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Background: Cystic fibrosis (CF) is an inherited, chronic, progres-
sive condition affecting around 10,000 individuals in the United 
Kingdom and over 70,000 worldwide. Survival in CF has improved 
considerably over recent decades, and it is important to provide up-
to-date information on patient prognosis.
Methods: The UK Cystic Fibrosis Registry is a secure centralized 
database, which collects annual data on almost all CF patients in the 
United Kingdom. Data from 43,592 annual records from 2005 to 
2015 on 6181 individuals were used to develop a dynamic survival 
prediction model that provides personalized estimates of survival 
probabilities given a patient’s current health status using 16 predic-
tors. We developed the model using the landmarking approach, giv-
ing predicted survival curves up to 10 years from 18 to 50 years of 
age. We compared several models using cross-validation.

Results: The final model has good discrimination (C-indexes: 0.873, 
0.843, and 0.804 for 2-, 5-, and 10-year survival prediction) and low 
prediction error (Brier scores: 0.036, 0.076, and 0.133). It identi-
fies individuals at low and high risk of short- and long-term mortal-
ity based on their current status. For patients 20 years of age during 
2013–2015, for example, over 80% had a greater than 95% probability 
of 2-year survival and 40% were predicted to survive 10 years or more.
Conclusions: Dynamic personalized prediction models can guide 
treatment decisions and provide personalized information for 
patients. Our application illustrates the utility of the landmarking 
approach for making the best use of longitudinal and survival data 
and shows how models can be defined and compared in terms of 
predictive performance.

Keywords: Cox regression; Cystic fibrosis; Dynamic prediction; 
Landmarking; Longitudinal data; Patient registry; Personalized pre-
diction; Survival.
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Cystic fibrosis (CF) is an inherited, chronic, progressive 
condition affecting around 10,000 individuals in the 

United Kingdom and over 70,000 worldwide.1,2 In the United 
Kingdom, CF affects about 1 in 2500 live births.3 Children 
with CF are generally diagnosed in the first few months of 
life, with universal newborn screening implemented in 2007 
in the United Kingdom, though some people with milder phe-
notypes are diagnosed in adulthood.4

Survival in CF has improved considerably over recent 
decades. Of individuals born around 1970, over half died 
before reaching their mid-teens to late teens.5,6 By contrast, 
the estimated median survival age for a person born with 
CF today in the United Kingdom is 48 for males and 44 for 
females.1,7 It is important to be able to provide patients with 
up-to-date information on their prognosis and to provide clini-
cians with information to guide treatment decisions, including 
listing for lung transplantation.

Data from national CF patient registries with longitudi-
nal measures of health status and long-term follow-up have cre-
ated the opportunity to develop models for predicting survival 
based on individual characteristics.8,9 Although there have been 
many studies of factors associated with survival in CF (Buz-
zetti et al10 and MacNeill3 for overviews), fewer have focused 
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on prediction. We identified three models for survival predic-
tion in UK patients, but all are based on small samples or sub-
sets of patients.11–13 Survival prediction models in CF have been 
developed using national patient registries by Liou et al14 and 
Mayer-Hamblett et al15 (United States), Aaron et al16 (Canada), 
and Nkam et al17 (France). Until recently there have been (to 
our knowledge) no detailed studies of survival using the UK CF 
Registry. Keogh et al18 provided estimates of survival using UK 
CF Registry data given the baseline characteristics of sex, geno-
type, and age of diagnosis. In this article, we develop a model 
for personalized prediction of survival in the United Kingdom 
making use of time-dependent measures of health status.

The aims of this article are two-fold. Our first aim was 
to use data from the UK CF Registry to develop a dynamic 
survival prediction model that provides estimates of the prob-
ability of short-term, mid-term, and long-term survival given a 
patient’s current and past health status.19 We used the landmark-
ing approach applied to UK CF Registry data on adults from 
2005 to 2015,20,21 giving predicted survival curves up to 10 years 
from each landmark age, which can be any age post-diagnosis 
from 18 to 50. The model therefore provides predictions for indi-
viduals living with the CF who already survived to a given age. 
The model is dynamic in that it enables predictions to be updated 
over time, using updated measures of time-dependent predictors 
alongside a patient’s current age. Our second aim was to provide 
an example for other researchers of how to develop a dynamic 
prediction model using landmarking, illustrating the utility of 
this approach for making the best use of longitudinal and sur-
vival data, and showing how different models can be defined and 
compared in terms of their predictive performance.

