’s and 1’s to identify components associated with the label-control oscillations. To avoid removing perfusion-
weighted (PW) signal, components with Pearson’s correlation (r) > 0.2 were not regressed. All other components, 
including the both accepted and rejected components from the ME-ICA performed in Sect. 2.3.2, were regressed 
from the first-echo data using tedana. A denoised PW timeseries was generated by highpass filtering at f > 1/
(4*TR) and demodulating the denoised first echo signal45. To examine the effect of the PW denoising, temporal 
SNR (tSNR) was computed for the denoised and non-denoised PW timeseries by dividing the mean by the 
standard deviation of the signal.

BOLD-CBF coupling
The BOLD-CBF coupling was assessed by correlating the signals from the denoised BOLD and PW datasets on 
a voxelwise basis using Pearson correlation with 3dTcorrelate in AFNI. Following the procedures outlined in Tak 
and colleagues11, the BOLD time series was time-shifted from − 2TR to + 2TR (-7.0–7.0s) with steps of 1 TR. 
The voxelwise maximum correlation within this range was defined as rmax. The correlation at zero time shift (r0) 
was also extracted. Correlation maps were converted to z-scores using a Fisher’s z transform. A one sample t-test 
was run on the coupling metrics to identify group patterns using 3dttest + + in AFNI. Maps were thresholded 
at p < 0.001 and then cluster-size corrected for multiple comparisons at α < 0.05 using 3dClustSim in AFNI. In 
addition, mean values for each metric were extracted from ROIs consisting of the Yeo 7 network template46. 
Networks corresponded to: Yeo1 = Visual; Yeo2 = Somatomotor; Yeo3 = Dorsal Attention; Yeo4 = Ventral 
Attention; Yeo5 = Limbic; Yeo6 = Frontoparietal; Yeo7 = Default Mode.

In addition, a whole-GM ROI-based coupling analysis was conducted using ROIs derived from the 
parcellations estimated by FreeSurfer on individual brains. For each subject, FreeSurfer parcellated the brain 
cortex into 148 ROIs. In addition, 16 subcortical ROIs from the same parcellation were included in the analysis. 
The average BOLD signal from each of these ROIs for each subject and timepoint was correlated with the 
average PW signal from the same ROI and all other ROIs. The same time shift analysis was performed as for the 
voxelwise analysis and rmax and r0 were computed. This resulted in 164 × 164 rmax and r0 BOLD-CBF coupling 
matrices for each timepoint and subject. These coupling matrices were then averaged across subjects. This ROI-
based coupling analysis was carried out using custom code written in Matlab.

Traditional RS metrics
ALFF was computed using 3dRSFC in AFNI with 0.01 < f < 0.071 Hz and ReHo using 3dReHo in AFNI with a 
27 voxel neighborhood. ALFF and ReHo were computed for both BOLD and PW data. ALFF and ReHo were 
normalized by dividing each voxel by the whole-brain mean value (mALFF and mReHo respectively) to allow 
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for comparisons across subjects. Voxelwise group-averaged mALFF and mReHo were computed across subjects. 
Mean values for mALFF and mReHo were also extracted from ROIs consisting of the Yeo 7 network template46.

Correlation of coupling with traditional RS metrics
To examine the relationship between BOLD-CBF Coupling and the traditional RS metrics, rmax and r0 were 
correlated with mALFF and mReHo on a voxelwise basis across subjects using 3dTcorrelate in AFNI with 
Pearson correlation. The resulting correlation maps were thresholded at p < 0.05 and then cluster-size corrected 
for multiple comparisons at α < 0.05 using 3dClustSim in AFNI.

Variability, reproducibility and reliability analyses
For the 19 subjects with repeat datasets the variability of coupling and mALFF and mReHo was estimated using 
within the subject standard deviation (wSD) and between subject standard deviation (bSD). wSD was estimated 
using Eq. (1) where N is the number of subjects and xi1 − xi2 is the difference in metric x (i.e. rmax, r0, etc.) 
between the two time points (TPs). bSD was computed by averaging each metric across the two TPs and then 
computing the standard deviation across subjects.

 
wSD =

√
1

2N

∑
(xi1 − xi2)2 (1)

In addition, reproducibility was estimated using Eq. (2)47,48. Here xi1 and xi2 are the values of each metric 
at TP1 and TP2 respectively. If values are ≥ 0, Rep ranges from 0 to 1 with higher values being desirable. If the 
difference between two values is large, Rep approaches 0. This metric controls for large outliers in the data but 
can blow up if there are negative values as the numerator becomes large, and the denominator becomes small. 
Variability and reproducibility metrics were computed using the mean values extracted from the Yeo 7 network 
ROIs.

