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          8.1   Introduction 

 Mechanical ventilation is a life-saving treatment of patients with acute and chronic 
respiratory failure. However, an adverse consequence of this intervention is the 
development of ventilator-associated pneumonia (VAP), which results in consider-
able morbidity and mortality in hospitalized patients (American Thoracic Society; 
Infectious Diseases Society of America  2005 ; Fujitani et al.  2011  ) . VAP is de fi ned 
as the development of pneumonia within 48–72 h after endotracheal intubation. 
Although the incidence of VAP is decreasing, still 9–27% of ventilated patients will 
develop this complication, with the highest incidence occurring in the  fi rst 10 days 
after intubation. Endotracheal intubation increases the risk of developing health 
care associated pneumonia by 6–20-fold. As compared to health care associated 
pneumonia (HAP) in non-intubated patients, both actual and attributable mortality 
is higher in VAP. Patients with certain underlying lung diseases, such as acute lung 
injury (ALI) and acute respiratory distress syndrome (Richardson et al.  1982  ) , have 
a particularly high incidence of VAP (Richardson et al.  1982  ) . Conversely, VAP 
represents a major risk factor for the development of ALI and ARDS.  

    8.2   Etiology of VAP 

 VAP can be caused by an array of Gram-negative and Gram-positive bacterial 
pathogens, and may be polymicrobial in up to a third of cases (American Thoracic 
Society; Infectious Diseases Society of America  2005 ; Fujitani et al.  2011  ) . 
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The most common cause of VAP is by the Gram-positive bacteria  Staphylococcus 
aureus , with methicillin resistant  S. aureus  (MRSA) representing over 60% of the 
 S. aureus  isolates in VAP. Other VAP-causing pathogens include aerobic Gram-
negative bacilli such as  Pseudomonas aeruginosa ,  Klebsiella pneumoniae , 
 Escherichia coli ,  Enterobacter  species,  Acinetobacter  species, and  Stenotrophomonas 
maltiphila .  Legionella pneumophila  is an obligate intracellular bacterial pathogen 
that is an etiologic agent in both community acquired pneumonia (CAP), HAP and 
VAP. Viruses and fungi are unusual causes of VAP, although these organisms can 
modulate innate mucosal responses predisposing to the development of VAP. While 
the bacterial pathogens that cause VAP are similar to those that cause HAP in non-
intubated patients, VAP is more frequently caused by pathogens with intrinsic resis-
tance to multiple antimicrobial agents, including  P. aeruginosa ,  Acinetobacter  
species,  S. maltiphila , and MRSA. Mortality is considerably higher in patients with 
VAP due to  P. aeruginosa  strains that express the type III secretion system required 
for the secretion of pseudomonal exotoxins S, T, U, and Y (Roy-Burman et al.  2001 ; 
Sadikot et al.  2005  ) . A recent and disturbing trend is the increasing prevalence of 
community acquired stains of MRSA (CA-MRSA) as a cause of nosocomial infec-
tions, including VAP(Kashuk et al.  2010  ) . CA-MRSA, which is typically the 
USA300 strain, produce an array of exotoxins that promote extensive tissue necro-
sis and cavity formation. The intrinsic antibiotic resistance of these Gram-positive 
and Gram-negative bacterial strains contributes to increased mortality in patients 
with VAP (Fujitani et al.  2011  ) . However, these pathogens are generally less viru-
lent and invasive than pathogens that cause pneumonia in otherwise healthy indi-
viduals in the community, and tend to be invasive in hosts with anatomic defects in 
the respiratory tract or substantial impairment in lung mucosal innate immunity. 
Therefore, the presence of these bacterial species as pathogens identi fi es patients 
with profound anatomic defects or defects in lung innate immunity.  

    8.3   Pathogenesis of VAP 

 The vast majority of VAP cases develop as a result of microaspiration of bacteria colo-
nizing the oropharynx (American Thoracic Society; Infectious Diseases Society of 
America  2005  ) . Oropharyngeal colonization occurs very rapidly in critically ill 
patients. For example, nearly 75% of patients with underlying lung disease and/or 
undergoing oropharyngeal intubation were found to be colonized by pathogenic bac-
teria within 24 h of admission to the intensive care unit (Garrouste-Orgeas et al.  1997  ) . 
Reservoirs contributing to oropharyngeal colonization include the nasopharynx, 
sinuses, and stomach. Endotracheal tubes contribute to colonization by directly injur-
ing mucosal surfaces of the upper respiratory tract, which facilitates bacterial adhe-
sion. Organisms that cause VAP, including  P. aeruginosa  and  S. aureus , promote 
bio fi lm formation with the endotracheal tube lumen, which can function as a nidus for 
direct inoculation of infected material into the distal airspaces. Less common sources 
of bacterial inoculation include colonization of the ventilator circuit or direct inocula-
tion via infected aerosols or instrumentation, particularly suction catheters or 
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 bronchoscopes. By comparison, hematogenous seeding of the lung as a cause of VAP 
is considerably less common, accounting for <15% of cases. Notable exceptions are 
hematogenous seeding from an intravascular  S. aureus  infection or gut bacterial trans-
location that can occur in immunocompromised patients with neutropenia. 