METHODS

Design and Data Source
We undertook a landmarking analysis using data from 

the UK CF Registry, a national, secure database sponsored 
and managed by the Cystic Fibrosis Trust.19 The Registry was 
established in 1995 and records demographic data and longi-
tudinal health data on nearly all people with CF in the United 
Kingdom, to date capturing data on over 12,000 individuals. 
National Health Service (NHS) Research Ethics approval 
has been granted for the collection of data into the Registry. 
Each patient or their parent provided written informed consent 
for collection of data in the Registry and use of pseudony-
mized data in research. In the United Kingdom, CF patients 
are treated in specialist centers and data for the Registry are 
collected in a standardized way at designated (approximately) 
annual visits. Data collected cover over 250 variables in sev-
eral domains, alongside mortality data. We restricted our anal-
yses to a set of 17 variables (Table 1) recorded routinely in the 
Registry and previously found to be associated with survival, 
based on a review of the literature.3,10,11,13,15–17,22–28 This set 
consists of three baseline variables—sex, genotype (F508del 
alleles), and age of diagnosis—as well as calendar year, and 

13 internal time-dependent variables: forced expiratory vol-
ume in 1 second as percentage predicted (FEV1%), forced 
ventricular capacity as percentage predicted (FVC%), height, 
weight, infection status for four organisms (Pseudomonas 
aeruginosa, Staphylococcus aureus, Burkholderia cepacia, 
Methicillin-resistant Staphylococcus aureus [MRSA]), CF-
related diabetes, pancreatic insufficiency, days in hospital on 
intravenous (IV) antibiotics, days at home on IV antibiotics, 
and other hospitalization. We calculated FEV1% and FVC% 
using the Global Lung Initiative (GLI) equations.29 We inves-
tigated using body mass index (BMI) instead of weight and 
height but found that models including weight and height 
separately were better fitting, based on Akaike’s Information 
Criterion.30 The two variables for days on IV antibiotics are 
used as surrogate indicators for pulmonary exacerbations.31,32

Analyses are based on follow-up during the study period 
2005–2015, so that some individuals have at least 10 years 
of follow-up, enabling estimation of survival up to 10 years. 
We therefore excluded individuals who died or were lost to 
follow-up before 2005. In order to focus on adults, we only 
used data on individuals from 18 years of age onward during 
the study period.

Landmarking Approach
The landmarking approach for dynamic prediction of 

survival was first described by van Houwelingen.20 A detailed 
account is provided by van Houwelingen and Putter.21 In brief, 
at a given age (a “landmark age”) from which a prediction is 
to be made, the data are restricted to individuals who have not 
yet had the event (in this case, death) or been censored. Val-
ues of predictor variables available up to the landmark age are 
used as covariates in a model for the probability of survival up 
to some time horizon, conditional on survival to the landmark 
age. Typically, the focus is on survival to a single time hori-
zon ( thor ), e.g., 2 years after the landmark age ( thor =2 ), and 
censoring is imposed at thor  so that only events up to that time 
are used in the survival analysis. For a chronic condition like 
CF, however, it is of interest to study survival to several time 
horizons. We use the Cox model and its extensions to model 
survivor curves up to 10 years after each landmark age.

Landmark data sets were created from landmark ages 
l= …18 50, ,  (eFigure 1; http://links.lww.com/EDE/B407, eTable 
1; http://links.lww.com/EDE/B407, eAppendix 1; http://links.
lww.com/EDE/B407). Data on individuals over 50 years of age 
are sparse. The l th landmark data set included all individuals 
known to be alive at age l  during 2005–2015, who had not 
received a transplant before age l , who were diagnosed with 
CF before age l , and who joined the Registry before age l .  
Individuals lost to follow-up before age l  were excluded. 
We excluded people who received a transplant before age 
l  because the variables of importance for survival in trans-
planted patients are likely to be quite different from those of 
importance for untransplanted individuals.33 Individuals trans-
planted after age l  were included in the l th landmark data 
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set, and their deaths were counted as events in the survival 
analysis. The predictors in the l th landmark data set were the 
three baseline variables, calendar year, and variables that sum-
marize the measurements of the remaining 13 time-dependent 
predictors up to age l . We summarize time-dependent mea-
surements in two ways. First, we used the most recently avail-
able measure at time l  of each time-dependent variable. This 
“last-observation-carried-forward” approach was used in the 
original descriptions of landmarking.20,21 Second, we fitted 
a mixed effects model to data available on time-dependent 
variables up to the landmark age and used the resulting fitted 
values and slopes at the landmark age as predictors because 
some studies have suggested that this makes better use of the 
data than last-observation-carried-forward approach.34–36 We 
implemented this two-stage landmarking approach by fitting a 
multivariate mixed model to three continuous time-dependent 
variables—FEV1%, FVC%, and weight—up to each landmark 
age (eAppendix 2; http://links.lww.com/EDE/B407, eTable 2; 
http://links.lww.com/EDE/B407).

