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Introduction
The accurate assessment of disease susceptibility, progression, 
and treatment response in individual patients is a critical pre-
requisite for personalized therapy. High-throughput genome-
scale profiling technologies have the potential to allow such 
molecular diagnostics. To date, there have been few gene 
expression-based tests applied in clinics for disease inter-
vention. This fact puts a premium on developing innovative 
methodologies to embed biological relevance into biomarker 
identification.

With the completion of the Human Genome Project, the 
emphasis of genome-wide studies has shifted from cataloging 
a “parts list” of signature genes and proteins to elucidating  
the networks of interactions that occur among them.1,2  

Molecular network analyses have been used to improve disease 
classification3–6 and identify novel therapeutic targets.7–11 
Nevertheless, major challenges include the development of 
methods for efficiently constructing genome-scale interac-
tion networks12 and the identification, from among the enor-
mous number of genes, of a particular set of markers with the 
highest capacity for molecular diagnostics, prognostics, and 
prediction of treatment response.13,14

Here, we will give a comprehensive overview of compu-
tational methods used for biomarker identification, includ-
ing rank-based feature selection methods and major network 
methodologies used in systems biology. Furthermore, we 
provide a performance comparison of several network models 
used in studies of cancer susceptibility, disease progression, 
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and prognostication. Specifically, implication networks, as 
implemented in the Genet package, were used in conjunc-
tion with other rank-based feature selection algorithms to 
identify lung cancer diagnostic and prognostic biomarkers. 
The molecular interactions among the identified biomarkers 
were revealed with implication networks, Boolean networks, 
Bayesian networks, and Pearson’s correlation networks. Each 
was then evaluated with five collections of gene sets and bio-
logical pathways from the MSigDB1.

Rank-Based Methods for Biomarker Identification
The emerging use of biomarkers may enable physicians to 
make treatment decisions based on the specific characteristics 
of individual patients and their tumors, instead of population 
statistics.15 In current genome-wide association studies, genes 
are ranked according to their association with the clinical out-
come, and the top-ranked genes are included in the classifier. 
To identify the most powerful biomarkers in individualized 
prognostication, state-of-the-art feature selection methods16–18 
should be widely applied.

Attribute selection techniques can be categorized as 
those that rank individual attributes (filters) or those that rank 
subsets of attributes. Commonly used individual feature filter-
ing methods include Cox models,19 ANOVA, Bhattacharyya 
distance, divergence-based methods,20 gain ratio, informa-
tion gain, relief,21,22 linear discriminant analysis,23 and ran-
dom forests.24–26 Algorithms that evaluate subsets of features 
include correlation-based feature selection, consistency-
based subset evaluation, wrapper,21,22 self-organizing maps 
(SOM),27 independent component analysis,28–30 partial least 
squares,31 principal component analysis (PCA),32–34 kernel 
PCA,35,36 sliced inverse regression,37 and logistic regression.38 
Exhaustive search, branch-and-bound search, sequential 
search (forward or backward), floating search, “plus l-take 
away r” selection,39 Tabu search,40 ant colony optimiza-
tion,41,42 genetic algorithms,43,44 simulated annealing,45–47 
and stochastic hill climbing48 can be used as search strategies 
in feature selection. Only the first two search methods guar-
antee the optimal subset; the rest generate suboptimal results. 
However, the worst-case complexity of the first two search 
methods is exponential, and therefore, these two methods 
are not feasible for a large dataset. Some feature selection 
algorithms such as significant analysis of microarray (SAM)49 
and the multivariate permutation test (MPT) are designed 
specifically for gene filtering.50 As the number of variables 
is much greater than the sample size in high-throughput 
applications, feature pre-selection using the t- or F-test51 and 
nonparametric Wilcoxon statistics52,53 are used in processing 
raw high-throughput data.

Regularized Linear Models
Regularized linear models can also be used to identify bio-
markers. Linear models are used to study the effects of mul-
tiple factors on the response variable or used to construct 

a prediction model. In microarray studies, linear models such 
as ANOVA or ordinary least square (OLS) linear regression 
models were used to analyze gene expression changes or to 
construct classification models.54,55 In the general context, an 
OLS linear regression model predicts the response of variable 
y (formulated in Figure 1A), which estimates the set of coef-
ficients β by minimizing the residual squared error.