 Microaspiration is a common event in both healthy and critical ill patients. These 
events rarely result in infection in healthy subjects, primarily due to highly effective 
means to eradicate infectious or toxic insults of the respiratory tract, which include 
ef fi cient mucocilliary clearance mechanisms and robust innate mucosal antimicrobial 
responses. In mechanically ventilated patients, impairments in both mucocilliary trans-
port and innate cellular responses results in the establishment of pulmonary infection. 
A summary of factors contributing to the pathogenesis of VAP is shown in Fig.  8.1 .   

    8.4   Structural Changes in the Respiratory Tract 
in Mechanically Ventilated Patients 

 Ciliated, pseudostrati fi ed columnar epithelial cells line the tracheobronchial tree. 
These ciliated cells are critical to effective mucocilliary transport and the cephalad 
movement of mucous, microbes, and acellular debris present within the conducting 
airways. Damage to ciliated cells can occur as a direct result of endotracheal  intubation 

  Fig. 8.1    Factors contributing to the pathogenesis of VAP. A variety of different contributing 
 factors have been previously shown to contribute to the development of VAP. The end result from 
a combination of host factors, medication, and instrumentation is the introduction of infectious 
material into the sterile lung environment. These factors along with the immune state of host, con-
tribute to the development of VAP       
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or conditions that predispose the patient to respiratory failure (Nicholls et al.  2003 ; 
Piatti et al.  2005 ; Pittet et al.  2010  ) . As discussed previously, denuding of columnar 
epithelial cells can result from the endotracheal tube or endotracheal tube cuff. 
Moreover, lung conditions that can result in mechanical ventilation, such as COPD, 
are associated with impaired mucocilliary transport (Piatti et al.  2005  ) . Moreover, 
certain forms of infectious lung injury, including severe acute respiratory syndrome 
(SARS) is characterized by bronchial epithelial denudation and loss of cilia (Nicholls 
et al.  2003  ) . Similarly, in fl uenza infection predisposes to secondary bacterial infec-
tion, which is due not only to impairment in lung innate responses, but also disrup-
tion of mucocilliary transport mechanisms (Pittet et al.  2010  ) .  

    8.5   Impairment in Innate Immunity 

 Many forms of critical illness result in a profound state of immune suppression 
affecting both the cellular and acquired arms of host immunity. This syndrome of 
immune suppression has been best characterized and is perhaps most severe in sep-
sis, but has also been described in trauma patients, burn injury patients, and patients 
during the peri-operative period. Sepsis is a complex clinical syndrome resulting 
from the interaction between microbe and host. Clinically, it is de fi ned as the sys-
temic in fl ammatory response syndrome (SIRS) with evidence of infection (Members 
of the American College of Chest Physicians/Society of Critical Care Medicine 
 2003  ) . Changes in the population at risk for the development of sepsis, including an 
increase in the number of elderly and immunocompromised patients, has resulted in 
a steady rise in the incidence of severe sepsis (Martin et al.  2003  ) . Despite improve-
ments in supportive care and immunomodulatory therapies, the mortality rate from 
severe sepsis remains unacceptably high (Brun-Buisson  2000  ) . 

 Host immune responses in critical illness, including sepsis can be conceptualized 
as occurring in distinct but overlapping phases. The initial response during critical 
illness, referred to as the systemic in fl ammatory response syndrome (SIRS), is char-
acterized by the release of a number of pro-in fl ammatory mediators, including early 
responses cytokines such as tumor necrosis factor-alpha (TNF- a ), interleukin-1 b  
(IL-1 b ), interleukin-6 (IL-6), interleukin 12 (IL-12) leukocyte-active chemokines, 
adhesion molecules, and in fl ammatory leukotrienes (Dinarello  2000  ) . SIRS is 
 counter-regulated by the release of inhibitory molecules, including anti-in fl ammatory 
cytokines (e.g., interleukin 10 (IL-10), transforming growth factor-beta (TGF- b )), 
suppressors of pathogen recognition signaling cascades, immunomodulatory pros-
tanoids and hormones. This counter-regulatory phase is referred to as the compensa-
tory anti-in fl ammatory response syndrome (CARS) (Wesche et al.  1999 ; Bone  1996  ) . 
Molecules released during CARS are believed to serve as a functional “brake” on 
systemic in fl ammation, and the expression of these mediators is induced by both 
microbial-derived and host-derived signals. SIRS and CARS overlap considerably, 
hence the overall immune status of the patient is dependent on which response 
 predominates (Fig.  8.2 ) (van der Poll and van Deventer  1999  ) . Recent evidence 
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 suggests a third response to an in fl ammatory insult, referred to as the mixed antago-
nist response  syndrome (MARS). This response is characterized by the secretion of 
both pro- and anti-in fl ammatory mediators (speci fi cally IL-6, IL-8, monocyte chemot-
actic protein (MCP)-1, macrophage in fl ammatory protein (MIP)-1 b , IFN- g , 
granulocyte- macrophage colony stimulating factor (GM-CSF), and IL-10) (Tamayo 
et al.  2011  ) . Consistent with this mixed systemic cytokine response, elevated levels of 
IL-6 in circulation has been shown to predict the development of VAP (Ramirez et al. 
 2009  ) . Whether the initial SIRS response drives the expression of molecules that 
contribute to immune suppression or simply a marker of systemic in fl ammation 
remains to be determined. A summary of innate immune events in critical illness is 
shown in Fig.  8.2 .  