We created a single stacked data set by stacking the 33 
landmark data sets ( l= …18 50, , ), for use in pooled models 

(see below). Many individuals appear multiple times in the 
stacked data set because they are eligible for several landmark 
data sets. Robust standard errors were used to account for this.

Model Building
The aim was to obtain a dynamic prediction model that 

performs well for predicting 2-, 5-, and 10-year survival from 
each landmark age. We considered a number of multivariable 
Cox models (Table 2) before selecting a final model based on 
assessment of their predictive performance. Further details on 
the models and on how predicted survival probabilities were 
obtained are given in eAppendix 2; http://links.lww.com/
EDE/B407.

Models 1–5 use the last-observation-carried-forward 
values for the 13 time-dependent predictors. We began by 
fitting separate survival models from each landmark age l  
(model 1). An alternative is to fit a pooled model (a “super-
model”) to the stacked data set. The simplest supermodel 
(model 2) allowed a separate baseline hazard for each land-
mark age, but assumed common predictor coefficients across 
all landmark ages. Models 1 and 2 were initially fitted using a 
time horizon of 10 years ( thor =10 ), which enables us to obtain 

Table 1.  Variables Considered as Predictors

Variable Category Variables Description Further Information

Baseline variables Sex Male (0), Female (1)  

 Genotype F508del: Homozygous  

  F508del: Heterozygous  

  F508del: No copies  

 Age of diagnosis In years  

Calendar year Calendar year 2005–2015 (coded as 0–10)  

Lung function FEV1% FEV1% predicted, obtained using GLI equations Measured at the annual review visit

 FVC% FVC% predicted, obtained using GLI equations

Height and weight Weight Kilograms (kg) Measured at the annual review visit

 Height Centimeters (cm)

Microbiology P. aeruginosa No (0), Yes (1) Any finding based on microbiology results since 

the last annual review B. cepacia No (0), Yes (1)

 S. aureus No (0), Yes (1)

 MRSA No (0), Yes (1)

Complications Pancreatic insufficiencya No (0), Yes (1) All in the year before the annual review

 CF-related diabetesa No (0), Yes (1)

 No. hospital IV daysb 0 days (reference category)

  1–14 days

  15–28 days

  29+ days

 No. home IV daysb 0 days (reference category)

  1–14 days

  15–28 days

  29+ days

 Hospitalization (not for IVs) No (0), Yes (1)

All are time dependent except the baseline variables.
aOnce an individual was recorded as being pancreatic insufficient (“Yes” (1)), they were considered to be pancreatic insufficient at all subsequent time points. Once an individual 

was recorded as having CF-related diabetes (“Yes” (1)), they were considered to have CFRD at all subsequent time points.
bNo. hospital and home IV days are used as surrogate indicators of pulmonary exacerbations.
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predicted survival probabilities for any time up to 10 years 
after the landmark age. We also investigated whether 2- and 
5-year survival could be better predicted by using thor =2  and 
thor =5 , respectively. One might expect to better predict 2-year 
survival (for example) by using thor =2  instead of thor =10  
because the effects of time-dependent variables are expected 
to change less over 2 years than 10 years. However, this was 
not found to be the case and all subsequent models were fitted 
with thor =10 . Because we found that the supermodel gave bet-
ter predictive performance, subsequently investigated models 
were all extensions of model 2.