In genomic studies, where the curse of dimensionality 
phenomenon with the large p (number of predictors) small n 
(number of samples) is common, linear models are fitted along 
with certain penalty terms called regularized linear models. 
Two common regularized linear models used in genomic 
studies are lasso (least absolute shrinkage and selection opera-
tor)56 and elastic net.57 Lasso imposes an L1-norm penalty 
(Fig. 1B) to the model to enforce shrinkage and to avoid the 
over-fitting problem in the large p small n situation commonly 
present in genome studies. However, lasso performs poorly 
in data with high colinearity58 and selects only one out of a 
group of genes sharing the same biological process. In order to 
enable the selection of genes belonging to the same biological 
process or pathway, elastic net was proposed.57 This is basically 
an extension of lasso through combining the L2-norm along 
with the L1-norm penalty (Fig. 1C). The combination of both 
L1-norm and L2-norm penalties aims to allow both shrinkage 
and grouping of gene variables. However, the grouping feature 
of elastic net would lead to the selection of highly redundant 
genes and therefore the incapability of pinpointing a small 
subset of predictive genes.

With the abundant resources and increasing knowledge 
of biological regulatory networks, protein–protein interac-
tions (PPI), signaling pathways, and known relationships 
among genes could be incorporated into the regression 
model. The network could be represented by a graph, and 
the graph’s corresponding Laplacian matrix could then be 
applied as a penalty in the regression models (Fig. 1D). By 
having the graph Laplacian matrix as the penalty term, the 
smoothness of the coefficients is applied over the topography 
of the graph instead of solely to the correlations among the 
genes. In other words, the a priori knowledge of the func-
tional relations among genes is embedded into the model 
through the network (graph) and could reveal a set of genes 
that are more biologically relevant instead of a set of cor-
related genes (which could be redundant). The network-
constraint regularized model has been proposed to identify 
biomarkers associated with patient survival time,59 and a 
network-constraint logistic model was used to identify bio-
markers for tumor subtype60 with cancer genomic data. These 
network-regularized regression models outperform lasso and 
elastic net with simulation data in both studies.59,60 In a can-
cer susceptibility study of glioblastoma and tumor subtype 
analysis with breast cancer profiles of The Cancer Genome 
Atlas (TCGA) consortium, these two network-constraint 
regularized regression models identified biomarkers con-
firmed in published literature.59,60
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General Methodologies for Modeling Molecular 
Networks
It has been noted that individual biomarkers showing strong 
association with disease outcome are not necessarily good 
classifiers.61–63 Because genes and proteins do not function in 
isolation, but rather interact with one another to form modular 
machines,64 understanding the interaction networks is critical 
to unraveling the molecular basis of disease. Molecular net-
work analysis has led to promising applications in identifying 
new disease genes65–70 and disease-related subnetworks,71–80 
mapping cause-and-effect genetic perturbations,81–84 and 
classifying diseases.3–6,85,86 The various computational models 
that have been developed for molecular network analysis can 
be roughly categorized into three classes12: logical models to 
demonstrate the state of entities (genes/proteins) at any time 
as a discrete level87–90; continuous models to represent real-
valued network processes91–96 and activities97–102; and single-
molecule models103–105 to simulate small regulatory networks 
and mechanisms.106–110

Logical models. In the category of logical models, 
Boolean networks87 were recently used to analyze the rela-
tionship between regulation functions and network stability 
in a yeast transcriptional network111 and the dynamics of cell-
cycle regulation.112 The structure of Boolean networks can be 
learned from gene expression profiles.113–115 Boolean networks 
can provide important biological insights into regulation func-
tions and the existence and nature of steady states (ie, polarity 
gene expression)116 and network robustness. Nevertheless, as 
the number of global states is exponential in the number of 