 The compensatory release of anti-in fl ammatory molecules in sepsis is believed to 
mediate immunosuppression during the peri-septic or post-injury period, during which 
time immune cell function is substantially impaired (historically referred to as critical 
illness-induced leukocyte “deactivation” or “immunoparalysis”). Recently, since the 
altered leukocyte phenotype in critical illness involves selective regulation of some, 
but not all innate genes, this phenomenon is now more appropriated referred to as 

  Fig. 8.2    Innate immune events in critical illness. The dysregulation of the innate immune system 
is a main factor in the development of VAP. The progression of leukocyte activation, along with 
SIRS, followed by leukocyte reprograming, including MARS and CARS, contributes to the overall 
dysfunctions leading to the development of VAP       
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reprogramming. Leukocyte reprogramming appears to be of  considerable clinical 
signi fi cance, as higher rates of nosocomial infection and increased mortality are 
observed in postoperative, burn injury or septic patients who display evidence of 
monocyte deactivation, either in the form of decreased monocyte HLA-DR expres-
sion, ex vivo cytokine production or impaired delayed-type hypersensitivity responses 
(Appel et al.  1989 ; Munoz et al.  1991  ) . Septic patients are especially susceptible to 
nosocomial infections of the lung, particularly pneumonia from multidrug-resistant 
Gram-positive and Gram-negative organisms, including  S. aureus  and  P. aeruginosa  
(Richardson et al.  1982 ; Mustard et al.  1991  ) . Sepsis-induced immunosuppression is 
particularly prominent in patients with preexisting de fi ciencies in innate and acquired 
immunity, including the elderly and patients with chronic medical conditions 
(Hotchkiss and Karl  2003  ) .  

    8.6   Alterations of Leukocyte Function in Critical Illness 
and Mechanical Ventilation 

 Patients undergoing severe stress, including trauma, massive hemorrhage, burn 
injury, post-surgery, and sepsis exhibit signi fi cant defects in circulating and resident 
leukocyte populations. In addition, changes in the pulmonary microenvironment 
that occur as a result of mechanical ventilation substantially in fl uence lung innate 
responses. Multiple leukocyte subtypes are affected and speci fi c defects are shown 
in Fig.  8.3 .  

    8.6.1   Monocytes/Macrophages 

 While sepsis and similar stress-associated events have been shown to in fl uence the 
effector activity of a variety of immune cells, the majority of studies have focused 
on peripheral blood monocytes (PBM), and to a lesser extent tissue macrophages. 
Changes in monocyte/macrophage function in sepsis resemble but are not identical 
to those observed in endotoxin-tolerized macrophages. Endotoxin tolerance 
describes the phenomena whereby upon initial exposure to LPS, cells become 
refractory to a secondary stimulus with LPS. Pathogen-associated molecular pat-
terns (PAMPs) other than LPS can also induce a tolerance phenotype, and PAMPs 
of one type can induce cross tolerance to a different PAMP. Induction of tolerance 
results in suppression of multiple in fl ammatory genes, including both NF- k B and 
mitogen-activated protein kinase (MAPK)-dependent genes (e.g., TNF- a , IL-6, 
iNOS). Tolerance does not cause global suppression of all genes, as genes encoding 
certain antimicrobial and phagocytic proteins, including cathelicidin antimicrobial 
peptide, lipocalin, the scavenger receptor MARCO and the fMLP receptor, are 
indeed super-induced in response to sequential exposure to LPS (Foster et al.  2007  ) . 
It is also noteworthy that the induction of this phenotype is not restricted to myeloid 
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cells, as structural cells, including alveolar epithelial cells, have been shown to 
develop a tolerance response upon repeated exposure to PAMPs. The LPS or PAMP 
tolerized phenotype is transient in nature and entirely reversible, and has been asso-
ciated with remodeling of chromatin in the promoter region of several tolerizable 
genes (Foster et al.  2007 ; Chan et al.  2005  ) . 