Model 3 allows predictor coefficients (log hazard 
ratios) to vary smoothly with l . Model 4 allows the predictor 
coefficients to vary with time since landmark t l−( ) . Model 5 
uses a common baseline hazard with the impact of landmark 
age on the hazard modeled using regression terms. Model 6 
extends model 2 by using the fitted value and slope at each 
landmark age for each of FEV1%, FVC%, and weight from 
the multivariate mixed models (one for each landmark age) as 
additional time-dependent predictors (as well as the last-obser-
vation-carried-forward values). By incorporating slopes from 
the mixed models, the prediction model includes information 
about trajectories of FEV1%, FVC%, and weight up to each 
landmark age. For height and the categorical time-dependent 
variables, we used last-observation-carried-forward approach 
in all models. In all models continuous variables were assumed 
to have linear effects; modeling them using splines brought 
negligible changes in predictive performance.

Model Assessment
We divided the data into a training-plus-validation set—

an 80% random sample of the stacked data, stratified by land-
mark age—and a “holdout” set—the remaining 20%.37 The 
training-plus-validation set was used for model development 

and assessment. Details are given in eAppendix 3; http://links.
lww.com/EDE/B407.

We compared the predictive performances of different 
models in terms of discrimination, using the C-index,38–40 and 
prediction error, using the Brier score.41,42 C-indexes and Brier 
scores were calculated separately for each landmark age for pre-
diction of 2-, 5-, and 10-year survival. We also obtained overall 
C-indexes and Brier scores across landmark ages for 2-, 5- and 
10-year survival. A Monte–Carlo cross-validation procedure 
was used to avoid overoptimism about predictive performance.43

We selected the model with the best predictive perfor-
mance as the final model, though where several models had 
similar performance we favored a simpler model. The final 
model was applied to the holdout data to estimate its perfor-
mance in a new set of individuals. Last, the final model was 
fitted to the complete data and is reported in full for use by 
other researchers.

We performed all analyses using R. eAppendix 4; http://
links.lww.com/EDE/B407 provides details on software.

RESULTS

Data Overview
The stacked data set has 43,592 rows and 6181 unique 

individuals, of whom 931 died within 10 years of follow-up 
(eAppendix 2; http://links.lww.com/EDE/B407). Censoring 
is owing to the end of follow-up at the end of 2015, rather 
than loss to follow-up (eAppendix 2; http://links.lww.com/
EDE/B407). Many individuals appear in multiple landmark 
data sets. eFigure 1; http://links.lww.com/EDE/B407 illus-
trates how the data arose. Figure 1 summarizes the number 
of individuals in each landmark data set and the number of 
deaths within 2, 5, and 10 years of each landmark age. eTable 
1; http://links.lww.com/EDE/B407 gives more detailed 

Table 2.  Summary of Dynamic Prediction Models Investigated

Model Form of the Log Hazard: log , ,*h t X l X l Zl | (( )) (( ))(( )) Description

Model 1 log , , ,h t X l Z l Ll l
T

l
T

0 1( ) + ( ) + = …β γ Separate model fitted at each landmark age.

Model 2 logh t X l Zl
T T

0 ( ) + ( ) +β γ Supermodel with separate baseline hazards for l L= …1, ,  and common predictor 

coefficients across landmark ages.

Model 3 logh t l X l l Zl
T T

0 ( )+ ( ) ( )+ ( )β γ Supermodel with separate baseline hazards for l L= …1, ,  and predictor coefficients 

modeled as a function of landmark age l .

Model 4 logh t t l X l t l Zl
T T

0 ( )+ −( ) ( )+ −( )β γ Supermodel with separate baseline hazards for l L= …1, ,  and time-varying predictor 

coefficients, but common across landmark ages.

Model 5 log ;h t X l Z f lT T
0( ) + ( )+ + ( )β γ δ Supermodel with an overall baseline hazard, common predictor coefficients across 

landmark ages, and landmark effects f l;δ( ).
Model 6 log *h t X l Z X ll

T T T
0 ( )+ ( )+ + ( )β γ θ As in model 2, but with additional predictors X l*( ) from the multivariate mixed model.

