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ABSTRACT Objective: Deterioration index (DI) is a computer-generated score at a specific frequency that
represents the overall condition of hospitalized patients using a variety of clinical, laboratory and physiologic
data. In this paper, a contrastive transfer learning method is proposed and validated for early prediction of
adverse events in hospitalized patients using DI scores. Methods and procedures: An unsupervised contrastive
learning (CL) model with a classifier is proposed to predict adverse outcome using a single temporal
variable (DI scores). The model is pretrained on an unsupervised fashion with large-scale time series data
and fine-tuned with retrospective DI score data. Results: The performance of this model is compared with
supervised deep learning models for time series classification. Results show that unsupervised contrastive
transfer learning with a classifier outperforms supervised deep learning solutions. Pretraining of the proposed
CL model with large-scale time series data and fine-tuning that with DI scores can enhance prediction
accuracy. Conclusion: A relationship exists between longitudinal DI scores of a patient and the corresponding
outcome. DI scores and contrastive transfer learning can be used to predict and prevent adverse outcomes in
hospitalized patients. Clinical impact: This paper successfully developed an unsupervised contrastive transfer
learning algorithm for prediction of adverse events in hospitalized patients. The proposed model can be
deployed in hospitals as an early warning system for preemptive intervention in hospitalized patients, which
can mitigate the likelihood of adverse outcomes.

INDEX TERMS Contrastive learning, deterioration index, early warning system, transfer learning.

I. INTRODUCTION

PROACTIVELY identifying signs of deterioration in hos-
pitalized patients is critical for preventing morbidity

and mortality. Early warning systems in hospitals, as sup-
portive tools for medical decision-making, can potentially
avert adverse events including cardiac arrests, rapid response
calls, resuscitation, intensive care unit (ICU) transfers, and
death.

Epic’s Deterioration Index (DI) is one of the most widely
used early warning systems deployed in hundreds of hospitals
across the United States [1], [2]. This system aims to detect
patients who deteriorate and require higher levels of care. The
deterioration index (DI) score ranges from 0 to 100, wherein
patients are deemed low (≤ 30), intermediate (30 − 60) or
high-risk (≥ 60). The high-risk patients are at the greatest

risk of encountering a composite adverse outcome which can
be prevented by prompt interventions. This has been found
to have fair performance and improve patient outcomes and
reduce ICU admissions [2].

The DI system is currently running in many hospitals.
Clinical providers use an absolute number threshold (≥ 60)
to determine if a patient may experience an adverse event
and need immediate intervention. Health systems utilize the
DI score in conflicting ways and with substantially disparate
thresholds [1], [3]. The clinical providers’ observation is
that some patients may experience an adverse event without
nearing a high-risk DI (≥ 60), whereas others may reach a
critical DI score and not have an adverse event. However,
no prior peer-reviewed studies have used machine learning
to demonstrate a relationship between DI score patterns and
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patient outcome as well as the ability to predict adverse
outcomes.

Machine learning has demonstrated superior performance
in many real-world applications such as COVID-19 lung
detection prognosis using chest computerized tomography
(CT) scans [4], in-hospital mortality prediction among dia-
betes ICU patients [5], cervical spine fracture detection on
CT scans [6], human activity recognition [7], synthesizing
pathology in chest X-rays images [8], and identification
of metastatic breast cancer [9]. The implementation of
supervised machine learning in real-world healthcare set-
tings presents inherent challenges, primarily attributed to
the scarcity of large-scale annotated datasets. This chal-
lenge becomes particularly pronounced due to the insufficient
number of samples available for rare conditions and events
(e.g., adverse events). Moreover, the process of annotat-
ing large healthcare datasets for practical applications is a
resource-intensive and costly endeavor. Unsupervised and
self-supervised learning can perform clustering and predic-
tion tasks with unlabeled data. However, training of such
models is very challenging due to complex pattern of data,
particularly in a high-dimensional feature space. Contrastive
learning (CL) is one of the most popular approaches under
self-supervised learning, which generates augmentations of
the input to diversify representations [10], [11], [12].
Exploiting the time series nature of DI scores, this paper

proposes a CL method for feature representation of DI scores
in an unsupervised fashion. The features are then used to train
a simple classifier for automated prediction of adverse events
based on the retrospective DI scores of a hospitalized patient.
As we will demonstrate, one of the key advantages of this
approach is the utilization of transfer learning on large-scale
unannotated data for enhanced feature representation by the
CL model. This approach can enhance generalization perfor-
mance of the CL model in feature representation from DI
scores. In practice, the proposed system can be deployed on
top of the Epic’s DI system as a clinical assistive tool to alert
care givers of potential risk of adverse events in hospitalized
patients.