 Critical illness, like endotoxin tolerance, leads to inhibition of a broad range of 
NF- k B-dependent in fl ammatory genes in monocytes. Most notably, a signi fi cant 
reduction in the ex vivo production of in fl ammatory cytokines, including IL-1 a , 
IL-1 b , IL-6, and TNF- a  has been observed in monocytes isolated from patients with 
sepsis (Munoz et al.  1991  ) . This change in cytokine production may be a predictor 
of outcome, as peripheral monocytes isolated from those who survived sepsis 
regained their ability to produce cytokines in response to LPS stimulation, and 

  Fig. 8.3    Alterations and speci fi c defects of leukocyte function in critical illness and mechanical 
ventilation. There are a variety of cellular, bacterial, and mechanical mediators which contribute to 
the impaired innate and acquired immune responses during critical illness. ( Upward arrow ) repre-
sent effects that enhance expression/function ( downward arrow ) represents effects that reduce 
expression/function       
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monocytes isolated from the nonsurvivors did not (Munoz et al.  1991  ) . Conversely, 
the  production of certain anti-in fl ammatory proteins, including IL-10, IL-1 receptor 
antagonist, and the TNF soluble receptor I and II are enhanced in monocytes iso-
lated from sepsis patients or patients with ventilator-induced lung injury (Frank 
et al.  2006  ) . Patients with sepsis or early trauma have reduced monocyte HLA-DR 
expression (Appel et al.  1989 ; Adib-Conquy et al.  2006  ) . This reduction in HLA-DR 
expression has been reported to directly correlate with the magnitude of sepsis (Volk 
et al.  2000  )  and may partially contribute to impaired cell-mediated immunity 
observed in patients with critical illness. 

 Similar critical illness-induced defects have been noted in macrophages residing 
in various tissues, which in some instances have been associated with evidence of 
enhanced macrophage apoptosis (Ayala et al.  1992 ; Gallinaro et al.  1994  ) . In par-
ticular, alveolar macrophage function has been shown to be impaired in the setting 
of sepsis. For example, alveolar macrophages recovered from mice with abdominal 
sepsis (cecal ligation and puncture) display reduced production of in fl ammatory 
cytokines, chemokines, eicosanoids, nitric oxide, and respiratory burst (Reddy et al. 
 2001 ; Goya et al.  1992  ) . Importantly, these phenotypic alterations in alveolar mac-
rophage effector function are associated with a markedly enhanced susceptibility to 
intrapulmonary challenge with both Gram-positive and Gram-negative bacterial 
pathogens (Steinhauser et al.  1999 ; Deng et al.  2006  ) . Little is known about alveolar 
macrophage phenotype in critically ill patients at risk for the development of VAP. 
However, we have performed Affymetrix microarray analysis on adherence puri fi ed 
alveolar macrophages recovered from patients with sepsis-induced ALI within 3 
days of onset of sepsis. Relative to alveolar macrophages recovered from healthy 
subjects, lung macrophages from sepsis-induced ALI patients displayed a hybrid 
tolerized/alternatively activated phenotype, as characterized by minimal change or 
suppression of NF- k B-dependent genes (e.g., TNF- a , IL-1 b , IL-6, iNOS), induc-
tion of antimicrobial genes (antimicrobial peptides, chemoattractant, and phagocy-
tosis genes), and expression of makers of alternative (M2) rather than classical (M1) 
activation (high arginase, CCR2, IL-4R a , MMP expression; low iNOS, interferon-
 g , and IFN-inducible chemokine expression) (Gordon and Martinez  2010  ) . Although 
this expression pattern may partially re fl ect the lung injury response, it is likely that 
the phenotype is shaped by systemic in fl ammation.  

    8.6.2   Neutrophils 

 Alterations in neutrophils (PMN), resembling those described in monocyte/ 
macrophages, are present during the septic response and are predictive of adverse out-
comes in these patients. Systemic in fl ammation promotes cytoskeletal changes in PMN 
cell membrane rigidity and reduced cellular deformability, resulting in impaired recruit-
ment to sites of infection and deleterious accumulation and activation of PMN in vas-
cular beds of distant organs. Directed migration is also impaired by nitric oxide-mediated 
inhibition of ICAM and VCAM-dependent adhesion and transmigration of PMN, 
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downregulation of the chemokine receptor CXCR2, and inhibition of G-protein 
coupled receptor signaling (Benjamim et al.  2000 ; Cummings et al.  1999 ; Czermak 
et al.  1999 ; Huber-Lang et al.  2001 ; Swartz et al.  2000  ) . Microarray analysis of PMN 
isolated from septic patients within 24 h of onset reveals a global suppression of immune 
regulation and in fl ammatory response gene clusters, particularly genes regulated in an 
NF- k B-dependent fashion (Tang et al.  2007  ) . Conversely, the expression of selected 
suppressive genes was enhanced, including the NF- k B inhibitor NF k BIA. 