In all analyses the time scale is age (t). Landmark age is denoted l. For models 1 and 2, using age as the time scale or time since landmark as the timescale are exactly equivalent. 

hl t X l X l Z| ( ) ( )( ), * , : Hazard at time t given X l( ), Z , and X l*( ), and given eligibility for the lth landmark data set (eAppendix 1; http://links.lww.com/EDE/B407). h l t0 ( ): Baseline hazard 

at time t given eligibility for the lth landmark data set (Supplementary Section S1). Z : Vector of baseline predictors (sex, genotype, and age of diagnosis). X l( ): Vector of the last-
observation-carried-forward values at landmark age l for time-dependent predictors (calendar year, FEV1%, FVC%, weight, height, CFRD, pancreatic insufficiency, P. aeruginosa, 

B. cepacia, S. aureus, MRSA, non-IV hospitalization, number of hospital and home IV days). X l*( ): Vector of predicted values and slopes for FEV1%, FVC%, and weight at age $l$ 

from a multivariate mixed model.
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information. eTable 3; http://links.lww.com/EDE/B407 sum-
marizes the predictors at landmark ages 20, 30, 40, and 50.

Comparison of Dynamic Prediction Models
Overall C-indexes and Brier scores from models 1 to 6 

are shown in Table 3. Model 1, in which separate models were 
fitted from each landmark, gave overall C-indexes of 0.841 

for 2-year survival, 0.811 for 5-year survival, and 0.771 for 
10-year survival, and corresponding Brier scores of 0.038 
for 2-year survival, 0.082 for 5-year survival, and 0.147 for 
10-year survival, indicating better predictive performance 
for short-term survival. A supermodel fitted across landmark 
ages (model 2) brought gains in terms of both discrimination 
(C-indexes) and prediction error (Brier scores). The C-indexes 
increased to 0.873 for 2-year survival, 0.843 for 5-year sur-
vival, and 0.804 for 10-year survival, and the Brier scores 
reduced to 0.036 for 2-year survival, 0.076 for 5-year sur-
vival, and 0.133 for 10-year survival. Landmark age-specific 
C-indexes and Brier scores (eFigures 2 and 3; http://links.
lww.com/EDE/B407) show that the gains in predictive perfor-
mance from using the supermodel are particularly important 
for older landmark ages. This is because there are fewer data 
at those ages and hence more to be gained by drawing strength 
from other landmark ages by using a supermodel.

Allowing the predictor coefficients to depend on land-
mark age in a smooth way (model 3) resulted in very similar 
results to model 2. Including time-varying coefficients for all 
predictors (model 4) resulted in worse predictive performance 
compared with model 2. Restricting the time-varying coeffi-
cients to FEV1%, the strongest predictor, gave very similar 
results to model 2. Using splines instead of a linear form for 
the time-varying coefficients did not bring any improvements. 
This lack of advantage of using time-varying coefficients 
in part reflects our finding that using a shorter time horizon 
( thor =2  or 5 ) did not improve prediction. Using a common 
baseline hazard, with the impact of landmark age modeled 
using regression terms (model 5), resulted in considerably 
worse predictive performance than model 2.

Inclusion of the fitted values and slopes from mixed 
models for FEV1%, FVC%, and weight in addition to 
the last-observation-carried-forward terms brought small 

A

B

Figure 1.  Overview of number of individuals in each landmark 
data set. A, Number of individuals alive at each landmark age 
at any point during the study period. B, Number of deaths 
within 2, 5, and 10 years after each landmark age, among 
those alive at each landmark age.

Table 3.  Overall C-Indexes, Brier Scores, and Brier Score Percentage Reductionsa for Prediction of 2-, 5-, and 10-Year Survival 
From Models 1–6

 
 

C-Index Brier Score Brier Score % Reductiona

2-year 5-year 10-year 2-year 5-year 10-year 2-year 5-year 10-year

Model 1 0.841 0.811 0.771 0.038 0.082 0.147 9.56 15.54 11.67

Model 2 0.873 0.843 0.804 0.036 0.076 0.133 14.85 21.79 20.58

Model 3 0.872 0.843 0.803 0.036 0.076 0.132 14.798 22.32 21.14

Model 4b 0.837 0.837 0.797 0.043 0.088 0.168 −2.29 9.85 −0.70

Model 4c 0.873 0.843 0.804 0.036 0.076 0.133 14.68 21.61 20.09

Model 5 0.849 0.813 0.766 0.039 0.087 0.158 7.53 11.00 5.57

Model 6 0.873 0.844 0.805 0.036 0.076 0.132 14.73 21.84 20.91

Model 1: separate landmark models. Model 2: supermodel with common † coefficients across landmarks and separate baseline hazard for each landmark age. Model 3: supermodel 
with interactions between each covariate and l and separate baseline hazard for each landmark age. Model 4: supermodel with time-varying † coefficients and separate baseline hazard 
for each landmark age, Model 5: supermodel with common † coefficients across landmarks, overall baseline hazard, and landmark effects. Model 6: as in model 2, with the addition of 
mixed model terms to the predictors.