entities and the analysis relies on an exhaustive enumeration 
of all possible trajectories, this method is computationally 
expensive and only practical for small networks.12 Because of 
insufficient experimental data or incomplete understanding of 
a system, several candidate regulatory functions may be pos-
sible for an entity. To express uncertainty in regulatory logic, 
the probabilistic Boolean network (PBN) was developed117 
and used to model a 15-gene subnetwork inferred from 
human glioma expression data.118 The synchronous dynamics 
of a Boolean network can be captured by a Petri net,119 which 
is a nondeterministic model widely used for detecting active 
pathways and state cycles120 and for analyzing large metabolic 
pathways121–124 and regulatory networks.125 Another model, 
module networks, infers the regulation logic of gene modules 
as a decision tree, given gene expression data.126 The Boolean 
implication networks presented by Sahoo et  al.127,128 used 
scatter plots of the expression between two genes to derive the 
implication relations in the whole genome. To date, Boolean 
implication networks have not been applied in biomarker 
discovery.

Markov networks are another family of logical models 
used to infer the inter-relationships among genes. Markov 
network, also known as Markov random field, is a statistical 
framework to analyze and visualize conditional relationships 
between sets of random variables. The structure of the con-
ditional relationships could be exhaustively explored because 
of the Markov properties.129 In the graphical form, vertices 
represent random variables and the edges between vertices 
denote the conditional dependencies between the variables. 

Figure 1. Coefficient estimation for regularized linear models. Equations to estimate the coefficient vectors in (A) OLS linear regression model,  
(B) lasso, (C) elastic net, and (D) network-constrained regularization models.
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For example, variables A and B are connected if A is predictive 
of B, independent of all other variables. Markov networks 
are efficient in representing the distributions over a very high 
dimension of variables. Therefore, Markov networks could be 
used to infer the underlying structure of relationships among 
the genes in cancer patients. These methods are advantageous 
when only the genomic data are available and the clinical 
covariates are not available or not predictive of the disease.  
A commonly used Markov network in high-throughput 
genomic data is Graphical Gaussian Model (GGM). GGM 
has been applied to infer the relationships among sets of 
random variables with continuous values. In bioinformatics, 
GGM has been applied to study the patterns of relationships 
and associations between a large-scale of genes based on DNA 
microarray gene expression data.130,131 Because of the large 
dimensionality of genomic data, the original GGM has a few 
challenges when applied to high-throughput data. The first 
challenge is that a large number of observations are required 
in order to obtain reliable estimates of the conditional depen-
dencies between variables132; whereas genomic data have tens 
of thousands of genes involved but only with a few hundred 
observations. The second challenge lies in the model selec-
tion. As the number of models grows super-exponentially 
with the number of genes, only a small subset of models can 
be tested.132 The third challenge is that a dense network with 
a large number of edges connecting numerous genes involved 
makes interpretability unfeasible.133 It has been known that 
biological networks are not fully connected. Instead, a bio-
logical network is sparse and free scale. To overcome these 
challenges, variations and extensions of GGM were proposed. 
Among these include the modified GGM approach that first 
infers small subnetworks of three genes (tri-graph) and then 
combines the subnetworks into the proposed complete net-
work.131 This modified GGM was applied to elucidate the reg-
ulatory network of two isoprenoid biosynthesis pathways in 
Arabidopsis thaliana.131 Another example is the application of a 
regularization procedure to estimate a sparse precision matrix 
in the setting of GGM.134 A novel threshold gradient descent 
(TGD) regularization is applied for imposing penalization 
estimation of the GGM and thus accounts for the curse of 
dimensionality issue in high-throughput genomic data.

With the advancement of technology in recent years, 
sequencing technology is gradually replacing DNA microar-
ray to measure genome-wide gene expression profiles as RNA- 
sequencing technologies yield less technological variation than 
microarrays.135 Different from the typical log-ratio expres-
sion values from microarray data that follow approximately 
a Guassian distribution, RNA-seq data measurements are in 
read counts of how many times a transcript has been mapped 
to the specific genomic location. These read counts are non-
negative integer values, which follow approximately a Poisson 
distribution.135–137 Therefore, Poisson graphical models should 
then be used for analyzing next-generation sequencing data 
instead of Gaussian graphical models. Various methods 