The contributions of this paper include the following.
1) Contrastive representation of DI score for prediction of
adverse events in hospitalized patients; 2) study of transfer
learning with general time series data in enhancing perfor-
mance of contrastive learning in adverse event prediction;
3) demonstrating a direct relationship between the DI score
patterns of hospitalized patients and their corresponding out-
comes, solely relying on unsupervised contrastive and deep
supervised models as non-linear functions, without the use of
any additional predictors.

The remainder of this paper is organized as follows.
Section II provides a background on DI score and contrastive
representation learning. The proposed method for contrastive
transfer learning from DI scores is discussed in Section III.
The experiments and analysis are provided in Section IV.
Translation to clinical practice is discussed in Section V and
the paper is concluded in Section VI.

FIGURE 1. DI scores of two randomly selected patients with and without
an adverse outcome. They had different length of stays, where the patient
with an adverse outcome died approximately 68 hours after the first DI
score reading. A DI score is regularly calculated at 15-minute intervals
until discharge or death. The DI scores are plotted for 100 hour after the
first DI score reading.

II. BACKGROUND
A. DETERIORATION INDEX
Adverse events in hospitals such as all-cause mortality, car-
diac arrest, transfer to intensive care, and evaluation by the
rapid response team has been estimated to be approximately
17% [13]. Epic DI generates a patient risk score immediately
after hospital admission and it is then regularly calculated
based on most recent available data at 15-minute intervals
until discharge or death. Figure 1 shows two examples of
the DI scores for two patients, one with an adverse outcome
and the other without an adverse outcome. The risk score
is calculated and then updated at 15-minute interval based
on routinely recorded physiological, clinical, and laboratory
parameters within Epic’s electronic health record. Some of
the predictors in determiningDI score are age, nursing assess-
ments (neurological assessment, cardiac rhythm, oxygen
requirement, Glasgow Coma Scale), vital sign measurements
(temperature, systolic blood pressure, pulse, oxygen satu-
ration, respiratory rate), and laboratory values (hematocrit,
white blood cell count, blood urea nitrogen, potassium,
sodium, blood pH, platelet count) [1].
Limited research has been conducted on the DI score

and its relationship with adverse outcomes in clinical set-
tings. DI scores were augmented with chest radiographs
in [2] to predict clinical deterioration (death or the need
for ICU-level therapies including invasive or non-invasive
mechanical ventilation, heated high flow nasal cannula,
or vasopressor support) for hospitalized patients with acute
dyspnea. The general objective was to improve accuracy of
the DI score by incorporating patients’ imaging data, who
required supplemental oxygen during their hospitalization
and had at least one chest radiograph performed during
the first 48 hours. This study excluded patients that experi-
enced clinical deterioration or discharge within four hours
of presentation or experienced clinical deterioration prior
to their first radiograph. The proposed machine learning
model was completely supervised. The imaging features were
extracted by training a DenseNet-121, pre-trained on the
CheXpert [14] and MIMIC-DICOM [15] data. The combina-
tion of imaging features with deterioration index scores and
time-dependent variables were used to train a feed-forward
neural network with a single hidden layer of five nodes and
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a single-prediction output. It is shown that incorporation of
imaging data can increase accuracy in identifying patient
with acute dyspnea at low risk of experiencing an adverse
outcome.

B. CONTRASTIVE REPRESENTATION LEARNING
The most common machine learning approach for classifi-
cation applications is based on supervised learning, which
generally requires large-scale labelled datasets. However,
many datasets in healthcare are limited-imbalanced in nature,
which means limited number of data samples are available
per some or all data classes [16]. In addition, it is time
consuming and expensive to annotate large-scale datasets for
training complex machine learning models, particularly deep
supervised learning models. Unsupervised learning targets
representation and clustering of data samples based on the
underlying pattern in the data without utilizing the corre-
sponding labels.