 The discovery of neutrophil extracellular traps (NETs) has provided yet another 
role for neutrophils in the containment of infection. NETs are complex structures 
composed of nuclear chromatin, histones, a variety of granular antimicrobial pro-
teins and some cytoplasmic proteins (Urban et al.  2009  ) . Formation occurs in 
response to exposure of neutrophils to plasma from septic patients (Clark et al. 
 2007  )  as well as direct contact with microbial pathogens (Remijsen et al.  2011  ) . 
Neutrophil elastase is released from azurophilic granules, assisting in the formation 
of NETs via decondensation of nuclear chromatin, which along with other serine 
proteases confer antimicrobial responses (Papayannopoulos et al.  2010  ) . NET-
associated myeloperoxidase directly contributes to bacterial killing of 
 Staphylococcus aureus  in the presence of H 

2
 O 

2
  (Parker et al.  2012  ) . NETs are capa-

ble of physically ensnaring bacteria and facilitating the interactions between bacte-
ria and antimicrobial effectors, ultimately leading to enhanced bacterial killing 
(Mantovani et al.  2011  ) . Despite their broad antimicrobial capacity, some bacteria 
express nucleases to degrade NETs, thus avoiding capture and bacterial cell death 
(Buchanan et al.  2006 ; Berends et al.  2010 ; Young et al.  2011  ) . In some cases, NETs 
may exert detrimental effects to the host. Increasing evidence links NET formation 
to excessive in fl ammation and tissue damage in diseases such as sepsis (Clark et al. 
 2007  ) . NET formation has recently been demonstrated in the alveoli of mice with 
in fl uenza H1N1 pneumonia, and these structures contribute to acute lung injury 
responses in these animals (Narasaraju et al.  2011  ) . While the presence of NETs has 
not been clearly established in experimental bacterial pneumonia or in patients with 
VAP, it is tempting to speculate that these structures may contribute to lung injury 
that can occur in this setting.  

    8.6.3   Dendritic Cells 

 Dendritic cells (DC) are the most ef fi cient professional antigen-presenting cells 
(APC) in the lung and have the unique ability to induce primary immune responses in 
naïve T cells. DC are prevalent centrally within the spleen, lymphatics, and at mucosal 
surfaces, most notably in gut and respiratory tract. Systemic endotoxin administration 
in mice results in a brisk depletion in splenic DC by 24 h post-LPS. Similarly, there 
is a prolonged loss of DC out to 15 days post-induction of abdominal sepsis in both 
lung and spleen (Wen et al.  2008  ) . In humans with lethal sepsis, follicular DC are 
substantially diminished early in the course of disease (Hotchkiss et al.  2002  ) . 
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Similarly, reductions in blood myeloid DC and plasmacytoid DC (27 and 53% of 
controls, respectively) have been observed in patients admitted to the hospital with 
pneumonia, and numbers of DC inversely correlated with procalcitonin levels, a 
marker of systemic in fl ammation (Dreschler et al.  2012  ) . Endotoxin-tolerized DC or 
DC isolated from animals or humans with sepsis produce low levels of IL-12 and 
TNF- a , but high levels of IL-10 (Wen et al.  2008 ; Wysocka et al.  2001  ) . This shift in 
cytokine pro fi les can persist for up to 6 weeks post-abdominal sepsis (CLP), and has 
been associated with posttranslational epigenetic modi fi cations of histones binding to 
the IL-12 p35 and p40 promoters and increased susceptibility to pulmonary fungal 
challenge (Wen et al.  2008  ) . Regulatory DC, or “tolerogenic” DC, are a newly 
described DC population that can be induced by incubation of bone marrow-derived 
DC with IL-10, resulting in DC that preferentially secrete IL-10 rather than IL-12, 
and induce T cell tolerance. A naturally occurring DC 

reg
  population has been identi fi ed 

in spleen (CD11c low , CD45RB high ), and adoptive transfer of this cell population to 
septic mice diminished in fl ammatory cytokine production and sepsis-induced lethal-
ity (Fujita et al.  2006  ) . Changes in the number, distribution, and function of these cells 
in lung, especially during critical illness, have not yet been explored.  

    8.6.4   Lymphocytes 

 Like other leukocyte populations, various lymphocyte populations are in fl uenced 
by and likely contribute to the immunosuppressive effects of critical illness. This 
effect can be directly due to changes in lymphocytes numbers or effector functions, 
or indirectly due to changes in APC function, most notably DC. Studies consistently 
show that sepsis or other states of extreme stress (trauma, burn injury) generally 
result in anergy and a shift in T cell cytokine responses favoring a Th2-, rather than 
Th1-phenotype response. 