proposed to model the underlying structure of multivariate 
count data of Poisson distribution suffer from deficiencies, 
including infeasibility of applying the contingency table-based 
approach when the number of variables is extremely high,129 
and limitations of modeling only the marginal distributions of 
independent variables138 or modeling only negative dependen-
cies.139 Recently, an approach was proposed to overcome these 
deficiencies in modeling regulatory networks from sequenc-
ing count data.140 Specifically, the proposed log-linear Poisson 
graphical model estimates the model parameters locally via 
neighborhood selection by fitting L1-norm penalized data 
to a log-linear model and provides high computational effi-
ciency with the employment of a fast parallel algorithm. The 
proposed log-linear Poisson graphical model was applied on 
breast cancer microRNA data and revealed known regulator 
modules of breast cancer. It also discovered novel microRNA 
clusters and hubs that provide further insights into regulatory 
mechanisms of breast cancer.140

Since the last decade, TCGA consortium has been pro-
filing various genomic data from hundreds of patients of vari-
ous cancer types to facilitate the understanding of molecular 
mechanisms underlying these deadly diseases. A few logical 
models have been proposed to utilize this abundant resource. 
One example is the Multi-Dendrix method, which is a lin-
ear programming algorithm to learn a set of driver pathway 
modules with both high mutual exclusivity and coverage of 
patients from somatic mutation data.141 Applications of Multi-
Dendrix to glioblastoma and breast cancer from TCGA con-
sortium identified mutation genes overlapping with known 
oncogenic pathways, including PI(3)K in glioblastoma and p53 
and GATA3 in breast cancer. Another example is a method 
known as pathway recognition algorithm using data integra-
tion on a genomic model (PARADIGM).142 PARADIGM 
employs a probabilistic graphical model based on factor 
graphs to infer network modules perturbed in cancer patients 
through integration of various genomic data. The strength of 
PARADIGM over other methods is that it integrates vari-
ous genomic data, ranging from gene expression, copy num-
ber data, methylation data, and even known interactions from 
known signaling pathways.

Bayesian belief networks. A recent formalism, Bayesian 
belief networks, is recognized as one of the most promising 
methodologies for prediction under uncertainty.48,143 Bayesian 
networks express complex causal relations within the model 
and predict events based on partial or uncertain data com-
puted by joint probability distributions and conditionals.144–147 
Bayesian networks have been utilized to aid clinical decision- 
making148 and to model cellular networks,149 including genome- 
wide gene interactions,150 protein interactions,151–153 and causal  
influences in cellular signaling networks.154 In modeling signal 
pathway interactions, Bayesian networks not only automati-
cally elucidated most of the traditionally reported signaling 
relationships but also predicted novel inter-pathway network 
causalities, which were verified experimentally.154
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A Bayesian belief network (BBN) is a directed acyclic 
graph that represents probabilistic relationships among uncer-
tain variables. The graph is made of nodes and arcs where the 
nodes represent uncertain variables and the arcs the causal/
relevance relationships between the variables. Each node is 
associated with a node probability table (NPT). The NPT 
captures the conditional probabilities of a node given the value 
of its parent nodes. For nodes without parents, the NPTs are 
simply the marginal probabilities or prior distributions. There 
are several ways to determine the probabilities for the NPTs. 
We can accommodate both subjective probabilities elicited 
from domain experts and probabilities based on objective data. 
Each uncertain variable represents an event or a proposition.

The acyclic structure of Bayesian networks clearly rep-
resents the primary cause in the directed graph, which is 
appealing in predictions. Nevertheless, the number of pos-
sible networks is exponential in the number of nodes under 
consideration, which makes it impossible to evaluate all pos-
sible networks. Thus, heuristic searches are used to construct 
Bayesian networks. Furthermore, it is not always possible 
to determine the causal relationships between nodes, ie, the 
direction of the edges, owing to a property known as Markov 
equivalence.155,156 More importantly, the acyclic Bayesian net-
work structure was unable to model feedback loops, which are 
essential in signaling pathways154 and genetic networks.157–159 
To overcome this limitation, a more complex scheme, dynamic 
Bayesian networks, was explored for modeling temporal 
microarray data.160,161 As an expansion of Bayesian networks, 
a probabilistic version of the MetaReg model,162 represented 
as a factor graph,163,164 was developed165 to facilitate changes 
in the network structure (refinement) and inclusion of addi-
tional entities (expansion).166