Contrastive learning (CL) has gained significant promi-
nence as a leading approach in the field of unsupervised learn-
ing, with a particular focus on self-supervised learning [12].
CL methods have demonstrated notable performance in
many applications such as diagnosis of Alzheimer’s dis-
ease using brain positron emission tomography (PET) [17],
human activity recognition [18], [19], tissue segmentation in
histopathological images [20], [21], whole slide image clas-
sification [22], ultrasound images analysis [23], underwater
image enhancement [24], medical image segmentation [25],
and optical coherence tomography (OCT) fluid segmenta-
tion [26]. For various applications, CL in self-supervised
learning has outperformed supervised learning [12],
[27], [28].

The main idea behind CL methods is to diversify represen-
tation of an input by generating augmentations, compared to
augmentations of the other inputs [11], [12]. This process is
generally conducted by mapping similar sample pairs into a
feature embedding space such that the similar samples are
closer to each other and the dissimilar ones are far away.
As a simple example, let two different augmentations of a
sample input, which belong to the same class, be considered
as positive samples. A sample from another input, which can
be positive or negative, is then compared with the positive
samples. The CL loss function adjust the distance between
the feature vectors based on the similarity or dissimilarity of
the samples. Selection or augmentation of the positive pairs is
one of themajor steps in CL, which distinguishes contribution
of various CL methods from each other. It is possible to
construct different augmentations of an input time series or
image using various sampling techniques. In time series, rep-
resentations with the same timestamp from two overlapping
views of an input time series can be considered as positive,
while those at different timestamps from the same time series
as negatives [29]. This approach uses a mixed instance-wise
and temporal-wise CL approach, where negative samples can
be selected from the same instance and from other instances.

FIGURE 2. A DI score xn,t such that t ∈ (1, . . . , Tn) is generated at every
15-minute interval for a patient n. DI scores are collected 5.5 hours after
admission until the event (adverse/no adverse).

In computer vision augmentation, techniques such as random
rotating, cropping, and flipping of the different views of an
input [12], [30] can generate different positive and negative
pairs at instance and spatial levels.

III. METHODS AND PROCEDURES
This study was reviewed and approved by the Institutional
Review Board. We propose using an unsupervised encoder
with hierarchical CL for feature extraction from DI scores
followed by a simple classifier.

A. DEFINITIONS
Let {(x1, y1), . . . , (xN , yN )} represent a set of retrospective
data samples fromN subjects such that xn = (xn,1, . . . , xn,Tn )
is the DI scores, where xn,t ∈ [0, 100] and yn ∈ {0, 1} is
the outcome, where Tn is the number of DI scores for subject
n ∈ {1, . . . ,N }. We model each DI score collection as a time
series as illustrated in Figure 2. For a subject with no adverse
outcome, yn = 0, and for one with an adverse outcome,
yn = 1.

B. RULE-BASED METHOD
Clinical providers use an absolute number threshold η to
determine if a patient may experience an adverse event and
need immediate intervention. Below, two rule-based proto-
cols based on this threshold are discussed.
Rule-based any: In this protocol, if at any time

t ∈ (0, 1, . . . ,Tn) a DI score value xn,t passes the threshold
η for patient n, the predicted outcome is perceived as an AE,
defined as

ỹn =

{
1 if xn,t ≥ η

0 otherwise,
(1)

where ỹn is the predicted outcome.
Rule-based last: Within this protocol, if the last DI score

xn,Tn of patient n passes the threshold η, the predicted out-
come is considered as an AE, defined as

ỹn =

{
1 if xn,Tn
0 otherwise.

(2)

C. CONTRASTIVE LEARNING METHOD
A DI score series xn is normalized and sampled by randomly
generating two overlapping cropping intervals [αl, αh] and
[βl, βh] to select the sequential subsets of the DI scores un
and ûn, respectively, such that 0 < αl ≤ βl ≤ αh ≤ βh ≤ Tn,
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FIGURE 3. The CL model for feature extraction from DI scores.

as demonstrated in Figure 3(a). The contextual representa-
tions on the overlapped segment in the interval [βl, αh] should
be consistent along the time for two context reviews.