 Sepsis, trauma, and other critical states result in a substantial drop in the number of 
circulating lymphocytes. Lymphopenia develops early after the insult, and the persis-
tence and magnitude of lymphopenia correlates with risk of nosocomial infection and 
death (Hotchkiss et al.  2001  ) . Autopsy studies in septic patients revealed a profound 
loss of splenic B cells, CD4+ T cells, and follicular dendritic cells. No alterations in 
numbers of CD8+ T cells were observed. The loss of B and CD4+ T cells was medi-
ated by caspase-9-dependent apoptosis. Similar changes, although not as uniform, 
could be observed in critically ill patients without sepsis (Hotchkiss et al.  2001  ) . 

 In addition to changes in the absolute number of lymphocytes, the septic response 
can induce considerable alterations in lymphocyte effector function. For instance, 
the memory/effector CD8+/CD45RO+ T lymphocyte subset in nonsurviving septic 
patients demonstrate signi fi cantly decreased IFN- g  synthesis compared with survi-
vors (Zedler et al.  1999  ) . Similarly, T cell proliferative responses and cytokine pro-
duction (IL-2, TNF- a ) were signi fi cantly depressed in patients with abdominal 
sepsis, as compared to healthy controls, and the degree of IL-2 and TNF- a  suppres-
sion directly correlated with patient survival (Heidecke et al.  1999  ) . The proportion 
of Th2 T cells is increased in patients with sepsis, but not in non-septic critically ill 
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control patients and healthy subjects (Ferguson et al.  1999  ) . Similar observations 
have been made in animal models of sepsis. Splenocytes isolated from mice under-
going CLP produced less IL-2, IL-12, and IFN- g , and more IL-4 and IL-10 than 
splenocytes isolated from healthy animals (Ayala et al.  1994 ; O’Sullivan et al. 
 1995  ) . Given the importance of Th1 phenotype responses in host defense against 
both intracellular and extracellular microbial pathogens, this shift away from an 
appropriate Th1- and towards a dysregulated Th2-phenotype response has obvious 
implications for antimicrobial host immunity. 

 Regulatory T cells (Treg), are a limited but important population of CD4+, 
CD25+ T cells that universally express the transcription factor Forkhead box p3 
(Foxp3). Treg inhibit CD4+ and CD8+ T cell effector functions, resulting in nega-
tive regulation of both innate and acquired immune responses. Suppressive effects 
of Treg are mediated by both direct cell–cell contact and through the release of 
soluble mediators, including but not limited to TGF- b  and IL-10. An increase in the 
percentage (but not absolute number) of Treg has been found in blood, lymphatics, 
or spleen in septic mice and humans with sepsis or trauma (Venet et al.  2008 ; 
Scumpia et al.  2006 ; Wisnoski et al.  2007  ) . Moreover, there is evidence of enhanced 
Foxp3 expression and suppressive function of Treg in mice with abdominal sepsis, 
and adoptive transfer of Treg into septic mice reduced overzealous TNF- a  produc-
tion and improved mortality. However, the depletion of CD4+ CD25+ Treg in mice 
with polymicrobial sepsis had little impact on sepsis-induced mortality (Scumpia 
et al.  2006 ; Wisnoski et al.  2007  ) . Thus, the role of Treg in controlling the systemic 
in fl ammatory response, or as a mediator of impaired innate and acquired immunity 
in critically ill patients at risk for VAP, is uncertain and requires further study. 

 A recently described B cell may play a critical role in innate responses during 
localized and systemic infection (Rauch et al.  2012  ) . Innate response activator B 
(IRA-B) cells are a population of CD19+, B220+ cells that produce large quantities 
of GM-CSF during infection. This population expands in bone marrow and spleen 
in response to systemic LPS administration or abdominal sepsis, and the genetic 
deletion of these cells resulted in marked reduction of systemic cytokine responses, 
GM-CSF expression, and the ability to clear abdominal polymicrobial infection.   