Implication networks. As an alternative to Bayes-
ian networks, an implication network model employs a par-
tial order knowledge structure (POKS) for structural learning 
and uses the Bayesian theory for inference propagation.167,168 
When using Dempster–Shafer theory for belief updating, this 
implication network methodology is termed as a Dempster–
Shafer belief network.169,170 An implication network is a gen-
eral methodology for reasoning under uncertainty, as are other 
alternative formalisms such as neural networks,171,172 depen-
dency networks,173 Gaussian networks,174 Mycin’s certainty 
factors,175 Prospector’s inference nets,176,177 and fuzzy sets.167 
POKSs are closed under union and intersection of implication 
relations, and have the formal properties of directed acyclic 
graphs. The constraints on the partial order can be entirely 
represented by AND/OR graphs.167,178 When the constraints 
on the partial order are relaxed, the implication networks can 
represent cyclic relations among the nodes. In this condition, 
the implication network structure is a directed graph with 
nodes connected by implication (causal) rules, which can con-
tain cycles such as feedback loops.

Recently, implication networks have been used to 
model concurrent coexpression with major disease signaling 

hallmarks for lung cancer prognostic biomarker identifica-
tion.179,180 In these studies, genome-wide coexpression net-
works specifically associated with different prognostic groups 
were constructed using implication networks. Candidate 
genes coexpressed with six or seven major lung cancer signal-
ing hallmarks were identified from these disease-associated 
genome-wide coexpression networks. These candidate genes 
were further selected to form prognostic gene signatures using 
rank-based methods including Cox model, Relief and random 
forests.180 The selected biomarker sets form biologically rel-
evant networks when evaluated with curated databases of PPI, 
chromosome locations, signaling pathways, cis-regulatory 
motifs/transcription factor binding sites, cancer related gene 
sets, and gene ontology. This network-based approach identi-
fied extensive prognostic gene signatures that outperformed 
existing ones that were identified using traditional rank-based 
methods. These results demonstrate that rather than using 
traditional methods to merely evaluate statistical association 
with disease outcome, embedding biological relevance into 
network modeling of the human genome could identify clini-
cally important disease biomarkers.

Approach and Implementation of Implication 
Networks: Genet
The implication networks can be inducted automatically and 
dynamically from a dataset by using prediction logic. The 
structure of the implication network does not represent causal 
relationship as in the Bayesian network. Instead, it represents 
implication relationship among the nodes, such as A = .B. 
Unlike the Bayesian networks that need the complete knowl-
edge of the real-world in order to build the correct causal model 
once and for all, the implication networks can be constructed 
dynamically and efficiently based on available data. Therefore, 
the implication network construction is more flexible than that 
of the Bayesian networks. The inducted implication network is 
a directed graph. Each node represents an individual variable 
or hypothesis. Each arc in the graph signifies the existence of 
a direct implication (eg, influence) rule between two adjacent 
nodes. The value of one variable is dependent on the values of 
all variables that influence it. When evidence from distinct 
sources is observed for certain nodes, it is combined by the 
Dempster–Shafer scheme.181

Genet2 is an implementation of the novel implication 
networks based on prediction logic to construct disease-
mediated genome-wide coexpression networks, permitting 
cyclic relations. To model crosstalk with signaling pathways, 
Genet allows users to input major disease signaling hallmark 
proteins for identifying candidate genes that are concurrently 
coexpressed with these signaling pathways. To identify the 
final biomarker set, Genet could conveniently link to state-of-
the-art feature selection methods, including univariate Cox 
model, random forests, and the Relief algorithm.

The overall process of identifying gene signatures 
using Genet is as follows: (1) constructing genome-wide 
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coexpression networks using prediction logic (P  ,  0.05, 
z-tests) for each disease state or patient group. (2) By compar-
ing the logic relations connecting each pair of genes between 
the disease-associated coexpression networks, differential 
network components were obtained, constituting the disease-
specific coexpression networks. (3) Selecting candidate genes 
displaying a direct significant (P , 0.05, z-tests) coexpression 
relation with the specified signaling hallmark genes from the 
disease-specific coexpression networks. (4) Identifying a final 
biomarker set (gene signature) from the candidate genes by 
using Relief, random forests, or Cox model.