 
Rep = 1 −

∣∣∣
(

xi1 − xi2

xi1 + xi2

)∣∣∣

Finally, reliability was estimated using ICC(2,1) on a voxelwise basis using 3dICC in AFNI.

Surface projection
Surface images were created in gifti format and viewed using the Human Connectome Project (HCP) workbench 
software v 1.5.0 (wb_view) by projecting the volume images to an inflated template gifti surface.

Results
ASL TSNR results
tSNR was compared between the denoised and non-denoised PW signal. Results are shown in Fig. 1. Qualitatively, 
tSNR was higher for the denoised PW data compared to non-denoised data. This is confirmed by the paired 
t-test which shows widespread higher TSNR for the denoised data.

BOLD-CBF coupling
Individual subject and group-averaged BOLD-CBF coupling results are shown for r0 and rmax in Fig. 2a and b 
respectively for a representative subject (left) and the group average (middle). For r0 heightened coupling was 
observed in the visual cortex, parietal areas, frontal regions, and motor cortices. For rmax, heightened coupling 
was more widespread, with coupling highest in the visual cortex and parietal regions.

One sample t-test results for the r0 and rmax are also shown in Fig. 2 (right). Maps were thresholded at a 
high t-score (t > 4). Despite this, for rmax, nearly the entire brain was significant. For r0 only the temporal lobe, 
subcortex, and orbitofrontal cortex (OFC) were not significant.

Results of the ROI-based BOLD-CBF coupling analysis are shown in Fig. 3. BOLD-CBF coupling matrices 
for rmax and r0 were qualitatively similar. BOLD-CBF coupling matrices for TP1 and TP2 were also qualitatively 
similar. A prominent diagonal line of higher correlation is present for all matrices indicating a higher correlation 
between BOLD and PW timeseries of the same ROI compared to other ROIs. Secondary diagonals are observed 
in the bottom left and top right of the matrices. These correspond to the analogous contralateral ROIs. The first 
16 ROIs are the subcortical ROIs. BOLD and PW timeseries extracted from subcortical ROIs were more closely 
correlated with other subcortical ROIs compared to cortical ROIs.

Traditional RS metrics
Group averaged traditional RSFC metrics, including mALFF and mReHo, are shown in Fig. 4. Qualitatively, 
BOLD and ASL mReHo and mALFF were very similar.

Quantitative results
Quantitative results for the BOLD-CBF coupling and traditional RS metrics are shown in Fig.  5 (top) and 
Fig. 5 (bottom) respectively. Mean values were extracted from the 7 Yeo functional networks for TP1 and TP2 
separately. For all metrics there was no significant difference between TP1 and TP2 for any ROI. Values of r0 
and rmax were slightly variable across ROIs, especially for Yeo5. This ROI, corresponding to the limbic system, 
had the lowest r0 and rmax of all ROIs. Similar results were seen for mALFF and mReHo with Yeo5 showing the 
lowest values.
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Correlation of coupling with RS Metrics
Figure 6 shows the results of the correlation between BOLD-CBF coupling metrics (r0 and rmax) and traditional 
resting state metrics (mALFF and mReHo). Overall, results for r0 and rmax were similar for all RS metrics. BOLD-
CBF coupling and mALFF were significantly correlated mainly in the visual cortex and motor cortex. Some 
significant correlation between BOLD-CBF coupling and mALFF was also seen in parietal and frontal areas. 
Significant correlation between BOLD-CBF coupling and mReHo was also seen in the visual cortex, motor 
cortex, parietal areas, and, to a lesser extent, frontal areas.