As Figures 3(b) and 3(c) show, the sample vectors un
and ûn are passed to a feature representation module which
projects the vectors at timestamp t as

zn,t = wun,t + b, (3)

and

ẑn,t = wûn,t + b, (4)

where w,b ∈ RFp and Fp is the dimensionality of the feature
space. A random binary mask is applied to the represented
features to generate an augmented context view as

zn,t := zn,t ⊙ m, (5)

and

ẑn,t := ẑn,t ⊙ m, (6)

where ⊙ is the element-wise multiplication, m ∈ ZFp
0,1, and

mi ∼ Bernoulli(0.5). Similar to the dropout regularization
method in training deep neural networks [31], the timestamp
masking and random cropping are only functional during
training.

The masked features are then passed to a series of 10 resid-
ual convolution blocks where the block l ∈ (1, . . . , 10) has
two 1-D convolution layers with Gaussian error linear units

(GELUs) [32], kernel size k , channel size Fl , and a dilation of
2l , Figure 3(d). The output residual block maps the extracted
features to a higher dimensional space of Fo > Fl defined as
rn,t and r̂n,t for (5) and (6), respectively. The features are then
passed to a dropout layer. We use a temporal contrastive loss
to learn discriminative representations over time, defined as

Tn,t = −log
ern,t ·r̂n,t

6T ′

t ′=1(e
rn,t ·r̂n,t′ + 1[t ̸=t ′]e

rn,t ·rn,t′ )
, (7)

where T ′ is the length of the overlap between un and ûn and
1 is the indicator function [29]. An instance-wise contrastive
loss is also defined as

En,t = −log
ern,t ·r̂n,t

6B
j=1(e

rj,t ·r̂n,t + 1[n̸=j]ern,t ·rj,t )
, (8)

where B is the batch size. Finally, the overall loss of the
hierarchical contrasting is defined as

L =
1

N · T

N∑
n=1

T∑
t=1

(Tn,t + En,t ). (9)

The loss function is then minimized using an optimization
algorithm as discussed in Section IV-E.

The trained encoder using (9) generates a feature vec-
tor rn,t ∈ ZFo at timestamp and encounter levels. Hence,
for an encounter n over all the timestamps, the features
representation is

Rn = (rn,1 ⊕ . . . ⊕ rn,T ), (10)
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where ⊕ is for concatenation and Rn ∈ ZFo,×T . The final
feature vector per encounter is

an,i = max
t∈{1,...,T }

(rn,i,t ), (11)

which is computed recursively for i = (1, . . . ,Fo). Hence,
{a1, . . . , aN } is the set of contrastive feature representations
of the DI scores {(x1, y1), . . . , (xN , yN )}. The set of features
can then be used along with the corresponding data class
labels to train a supervised classification model 8(·) as

P(yn|an) = 8(an, yn), (12)

where P(yn = 1|an) is the predicted probability for the
encoutner n to experience an adverse outcome given the DI
scores xn such that P(yn = 0|an) + P(yn = 1|an) = 1.
The predicted outcome is ỹn = 1 if P(yn = 1|an) ≥ θ

and ỹn = 0 otherwise, where θ is the cutoff probability by
default set to 0.5. The optimal value of θ is discussed in the
Section IV-D.

IV. RESULTS
A. DATA
The dataset was collected from adult patients (≥ 18 years
old), hospitalized in medical or surgical service at the Mayo
Clinic, Rochester,MN,USA, during 8-23-2021 to 3-31-2022.
For each occurrence, the first DI score was collected 5.5 hours
(the buffer time in Figure 2) after admission until the outcome
to ensure enough number of samples are available in the
electronic health record (EHR) system and for the predictive
model. There were a total of 25, 127 encounters with a dis-
tribution of 22, 325 (≈ 88.85%) encounters without adverse
event and 2, 802 (≈ 11.15%) with adverse event. Similar to
many other clinical applications such as intracranial hemor-
rhage detection [42], [43] and pathology detection in X-ray
images [8], [14], the natural distribution of this dataset over
the data classes is imbalanced. Hence, the following protocols
were implemented for training and testing of the models.

1) TEST DATA
For each cross-validation fold, a balanced test dataset is
randomly selected from the dataset, where 10% was selected
from the data class with adverse event and 10% was selected
from the data class with no adverse event.

2) TRAINING DATA
After selecting the test dataset, the remaining dataset is
naturally imbalanced. Hence, for each cross-validation fold,
a balanced training dataset is selected by incorporating the
remaining encounters from the adverse event data class with
the number of encounters randomly selected from the no
adverse event data class. The concatenation of samples was
shuffled before each training process.