Since the implication network induction algorithm takes 
dichotomous variables, the gene expression profiles need to 
be discretized into binary values; whereas the final step of 
gene selection and disease classification is performed with the 
original microarray data. The collection of signaling hallmark 
genes should be selected according to disease relevance. For 
example, multiple signaling proteins from the KEGG human 
non-small cell lung cancer signaling pathways3 were selected 
as disease hallmarks to identify coexpressed prognostic gene 
biomarkers.180

Genet is implemented with a combination of C and R, 
where the C-executable is run through the R interface. This 
implementation was used as we employed extensive dynamic 
memory relocation in C to keep track of the derived genome-
scale coexpression relations, which makes the package highly 
efficient in computation time and memory use. The package 

runs on Windows OS (Windows Vista or higher) with a 
minimum of 4 GB of RAM. It requires only 40 minutes for 
an analysis with 20K genes in 256 patient samples. We have 
linked Genet with Cox model and random forests imple-
mented in R. JavaScript was written to invoke Relief imple-
mented in WEKA (22)1.

Comparison of Network Models in Cancer Signature 
Identification
Genet was employed in a few genome-wide coexpression net-
work studies to identify prognostic gene signatures for lung 
cancer.179,180 The proposed methodology identified a total of 
21  gene signatures180 that outperformed previously reported 
ones identified using traditional feature selection methods on 
the same datasets.182 Genet was also applied to model smok-
ing-mediated coexpression networks on a selected set of genes 
associated with lung cancer survival and smoking history. A 
seven-gene183 and a six-gene smoking-associated signature184 
were identified for accurate diagnosis and prognosis of lung 
cancer in smokers.

Next, the biological relevance of the coexpression 
networks derived with Genet was compared with other 
network models. Based on five collections of gene sets and 
pathways from the MSigDB, a coexpression relation was 
considered a true positive (TP) if the pair of genes satisfy 
any of the following: (1) present on the same chromosome or 
cytogenetic band; (2) in the same curated or canonical path-
way; (3) share cis-regulator motif, binding motif, or tran-
scription factor binding site; (4) annotated by the same GO 
term; or (5) within the same computational gene sets mined 
from cancer-oriented microarray data. The coexpression 
relation was considered a false positive (FP) if the gene pair 
does not satisfy all five conditions listed above. If at least one 
gene in the pair is not annotated, a coexpression relation was 
labeled as nondiscriminatory (ND). Coexpression relations 
labeled as ND were excluded in the evaluation as they were 
not confirmed. Once all relations were labeled, precision 
(TP/[TP + FP]) and q-value (FP/[TP + FP]) of the disease-
mediated coexpression networks were computed. Null dis-
tributions of precisions and q-values were generated in 1,000 
random permutations of the class labels in the test cohort. 
From the null statistics, the statistical significance (P) of 
the precision is indicated by the chance of getting higher 
precision from the null distribution. The false discovery rate 
(FDR) of the disease-mediated coexpression networks is the 
average of the q-value from the null distribution.

Comparison with Boolean networks. On the lung 
cancer patient cohorts from the Director’s Challenge Study,185 
coexpression networks derived with Genet and Boolean impli-
cation networks were compared. Results showed that coex-
pression relations derived from Boolean implication networks 
did not include many of the major lung cancer hallmarks, 

Boolean
net
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Genet with different ∇min

False discovery rate (FDR)

0.01
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0.03

0.04
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B
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0.99
1.00

0.78 0.79 0.8 0.81

Boolean
net
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Genet with different ∇min
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* (P < 0.05)

0.79 0.8 0.81

Figure 2. Precision (A) and FDR (B) of the disease-specific coexpression 
networks derived with Boolean implication networks and Genet. 
Genome-wide coexpression networks were constructed for good 
prognosis and poor prognosis patient groups, respectively, in the training 
cohort from Shedden et al.185 The disease-specific networks derived with 
both models were compared in terms of precision and FDR. An asterisk 
(*) above the bar indicates that the precision is significantly (P , 0.05) 
higher than the null precisions in 1,000 permutations. 1http://wvucancer.org/guoLab/Products
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which made it unfeasible to select marker genes coexpressed 
with multiple signaling pathways.