aPercentage reduction in the Brier score relative to the Brier score obtained from Kaplan–Meier estimates of survival probabilities (fitted separately from each landmark age with 
no predictors).

bIncluding time-varying coefficients for all variables.
cIncluding time-varying coefficients for FEV1% only.
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improvements in the C-indexes and Brier scores. Further 
investigations found that including the mixed model terms 
without the corresponding last-observation-carried-forward 
terms resulted in worse predictive performance than models 
2 and 6.

Final Model
Based on the above comparisons, we selected model 

2 as the final model: increasing model complexity had not 
resulted in improvements in predictive performance, suggest-
ing a trade-off between increased complexity and estimation 
of more parameters. While there were small gains in predic-
tive performance from using mixed models for three of the 
continuous variables (model 6), these were fairly negligible 
and came at the expense of a substantially more complicated 
procedure for obtaining predicted survival probabilities. Also, 
model 2 requires only the most recent values of predictors at 
the landmark age, while the mixed modeling approach (model 
6) requires a series of measures up to the landmark age. Fur-
thermore, model 2 is more straightforward to explain and 
report to potential users.

eFigure 4; http://links.lww.com/EDE/B407 shows cali-
bration plots for the final model for landmark ages 20, 30, 40, 
and 50, which compare model-based predicted survival prob-
abilities with “observed” probabilities. For 2-year and 5-year 
survival, the points lie close to the line of equality, indicat-
ing good agreement between predicted probabilities from 
the model and the observed probabilities. There is also good 
agreement for 10-year survival for landmark ages 20, 30, and 
40. At landmark age 50, the agreement between predicted and 
observed 10-year survival probabilities is less good, which 
may be partly owing to sparse data at the older ages. These 
results indicate that the model is well calibrated for predic-
tion of 2- and 5-year survival from all landmark ages, and for 
10-year survival at least up to age 40.

Application in the Holdout Data
The final model was fitted to the complete training-

plus-validation data and applied to the holdout data to demon-
strate its use in practice. The resulting overall C-indexes were 
for 0.854 for 2-year survival, 0.843 for 5-year survival, and 
0.815 for 10-year survival. The corresponding overall Brier 
scores were 0.034, 0.077, and 0.125, representing percent-
age reductions in prediction error against the Kaplan–Meier 
estimates of survival probabilities of 12.22%, 20.92%, and 
23.86%. eTable 4; http://links.lww.com/EDE/B407 summa-
rizes observed survival within groups defined by the predicted 
survival probabilities.

Full Model Specification
We fitted the final model to the complete data (the train-

ing-plus-validation and holdout data combined). Estimated 
baseline hazards h tl0 ( )  are given in at a web link given in eAp-
pendix 5; http://links.lww.com/EDE/B407; in combination 
with the regression coefficients in Table 4, these provide a full 

specification of the dynamic prediction model. Higher FEV1%, 
FVC%, and weight were strongly associated with reduced haz-
ard. B. cepacia infection, CF-related diabetes, and more hospital 
days on IV antibiotics were strongly associated with increased 
hazard. Using the final model fitted to the complete data, we 
calculated 2-, 5-, and 10-year predicted survival probabilities 
from 20, 30, 40, and 50 years of age for individuals in the CF 
Registry at these ages during the most recent 3-year period for 
which data were available (2013–2015). eFigures 5–8; http://
links.lww.com/EDE/B407 illustrate typical profiles of individu-
als within groups defined by predicted survival probabilities 
and show corresponding predicted survivor curves, illustrating 
in particular how FEV1%, FVC%, weight, CF-related diabetes 

Table 4.  Results From Fitting the Final Selected Model to 
the Complete Data

Variable  HR (95% CI)

Sex Male 1 (ref)

 Female 0.87 (0.72, 1.06)

Genotype 2 copies 1 (ref)

 1 copy 0.98 (0.83, 1.15)

 Other 1.05 (0.78, 1.43)

Age of diagnosis (years)  0.99 (0.98, 1.00)