Variability, reproducibility, and reliability
Results for wSD, bSD, and Reproducibility are shown in Table 1 for BOLD-CBF coupling metrics and in Table 2 
for RS metrics. In general, reproducibility was higher for RS metrics compared to coupling metrics with values 
greater than 0.95 for all RS metrics across networks. For coupling metrics, reproducibility was higher for rmax 
compared to r0 with values consistently greater than 0.9 across ROIs. Surprisingly, wSD was higher than bSD for 
more than half of ROIs for the BOLD-CBF coupling metrics but was lower than bSD for the majority of ROIs 
for mALFF and mReHo.

Reliability was measured on a voxelwise basis using ICC(2,1). Results are shown in Fig. 7. In general, ICC 
was higher for the RS metrics compared to BOLD-CBF coupling metrics. mALFF had the highest ICC with 
values consistently greater than 0.8 across the cortex. ICC was lower for ASL mReHo than for BOLD mReHo. 
In general, ICC was low for the BOLD-CBF coupling metrics, although areas with higher ICC were seen in the 
visual and motor cortices. These areas corresponded to areas of higher correlation between BOLD-CBF coupling 
metrics and RS metrics (see Fig. 6).

Discussion
In this study patterns of the correlation of BOLD and ASL time series, or BOLD-CBF coupling, were characterized 
using an MBME PCASL/BOLD sequence to simultaneously measure BOLD and PW signals. Multi-echo ICA was 
then used to denoise the BOLD and PW signals. Areas of greatest coupling were observed in the visual, motor, 
parietal, and frontal cortices. The main findings of this study were two-fold: First, BOLD-CBF coupling metrics 
(r0 and rmax) were widespread and significantly correlated with traditional RS metrics including mReHo and 
mALFF, with areas of significant correlation corresponding to areas of high coupling. Second, the reproducibility 
and reliability of BOLD-CBF coupling metrics was evaluated and showed higher variability of coupling metrics 
compared to RS metrics. Reliability, measured using ICC, was also lower for coupling metrics with areas of 
higher ICC corresponding to areas of heightened coupling.

Overall, widespread coupling was observed between BOLD and PW time series. In general, t-test results 
showed more widespread BOLD-CBF coupling compared to previous studies. This was likely driven by ME-ICA 
denoising made possible by the MBME BOLD/ASL sequence. Instead of the typical dual-echo sequences, four 
echoes were used in this study. For example, Tak et al. showed significant BOLD/PW coupling in well-known 
resting state networks including the default mode, visual, and task-positive networks at uncorrected p < 0.005 
11. Another study found more widespread significant coupling in young adults in similar regions with stronger 
coupling in medial, parietal, and frontal areas with FDR corrected p < 0.05 13. In the present study, for both rmax 

Fig. 1. Perfusion-weighted signal tSNR for non-denoised and ME-ICA denoised datasets. Qualitatively, tSNR 
was higher for the denoised PW data compared to non-denoised data. This is confirmed by the paired t-test 
which shows widespread higher tSNR for the denoised data. The t-score maps were thresholded at p < 0.001. 
No negative values were observed.
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and r0 regions of the temporal cortex, subcortex, and OFC are showed lower coupling compared to the rest of 
the gray matter (Fig. 2). Significant coupling was present throughout nearly all gray matter for rmax and all gray 
matter, except for regions of the temporal cortex and the orbitofrontal cortex (OFC), which typically exhibit 
reduced data quality (tSNR) and signal dropouts, for r0.

Despite this, the group averages showed stronger coupling in similar areas as the above studies including 
default mode and visual networks and frontal areas. As shown in Fig. 5, the mean coupling values for the Yeo 
networks varied between 0.2 and 0.25 for rmax, and between 0.1 and 0.15 for r0, except for the limbic network 
(Yeo 5) which exhibited lower coupling values, particularly for r0. These values are lower than the coupling value 
of 0.32 reported in13. Notably, the values in Chiacchiaretta et al. were only extracted from significant areas which 
may explain the higher value.

In order to tease apart the relationship between BOLD-CBF coupling and traditional RS metrics including 
mReHo and mALFF we performed a correlation analysis. Here, the BOLD and PW timeseries were correlated on 
a voxelwise basis to extract dynamic coupling measures, as opposed to static CBF measures in the above studies. 
Overall, similar correlation patterns were seen between r0 and rmax and the traditional RS metrics mALFF and 
mReHo (see Figs.  3 and 6). Significant correlation corresponded to areas of heightened coupling, including 
visual, parietal, motor, and frontal areas. These results indicate BOLD-CBF coupling can provide similar, but 
complimentary measures to traditional NVC-sensitive RS metrics.