The large number of relations derived from the impli-
cation networks had been a source of concern for false dis-
covery on the derived coexpression relations. This limitation 
could be overcome by tuning the minimum precision (∇min) 
parameter in the induction algorithm employed in Genet. In 
contrast, the Boolean implication network does not provide 
further information on tuning the parameters. This makes 
Genet more flexible than the Boolean implication networks. 
While comparing the networks derived from two methods, 
∇min was tuned to be within 0.75 and 0.81 so that the coex-
pression networks derived from Genet are at a size compara-
ble to those derived from the Boolean implication networks. 
Results showed that the precisions for the networks derived 
from both methods were greater than 95%. However, only 
precision of the implication networks with ∇min  =  0.78 
was statistically significant (P  ,  0.04). The precision of 
the implication networks with ∇min = 0.75 was borderline 
significant (P , 0.06) and that of the Boolean implication 
networks was not significant (P , 0.21) (Fig. 2A). On the 
other hand, the FDR of the derived networks was all less 
than 5% (Fig. 2B).

Comparison with Bayesian networks. In compari-
son with the Bayesian networks (Bayesnet) modeled with 
TETRAD IV5 for the 21 signatures identified, the disease-
specific coexpression networks derived using Genet and 
Bayesnet have comparably high precisions and low FDR 
(FDR  ,  0.1) on the training cohort from the Director’s 
Challenge Study. However, in the more robust approach that 
is based on the coexpression relations commonly present in 
the networks derived on the training cohort and the two test 
cohorts, for all 21  signatures, there was no relation com-
monly found in the disease-specific coexpression networks 
derived in all three cohorts using Bayesnet. On the other 
hand, the relations derived from the training cohort using 
Genet could be successfully reproduced in both test cohorts 
with significantly high precision (precision = 1 for 18 signa-
tures; Fig. 3A) and low FDR (FDR , 0.1; Fig. 3B).

Comparison with Pearson’s correlation networks. In 
comparing the smoking-mediated coexpression networks of 
the signatures and hallmark genes with those derived from the 
Pearson’s correlation coexpression networks, the precisions and 
FDR are comparable.184 However, as discussed in the Introduc-
tion, the relations represented in Pearson’s correlation coexpres-
sion network do not describe the directions of the associations. 
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In contrast, coexpression networks derived with Genet describe 
both the directions of the regulation between pair of genes.

In the few studies with Genet, mean expression of each 
gene was used as the cutoff to discretize the gene expression 
into binary values, which would include all patient samples 
for the network induction. Instead of using the mean expres-
sion values, more stringent statistics, such as mean +/− stan-
dard deviation, could be used to partition gene expression 
into discrete values. However, it would lead to the removal of 
patient samples that do not meet the predefined threshold.

Conclusions
Unraveling complex molecular interactions and networks 
and incorporating clinical information in the modeling will 
present a paradigm shift in molecular medicine. Embedding 
biological relevance via modeling molecular networks and 
pathways has become increasingly important for biomarker 
identification in cancer susceptibility and metastasis studies. 
As guidance, a few commonly used methods in biomarker 
identification are summarized in Table  1. In summary, the 
rank-based methods and regularized models are used when 
a response variable, ie, clinical outcome, is available; whereas 
network models would not require any outcome or response 
variable to be fitted in the model. These methods could be 
used for different kinds of high-throughput data, including 
mRNA/miRNA expression from microarrays, mutation from 
Single Nucleotide Polymorphism (SNP) arrays, and read 

counts from next-generation sequencing data. Our studies 
show that a combination of network models and rank-based 
feature selection methods could identify gene signatures with 
accurate diagnostic and prognostic performance, and reveal 
biologically relevant molecular networks. In this review, mul-
tiple network-based models were evaluated in several case 
studies, with implication networks outperforming Bayesian 
belief networks, Boolean networks, and Pearson’s correlation 
coexpression networks.
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