Calendar year (years)  0.97 (0.95, 1.00)

FEV1%  0.97 (0.96, 0.97)

FVC%  0.99 (0.98, 1.00)

Weight (kg)  0.98 (0.97, 0.99)

Height (cm)  0.99 (0.98, 1.00)

P. aeruginosa No 1 (ref)

 Yes 1.04 (0.90, 1.19)

B. cepacia No 1 (ref)

 Yes 1.91 (1.51, 2.40)

S. aureus No 1 (ref)

 Yes 0.87 (0.77, 0.98)

MRSA No 1 (ref)

 Yes 1.02 (0.77, 1.34)

Pancreatic insufficiency No 1 (ref)

 Yes 1.07 (0.80, 1.42)

CF-related diabetes No 1 (ref)

 Yes 1.48 (1.29, 1.70)

Hospitalization (not for IVs) No 1 (ref)

 Yes 1.06 (0.79, 1.41)

No. hospital IV days 0 days 1 (ref)

 1–14 days 1.13 (0.99, 1.28)

 15–28 days 1.52 (1.31, 1.76)

 29+ days 2.37 (2.05, 2.74)

No. home IV days 0 days 1 (ref)

 1–14 days 1.03 (0.90, 1.19)

 15–28 days 1.06 (0.90, 1.26)

 29+ days 1.39 (1.20, 1.61)

The CIs were obtained using robust standard errors. HRs for continuous variables 
refer to a unit change.

CI indicates confidence interval; HR, hazard ratio.

http://links.lww.com/EDE/B407
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(CFRD), and IV days are associated with survival, Figure  2 
shows the distributions of the predicted probabilities. At 20 
years of age, over 80% of individuals had a greater than 95% 
probability of 2-year survival and over 35% of 10-year survival. 
At landmark ages 30, 40, and 50, over 75% of individuals had a 
greater than 90% probability to survive 2 years, and over 50% 
had a greater than 90% probability to survive 5 years. These 
plots further demonstrate how the model could be used to iden-
tify patients at greatest risk and those with a good prognosis.

DISCUSSION
We have developed a model for dynamic prediction of 

survival for people with CF in the United Kingdom using UK 
CF Registry data. We used a landmarking approach applied 
to CF data to our knowledge for the first time, making effi-
cient use of the longitudinal data, by using information from 
the same individual at several ages and incorporating updated 
measures of health status. The model enables predictions of 
survival up to 10 years for adults with CF up to 50 years of 
age and can be used to identify high-risk patients, making use 
of information on 16 variables. R code for obtaining estimated 
survival probabilities from the final model is provided at 
https://github.com/ruthkeogh/landmark_CF. There are several 
potential roles for practical use of the model, including for 
guiding treatment decisions, informing referral for lung trans-
plantation,44 and providing personalized information going far 
beyond the population-level statistics that are currently avail-
able, which is important for patients.

We have outlined a systematic approach to development 
of a dynamic prediction model using landmarking, incorpo-
rating the assessment of models of different levels of com-
plexity by comparing their predictive performance. There 
have been relatively few practical applications of landmark-
ing.34,45,46 Unlike previous applications, we have provided 

predicted survival curves instead of focusing on a single time 
horizon, and we provided results on model performance for 
2-, 5-, and 10-year survival. Prediction of long-term sur-
vival is of particular relevance for chronic conditions such as 
CF, and ours is to our knowledge the first prediction model 
based on UK CF Registry data. Of the three earlier prediction 
models using national patient registry data, two used logistic 
regression,14,17 and so did not handle censoring, and did not 
make efficient use of the longitudinal data. Aaron et al16 used 
a stochastic process model. No previous prediction models in 
CF have considered survival to more than one time point or 
beyond 5 years.12–17,22,25 Comparisons of predictive perfor-
mance with models obtained in other populations are sum-
marized in eAppendix 6; http://links.lww.com/EDE/B407. 
Future work may result in new models for the UK population 
that could be compared with ours, and it is important that sim-
ilar measures of predictive performance are presented across 
studies to facilitate comparisons. We used the landmark-
ing approach to perform dynamic prediction. An alternative 
approach uses joint modeling of the longitudinal and survival 
processes.47–49 Landmarking had several strengths over joint 
modeling for this application. First, landmarking enabled us 
to handle transplanted individuals in a straightforward way. 
We excluded previously transplanted individuals at each land-
mark age but retained post-transplant deaths in the data set 
for estimating survival after each landmark age. Our predic-
tions therefore refer to individuals who are untransplanted at 
the time of making the prediction. Development of a predic-
tion model for post-transplant survival is an area for further 
work. It is not clear how transplanted individuals should be 
handled in the joint modeling approach, especially using read-
ily available software. Second, the set of predictors included 
12 endogenous time-dependent variables of different types  
(continuous, categorical, binary). Although joint modeling has 