The question remains as to the physiological relevance of BOLD-CBF coupling and its relationship to resting 
state BOLD metrics. Champagne et al. compared BOLD-CBF coupling between young and old participants 
finding lower coupling in older participants49. Furthermore, they found coupling accounted for significant 
variability in RSFC strength between young and old participants mitigating the connectivity differences between 

Fig. 2. Group maps of BOLD-CBF Coupling. Representative individual subject maps of r0 (a) and rmax (b) are 
shown on the left. Group average maps of r0 and rmax are shown in the middle, and one sample t-test results 
are shown on the right. Higher coupling was observed in the visual cortex, parietal areas, frontal regions, and 
motor cortices for r0 and rmax. Coupling was more widespread for rmax. One sample t-test results for maps of 
r0 and rmax were thresholded at t > 4. For both metrics nearly the entire gray matter was significant with the 
exception of the temporal lobe and orbitofrontal cortex for r0.
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the groups49. Thus, differences in connectivity between age groups could be due to vascular factors, which may 
need to be considered when interpreting BOLD measurements. They suggest changes in vessel stiffness with 
aging could drive changes in synchronicity between BOLD and CBF time series, compromising the neurovascular 
unit. Another study looked at changes in BOLD-CBF coupling with age, also finding lower coupling in older 
subjects13. BOLD-CBF connectivity was also found to be positively correlated with RSFC strength in several 
common brain networks and inversely correlated with macrovascular volume fraction suggesting BOLD-CBF 
coupling is a central factor influencing connectivity strength. The BOLD/perfusion ratio was also found to be 
higher during a metabolically demanding visual checkerboard task compared to less metabolically demanding 
resting state and breath holding (BH) tasks. Our MBME BOLD/ASL sequence provides increased temporal 
resolution and sensitivity as evidenced by widespread BOLD-CBF coupling throughout gray matter. Thus, it 
shows the potential to evaluate more subtle aspects of the relationship between CBF and BOLD both in the 
resting state and during tasks, and more accurately relate this coupling to physiological factors. Furthermore, our 
findings of positive correlations between mALFF and mReHo and BOLD-CBF coupling support the idea that 
BOLD-CBF coupling is related to brain connectivity.

A subset of subjects also returned for repeat scans allowing reproducibility and reliability metrics to be 
calculated. In general, reproducibility was higher for the traditional RS metrics compared to BOLD-CBF coupling 

Fig. 3. ROI-based BOLD-CBF coupling matrices for r0 (top) and rmax (bottom). A prominent diagonal line of 
high correlation is present for all matrices, indicating correlation is higher between BOLD and PW timeseries 
for the same ROI compared to other ROIs. Secondary diagonals are observed in the bottom left and top right 
quadrants corresponding to the correlation between BOLD and PW timeseries in contralateral ROIs.
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metrics. This makes sense as tSNR is much higher for BOLD data compared to CBF data. For coupling metrics, 
reproducibility was higher and wSD and bSD lower for rmax compared to r0 despite lower overall correlation for 
r0.

Reliability was assessed using voxelwise ICC(2,1). ICC was high for BOLD RS metrics. ALFF was the most 
reliable with the majority of voxels having ICC > 0.8. ICC was low for the coupling metrics with ICC higher 
in areas with heightened coupling (i.e. visual and motor cortices). Along the same lines, wSD was comparable 
and in many cases higher than bSD for the coupling and BOLD metrics indicating they are just as variable in 
the same subject over time compared to across subjects Thus, care must be taken incorporating longitudinal 
coupling results outside of these regions.