3) PRE-TRAINING DATA
The large-scale UCR time series classification archive [44],
containing 128 datasets, was used to pre-train the CL model.

TABLE 1. Distribution of the original dataset and selected train and test
datasets by random sampling from the original dataset per independent
cross-validation fold. 10% of the training data (504 samples) is used as
the validation dataset for hyperparameters tuning.

The model was pre-trained with the train and test datasets in
an unsupervised fashion.

B. VALIDATION
1) METRICS
The machine learning models were evaluated using different
metrics. The accuracy (Acc) performance metrics is defined
as

Acc =
TP+ TN
P+ N

, (13)

where TP is the true positive value, TN is the true negative
value, P is the number of real encounters with adverse event,
andN is the number of real encounters without adverse event.
Since the test dataset is balanced, the accuracy metric is
equivalent to the balanced accuracy. F1 Score is defined as

F1 =
2 × TP

2 × TP+ FP+ FN
, (14)

where FP is the test encounter which is incorrectly predicted
as adverse event and FN is the test encounter which is incor-
rectly predicted as having no adverse event. Specificity or true
negative rate (TNR) is defined as

TNR =
TN

TN + FP
, (15)

and sensitivity or true positive rate (TPR) is defined as

TPR =
TP

TP+ FN
. (16)

2) CROSS-VALIDATION
A 10-fold cross-validation was conducted and the average
(Avg.) and standard deviation (Std.) of each performance
metric were collected. In each independent run, the models
were trained from scratch using a randomly selected training
dataset and evaluated using a randomly selected balanced test
dataset. A summary is provided in Table 1.

C. MODELS
1) CONTRASTIVE LEARNING
The CL models was trained as an encoder in an unsuper-
vised fashion. The extracted features were used to train
and evaluate Ridge regression [37], support vector machines
(SVM) [38], random forest (RF) [39], Adaptive Boosting
(AdaBoost) [40], and XGBoost [41] classifiers. In one setup,
the CL model was trained from scratch using the DI score
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TABLE 2. Performance of the rule-based protocol as baseline using a threshold of 60 in percentage. The results are averaged over 10-fold cross-validation.

TABLE 3. Performance of the supervised deep learning models as baseline. The results are averaged over 10-fold cross-validation. Values are in
percentage.

dataset. In another setup, it was pre-trained using the UCR
data and then fine-tuned with the DI score dataset.

2) BASELINE DEEP SUPERVISED LEARNING
For sake of comparison with supervised methods as a base-
line, the long-short-termmemory fully convolutional network
(LSTM-FCN) [33], gated recurrent unit fully convolutional
network (GRU-FCN) [34], InceptionTime [35], and Xcep-
tionTime [36] models were trained and evaluated. These
models were trained from scratch in a supervised manner
using the dataset discussed in Subsection IV-A.

D. TRAINING SETTINGS
The hyperparameter tuning was conducted using 10% of the
training data as the validation dataset, which was different
from the test dataset. For the contrastive encoder, the num-
ber of projection features was Fp = 64, the number of
features per layer was Fl = 64 for l ∈ (1, 2, . . . , 10),
the number of output features was Fo = 320, kernel size
was k = 3, the learning rate was 0.001 (grid searched in
{0.0001, 0.001, 0.01, 0.1}) with the Adam optimizer [45],
and the batch size was B = 8. The unsupervised encoder was
trained on the training data using the hierarchical contrast-
ing [29]. The dropout rate in the last layer of feature extraction
phase was 0.1. The SVM [38] model was built with a radial
basis function (RBF) with a regularization parameter of 0.1
(grid searched in {0.001, 0.01, 0.1, 1, 10}). The regulariza-
tion parameter of the Ridge regression classifier was set to
0.01 after a grid search in {0.001, 0.01, 0.1, 1}.

Regarding the supervised deep learning models, the
LSTM-FCN model has a single LSTM layer with 100 units
and dropout rate of 0.8 and three 1-D convolution layers with
128, 256, and 128 kernels, batch normalization, and rectified
linear unit (ReLU) activation function [33]. The learning rate
for all the models was set to 0.01 after grid search with Adam
optimizer and early-stopping was applied. The GRU-FCN
model has a similar setup but with GRU instead of LSTM
units. The InceptionTime and XceptionTime were tuned
based on the recommendation in [35] and [36], respectively.