    8.7   Alterations of Pathogen Recognition Receptors 
and/or Signaling Cascades in Critical Illness 

 Microbes and microbial components that initiate the septic response are recognized 
by both cell surface and intracellular pathogen recognition receptors (PRR), including 
Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-
like receptors (NLR). Toll-like receptors are a family of evolutionarily conserved type 
I transmembrane receptors that respond to PAMPs expressed by a diverse group of 
infectious microorganisms, resulting in activation of the host’s immune system 
(Aderem and Ulevitch  2000 ; Akira and Hemmi  2003  ) . There exist 13 distinct TLRs 
(10 in humans and 13 in mice) that have in common an extracellular domain with 
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leucine rich repeats and an intracytoplasmic domain shared with the IL-1 receptor 
(IL-1R). Binding of ligands to TLRs initiates a signaling cascade involving myeloid 
differentiation marker 88 (MyD88), IL-1R-associated kinases (IRAK 1 and 4), and 
TNFR-associated factor 6 (TRAF6), resulting in NF- k B translocation and MAPK 
activation, culminating in expression of genes involved in antimicrobial host defense 
(Aderem and Ulevitch  2000 ; Akira and Hemmi  2003  ) . In addition, certain TLRs, such 
as TLR2, TLR3, and TLR4 can initiated a MyD88-independent signaling cascade that 
requires the adaptor proteins Toll-IL-1 receptor domain containing adaptor protein 
inducing interferon (TRIF) and TRIF-related adaptor molecule (TRAM), resulting in 
the expression of interferon responsive genes. The most relevant TLRs in lung anti-
bacterial host defense include TLR2, which recognizes speci fi c components of Gram-
positive bacteria and fungi; TLR4, which is the major receptor for LPS; TLR5, which 
recognizes and is activated by bacterial  fl agellin; and TLR9, which is activated by 
unmethylated CpG motifs present in microbial but not mammalian DNA. In addition 
to PAMPs, TLRs can be activated by host-derived danger signals, referred to as dam-
age-associated molecular patterns (DAMPs) or alarmins, and include heat shock pro-
teins and matrix components (Ohashi et al.  2000  ) . Also, high-mobility group box 1 
protein (HMGB1) is a molecule released during the septic response that has recently 
been shown to activate TLR2 and TLR4 (Park et al.  2004  ) . This is of particular rele-
vance in the setting of sepsis and acute lung injury. 

 Multiple TLRs participate in lung host immunity against Gram-negative bacte-
ria. For example, TLR4 recognizes the lipid A moiety of LPS, and is the major TLR 
mediating early innate responses and clearance of non- fl agellated Gram-negative 
organisms that cause VAP, including  K. pneumoniae ,  H. in fl uenza, and E. coli  
(Schurr et al.  2005 ; Bhan et al.  2010 ; Wieland et al.  2005  ) . In addition, mice de fi cient 
in TLR9 display impaired dendritic cell-mediated responses during experimental 
 Klebsiella  or  Legionella  pneumonia, culminating in reduced lung bacterial clear-
ance and decreased survival (Bhan et al.  2007,   2008  ) . Innate responses to the 
 fl agellated extracellular bacteria  P. aeruginosa  are mediated by several MyD88-
dependent TLRs, predominantly TLR4 and TLR5 (Hajjar et al.  2005 ; Ramphal 
et al.  2008 ; Skerrett et al.  2004  ) . Interestingly, both bone marrow-derived and 
stromal cells contribute to MyD88-dependent innate responses to  P. aeruginosa  in 
the lung (Hajjar et al.  2005  ) . 

 Toll-like receptors appear to play a lesser role in host defense against  S. aureus . 
For example, while TLR2 has been shown to mediate in fl ammatory responses to the 
staphylococcal toxin Panton-Valentine Leukocidin, neither TLR2, TLR4, nor 
MyD88 is required for effective anti-staphylococcal host immunity during respira-
tory infection (Skerrett et al.  2004 ; Zivkovic et al.  2011  ) . The nucleotide-binding 
oligodimerization domain (NOD)-like receptors (NLR) NOD1 and NOD2, which 
recognize the peptidoglycan component muramyl dipeptide (MDP), have been 
shown to be important in in fl ammatory cytokine release and bacterial eradication in 
a murine  S. aureus  skin infection model(Hruz et al.  2009 ; Inohara et al.  2005  ) . More 
recently, mice de fi cient in RIP2, the shared NOD1/2 adaptor molecule, are consid-
erably more susceptible to intrapulmonary challenge with  S. aureus  than wild-type 
mice, an effect which is dependent on downstream activation of in fl ammasome-
caspase-1-dependent IL-1 b  release (unpublished observations, J. Deng). These later 
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observations suggest that NLRs, rather than TLRs, may be the predominant 
 contributors to anti-staphylococcal immunity in the lung  

    8.8   Suppression of PRR Expression, Binding or Downstream 
Signaling Cascades 

    8.8.1   Alterations of Cell Surface Expression of TLRs and LPS 
Binding Partners 

 Some, but not all studies have identi fi ed changes in the cell surface expression of 
various TLRs during the septic response. In particular, either enhanced or reduced 
cell surface expression of TLR2 and TLR4 have been described in monocytes from 
sepsis patients and in tissue macrophages during experimental sepsis (Deng et al. 
 2006 ; Brunialti et al.  2006  ) . Moreover, changes in monocyte cell surface expression 
of LPS binding partners MD2, CD14, and CD71 have also been observed in sepsis 
(Brunialti et al.  2006 ; Wolfs et al.  2008 ; Williams et al.  1998  ) . Disparate  fi ndings are 
likely attributable to temporal differences in assessment of TLR expression and the 
heterogeneity of patient populations studied and animal models employed. The 
extracellular domains of certain TLRs can be shed from activated macrophages, and 
serve as sinks to bind extracellular PAMPs, and as a consequence dampen TLR-
mediated signal transduction. For instance, soluble TLR2 (sTLR2) is released by 
human peripheral blood monocytes (PBM) and diminishes the cellular response to 
the TLR2 agonist Pam3Cys without affecting cellular responses to LPS (LeBouder 
et al.  2003  ) . Both naturally occurring and recombinant soluble TLR4 have been 
shown to diminish responses to LPS (Iwami et al.  2000 ; Hyakushima et al.  2004  ) . 
The contribution of soluble TLR2 and TLR4 to impaired innate responses during 
critical illness remains to be determined. 