A B

C D
Figure 2.  Plots showing the distri-
bution of 2-, 5-, and 10-year sur-
vival probabilities from landmark 
ages (A) 20, (B) 30, (C) 40, and (D) 
50 for individuals in the Registry 
at those ages between 2013 and 
2015. [This plot is shown in color 
in eFigure 9; http://links.lww.com/
EDE/B407.]

https://github.com/ruthkeogh/landmark_CF
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recently been extended for use with multivariate longitudinal 
outcomes,50 its feasibility for use with a large number of such 
variables of different types remains in question. The two-stage 
landmarking approach,34–36 which used mixed models for con-
tinuous time-dependent predictors (model 6), did not result 
in material gains compared with using the last-observation-
carried-forward method. Landmarking also has the advantage 
of being based on methods, notably Cox regression, that are 
familiar to a clinical audience, which facilitates its explana-
tion. Recent comparisons of landmarking with joint modeling 
using simulation studies have tended to find joint modeling 
to perform slightly better than landmarking.35,36,51 However, 
they have focused on simple simulation scenarios favoring the 
joint model.

A major strength of our study is the use of the UK 
CF Registry data to create the dynamic prediction model. 
The Registry collects longitudinal data on almost all UK CF 
patients, and the structured data collection means that there 
are little missing data and little loss to follow-up. A limita-
tion is that predicted survival probabilities cannot account for 
improvements in survival that are not yet known about, e.g., 
owing to new treatments.52,53 However, treatments manifest 
themselves in measures of health status, and so it is likely that 
the prediction model could still apply. That is, the distribution 
of health status measures in the CF population may change, 
but the associations of health status measures with survival 
remain the same. The standardized format of the Registry 
data collection means that the model could be assessed and 
updated if necessary after a few years.

We selected a set of predictors previously associated 
with survival in CF and collected routinely in the Registry.3,10 
FEV1% is the strongest predictor, though predictive perfor-
mance is improved by incorporating the additional variables 
(eTable 5; http://links.lww.com/EDE/B407). Further investi-
gations using variable selection techniques tended to result in 
a model containing most of the variables. Extensions of vari-
able selection techniques to the context of dynamic prediction 
remain an area for further methodologic work. There are many 
other variables in the Registry, and an area for further work is to 
investigate whether using additional variables could improve 
predictive performance. We took the decision not to use data 
on treatment use as predictors. As noted above, the impact of 
treatments on survival is expected to manifest primarily via 
the health status measures used as predictors. Further inves-
tigations also found that adding information on use of two 
treatments did not materially improve prediction (eTable 5; 
http://links.lww.com/EDE/B407). Furthermore, the models 
created in this work are designed with prediction in mind, and 
the estimated coefficients associated with the predictor vari-
ables do not necessarily represent causal effects. Inclusion of 
treatment variables could create danger of misinterpretation 
of the impacts of treatment on survival prediction curves as 
causal effects, which could result in inappropriate withhold-
ing of treatment if treatment is (noncausally) associated with 

worse prognosis. Estimation of treatment effects using patient 
registry data is an area of growing interest54,55 but involves a 
separate question from that focused on in this article.

Our model is for adults with CF. There are relatively 
few deaths in CF patients under 18 years of age in the United 
Kingdom, and different variables may be important for sur-
vival prediction in children.12,56 We restricted to predictions 
for adults up to 50 years of age because the data above 50 
years of age are sparse. Investigations into the health of older 
people with CF are of interest.

In summary, we have developed a novel landmarking 
model for dynamic prediction of survival for people with CF 
in the United Kingdom. Further work involves the practical 
implementation of our model in a form suitable for use by 
clinicians, potentially as an add-on to patient information that 
can already be viewed via the Registry interface. In addition, 
it is important that patients and caregivers are supported to 
interpret personalized survival predictions.57–59
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