Finally, an ROI analysis was conducted where the BOLD signal in each of the 164 Freesurfer-derived gray 
matter and subcortical ROIs was correlated with PW signal from each ROI. This resulted in a 164 × 164 correlation 
matrix. As expected, these matrices consist of a prominent diagonal line showing that the BOLD timeseries is 
more similar to the ASL time series from the same ROI compared to the other ROIs. This is true across scan 
sessions and for both rmax and r0. This lends further credence to the idea that the BOLD-CBF coupling is not 

Fig. 4. Group averaged resting state metrics including mALFF (top) and mReHo (bottom).
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random. There are also two additional diagonal lines in lower left and upper right quadrants corresponding to 
the correlation between BOLD signal in the one ROI and PW signal in the contralateral ROI (and vice versa). 
Thus, the BOLD-CBF synchronization extends across hemispheres.

This study has some limitations. First, only healthy controls were used with a relatively narrow adult age 
range. It would be interesting to see the effects of disease and/or aging on BOLD-CBF coupling and correlation 
between BOLD-CBF coupling and traditional RS metrics. In addition, there was a large sampling bias towards 
females (19 F, 9 M). Also, we were only able to compute intersession reproducibility and reliability. Future studies 
could look at the intrasession reproducibility of these metrics. Also, because of the long TR, we did not compute 
fALFF, another common RSFC metric which measures the fraction of power in low frequencies compared to 
the entire frequency band. The Nyquist frequency for this dataset was 0.143 leading to very large fALFF values 
with little variability using typical bandpass freqencies. One potential factor in the interpretation of these results 
is the impact of CBV. The Davis model indicates BOLD and ASL signal are affected by CBV16. Thus, BOLD-ASL 
correlation, including parameters such as rmax and r0, is also likely to be influenced by CBV. This also may be 
true for the correlation between ALFF and BOLD-ASL coupling as ALFF has been shown to explained by CBV 
variations50. While CBV changes may play a role, direct CBV measurement was beyond the scope of our current 
study. A PLD of 1000ms was chosen for this study as a trade-off between spatial accuracy and TR while also 
trying to avoid intravascular artifacts, characterized by hyperintense signal in large vessels on the perfusion-
weighted image associated with long arterial transit times. This could be further amplified by the interleaved 
MB slice acquisition where superior slices are acquired earlier in the readout. Previous studies have used these 
parameters to estimate ASL and BOLD resting state networks28, showing that ASL resting state networks can be 
reliably detected. We also observed banding artifacts in the perfusion-weighted images due to different PLDs 
at different slice levels. No processing corrections were performed aside from spatial smoothing. Finally, care 
must be taken when interpreting BOLD-CBF coupling as neurovascular coupling as the two are related, but not 
identical.

Conclusion
In conclusion, heightened BOLD-CBF coupling was found in major brain networks. BOLD-CBF coupling was 
also significantly correlated with traditional RS metrics including mReHo and mALFF in major network hubs 
indicating coupling may provide complimentary NVC-sensitive measures.

Fig. 5. Quantitative results for BOLD-CBF coupling metrics (top) and BOLD RS metrics (bottom). Mean 
values were extracted from 7 Yeo functional networks. There were no significant differences between TP1 and 
TP2 for any metric or ROI. Yeo5, corresponding to the limbic system had the lowest values for all metrics. 
Yeo1 = Visual; Yeo2 = Somatomotor; Yeo3 = Dorsal Attention; Yeo4 = Ventral Attention; Yeo5 = Limbic; 
Yeo6 = Frontoparietal; Yeo7 = Default Mode.
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ROI

r0 rmax

wSD bSD Rep wSD bSD Rep

Visual 0.053 0.076 0.732 0.036 0.057 0.892

Somatomotor 0.053 0.059 0.741 0.032 0.044 0.912

Dorsal attention 0.040 0.058 0.845 0.031 0.041 0.929

Ventral attention 0.036 0.045 0.809 0.026 0.032 0.923

Limbic 0.016 0.010 0.052 0.010 0.008 0.955

Frontoparietal 0.044 0.038 0.824 0.032 0.029 0.916

Default 0.043 0.035 0.759 0.026 0.028 0.918

Table 1. BOLD-CBF Coupling Metric variability. wSD  within subject standard deviation, bSD  between subject 
standard deviation, Rep  reproducibility.

 

Fig. 6. Correlation between BOLD RS metrics and BOLD-CBF coupling metrics. Results for r0 and rmax were 
similar for all RS metrics. Significant correlation between coupling and RS metrics was seen mainly in the 
visual cortex and motor cortex with significant correlation also seen in parietal and frontal areas.
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