The hyper-parameter tuning was conducted using 10% of
the training data (i.e. 504 samples) as the validation dataset,
which was different from the test dataset. All the models were
implemented in Python and PyTorch [46] and trained on two
NVIDIA A6000 GPUs with 256GB of RAM and 64 CPU
cores.

E. PERFORMANCE ANALYSIS
1) CLASSIFICATION PERFORMANCE
Table 2 shows the performance of baseline rule-based meth-
ods using the threshold η = 60, as discussed in Section III-B.
The classification accuracy of rule-based any and rule-based
last methods are 56.57% and 52.20%, respectively. The area
under the curve (AUC) of the rule-based anymodel is 56.73%
and for the rule-based last model is 51.67%.
Performance of the supervised deep learning models on

the test dataset after 10-fold class validation is presented
in Table 3. These models were trained as baseline for
comparison with the CL approach. The results show that
XceptionTime has a higher overall performance than the other
models with an accuracy of 74.86% and F1-Score of 74.96%.
The LSTM-FCT and FRU-FCN models have lower perfor-
mance with F1-Score of 72.09% and 70.28%, respectively.

Classification performance results of the CL model with
and without pre-training are presented in Table 4. The results
on the test dataset show that the CL model, without pre-
training, has better performance than the supervised learning
models. Particularly, the combination of CL with XGBoost
has an accuracy of the 79.79% which is about 5% better than
the XceptionTime.

Pre-training the CL model with UCR dataset further
improves the classification performance of the XGBoost clas-
sifier by about 2%. Similarly, it enhances the performance of
the AdaBoost and Ridge regression classifiers about 4%.

Figure 4 shows the AUC of the baseline models in com-
parison with the CL model and pre-trained CL models.
The XceptionTime model has an AUC of 0.82 which is
the best performance among the supervised models. The
CL model with XGBoost has an AUC of 0.86 and with

220 VOLUME 12, 2024



H. Salehinejad et al.: Contrastive Transfer Learning for Prediction of Adverse Events in Hospitalized Patients

TABLE 4. Performance of the CL model with Ridge, SVM, RF, AdaBoost, and XGBoost classifiers. The CL model was evaluated with and without
pre-training. The results are averaged over 10-fold cross-validation. Values are in percentage.

RF has an AUC of 0.88. The RF model in Table 4 also
shows a competitive performance with XGBoost due to its
higher TPR. Pre-training of the CLmodels enhances the AUC
values of all classifiers. Particularly, XGBoost trained on
top of the contrastive transfer learning model has an AUC
of 0.91, which is 0.05 higher than its counterpart without
pre-trained CL.

Overall, the results show that unsupervised pre-training of
the CL model with large-scale time series datasets can boost
the classification accuracy of the models for prediction of
adverse events.

2) CONTRASTIVE ENCODER LATENT SPACE ANALYSIS
One of the critical hyperparameters in tuning the CL model
is the number of output features Fo. Figure 5 shows the
prediction accuracy of the best model (i.e. contrastive transfer
learning with XGBoost) for Fo ∈ {40, 80, 160, 320, 640}
after 10-fold cross-validation according to Section IV-B. For
Fo = 40 and Fo = 80 the average performance and
standard deviation are 69.23 ± 3.8% and 75.13 ± 3.1%,
respectively. Increasing the number of output features toFo =

320 achieves the highest performance at 81.86±1.17%. Fur-
ther increase of Fo to 640 slightly decrease the performance
to 81.34 ± 0.9%.

3) CONFIDENCE SCORE OF CLASSIFIER
Figure 4 shows the specificity and sensitivity plots of the
CL model with XGBoost versus different probability cutoff
values. The plots show the cutoff probability value of θ =

0.59 and θ = 0.43 for the CL model without pre-training and
with pre-training, respectively. Pre-training of the CL model
shifts θ towards the lower end of the probability cutoff which
improves the TNR and TPR values of the model, Table 4.

Figure 7 shows the confidence score, which is the predic-
tion probability in (12), of the CL and XGBoost classifier for
the encounters in the test dataset. This plot shows the normal-
ized count of encounters per data class and the corresponding
prediction probability.

The first observation is that the classifier without
pre-training has predicted 70.71% of the adverse event
encounters correctly with a probability of P ≥ 0.9. For

the no adverse events this number is 58.57%. Similarly, the
pre-trained CL model with XGBoost has predicted 71.43%
of the encounters with an adverse event correctly with a
probability of P ≥ 0.9. For the no adverse events this number
is 72.14% which is significantly (≈ 14%) higher than the
CL model without pre-training. This is also observable by
comparing the cutoff thresholds in Figure 4, where threshold
of pre-trained model is lower than the not pre-trained model
which increases the TPR as shown in Table 4.

The second observation is the number of encounters
that the models have predicted with low confidence. Particu-
larly, the classifier without pre-training has predicted 7.86%
of the adverse event encounters incorrectly with a confidence
of P ≤ 0.1. For the no adverse events this number is 15.00%.
Similarly, the pre-trained model has predicted 13.57% of the
encounters with an adverse event incorrectly with a confi-
dence of P ≤ 0.1, which is about 5% more than the not
pre-trained model. For the no adverse events this number
is 10.00% which is 5%) less than the CL model without
pre-training.

V. TRANSLATION TO CLINICAL PRACTICE
This study is originated from the necessity to enhance the
current clinical efficacy of the DI score systems within hos-
pitals, driven by feedback from clinicians. At present, the DI
score is automatically updated every 15 minutes based on
the latest variables information, visible on the Epic summary
screen of the patients in the hospital. This screen shows
hospital services with all the patients cared for by a provider
listed in individual rows and patient specific data displayed
in columns. Clinicians have observed situations in which
patients with a critical DI score (≥ 60) did not encounter AEs,
while others with AEs did not attain the critical threshold
score.

The future focus of the outlined CL approach is to compute
and integrate the new CL model DI prediction in a column
alongside the current DI score in the clinical workflow for our
hospital users, including medical and nursing staff. Techni-
cally, existing institutional information technology resources
can be leveraged along with expertise in implementing other
ML models in our EHR to implement the proposed solution.
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FIGURE 4. AUC plots of the supervised deep learning models and the CL
model with and without pre-training.

The algorithm will operate using resources interfaced with
our clinical data, and the outcome will be displayed within
the clinical workflow as described earlier.

FIGURE 5. Prediction accuracy of the XGBoost classifier for different
number of output features in the pre-trained CL encoder.

FIGURE 6. Specificity and sensitivity of the CL and XGBoost model with
respect to different probability cutoff values.

The initial implementation will involve a silent mode
period to validate the model and ensure accuracy and safety.
Prior to and during the initial implementation, providers and
nurses will undergo appropriate education and training. The
ultimate objective is for providers to utilize information from
the DI score and our new CL model prediction in medi-
cal decision-making to identify patients at risk of clinical
deterioration.

Evaluation of the new CL model’s utility will encom-
pass subjective feedback from clinical users and objective
measurement of AEs and outcomes in hospital areas where
the new CL model is employed, compared to control areas
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FIGURE 7. Normalized number of patients and corresponding confidence
score (prediction probability) of the CL model with XGBoost classifier.

using the existing DI score. This implementation strategy is
capable of easy generalization and potential adoption by other
institutions.

A key enabler of clinical translation of any proposed inter-
vention is its cost-effectiveness. Cost-effectiveness assess-
ment during the validation phase of the model in the silent
mode can be conducted. Specifically, the difference in the
number of AEs averted between the standard of care (i.e. the
rule-based method) versus our CL approach, can be utilized
to quantify the saved cost associated with CL detected AEs.

VI. CONCLUSION
In this paper, for the first time in the literature, we propose
an unsupervised CL approach with a classifier for prediction
of adverse events in hospitalized patients using retrospective
DI scores. The model was trained and validated on real-
world data. In addition, its classification performance was
compared with the baseline deep supervised time series clas-
sification models. The results indicated the CL approach with
a classifier outperforms the supervised models. Furthermore,
we demonstrated that contrastive transfer learning, involv-
ing pre-training the CL model with large-scale unlabeled
data, enhances the prediction accuracy concerning patient
outcomes. This model holds the potential for implementation
as an assistive tool for care providers, enabling early inter-
vention to mitigate adverse outcomes among hospitalized
patients.
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