 Illuminating the importance of TLRs in lung innate immunity during critical ill-
ness, combined loss of function polymorphisms in both TLR4 and the TLR4 adap-
tor TIRAP/Mal, or a homozygous TIRAP/Mal polymorphism have been causally 
linked to reduced circulating in fl ammatory cytokine levels, reduced ex vivo mono-
cyte cytokine expression, and increased risk for serious postoperative infections, 
including VAP (Ferwerda et al.  2009  ) .   

    8.9   Inhibitors of TLR Signaling 

    8.9.1   Interleukin-1 Receptor-Associated Kinase-M 

 Molecules have been identi fi ed that inhibit TLR signaling at multiple sites down-
stream of the receptor. Interleukin-1 receptor-associated kinase (IRAK)-1 and -4 are 
key kinases necessary for both MyD88-dependent and IL-1 receptor-mediated 
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 signal transduction. Consequently, interruption of IRAK-1 and -4 phosphorylation 
or traf fi cking can have profound effects on the downstream expression of both 
NF- k B and MAPK-dependent in fl ammatory or antimicrobial genes. Interleukin-1 
receptor-associated kinase-M (IRAK-M), also named IRAK-3, is a member of the 
IRAK family. However, IRAK-M differs from IRAK-1 and IRAK-4 in that this 
protein lacks kinase activity and IRAK-M has been shown to be a negative regulator 
of TLR signaling by blocking the disassociation of IRAK-1 from the Toll-IL-1 sig-
naling domain. Bone marrow-derived or lung macrophages lacking IRAK-M dis-
play enhanced MAPK kinase activation and in fl ammatory cytokine production in 
response to TLR agonists and live bacteria (Wesche et al.  1999 ; Kobayashi et al. 
 2002  ) . Importantly, IRAK-M is induced by endotoxin, the NOD-2 ligand muramyl 
dipeptide (MDP), and other PAMPs and is required for the development of toler-
ance to endotoxin and peptidoglycan (Kobayashi et al.  2002 ; Hedl et al.  2007 ; 
Nakayama et al.  2004  ) . We have found that IRAK-M is upregulated in alveolar 
macrophages during experimental sepsis in a MyD88-dependent fashion, and medi-
ates both the suppression of macrophage cytokine responses and impaired lung 
clearance of  P. aeruginosa  in septic mice (Deng et al.  2006 ; Lyn-Kew et al.  2010  ) . 
IRAK-M has also been shown to suppress TLR-mediated responses in murine pri-
mary alveolar epithelial cells (Seki et al.  2010  ) . Emerging data suggests that 
IRAK-M may be a major mediator and perhaps a biomarker for severity of disease 
in sepsis. IRAK-M is substantially induced in monocytes from healthy subjects 
administered LPS intravenously (van’t Veer et al.  2007  ) . In patients with Gram-
negative sepsis, blood monocytes demonstrate a more rapid and robust expression 
of IRAK-M when stimulated ex vivo with LPS (Escoll et al.  2003  ) . Additionally, 
enhanced expression of IRAK-M mRNA has been noted in pediatric patients with 
sepsis, and high IRAK-M mRNA levels were associated with longer length of inten-
sive care unit (ICU) stay, need for mechanical ventilation and death (Hall et al. 
 2007  ) . We have also observed high constitutive expression of IRAK-M mRNA in 
alveolar macrophages and peripheral blood buffy coat cells isolated from patients 
with sepsis-induced ALI, as compared to similar cell populations from healthy sub-
jects (T. Standiford, unpublished observations). In fact, IRAK-M was the only neg-
ative regulator of TLR signaling found to be signi fi cantly induced in this patient 
population.  

    8.9.2   Other Negative Regulators of TLR Signaling Cascades 

 Several other molecules have been causally linked with the development of endo-
toxin tolerance or hyperin fl ammatory responses to LPS in genetically de fi cient 
mice. Suppression of tumorigenicity 2 (ST2) is a transmembrane protein and solu-
ble secreted protein that is expressed by a variety of cells, including T cells and 
macrophages. ST2 inhibits MyD88-dependent signaling by interfering with the 
ability of Mal/TIRAP and MyD88 to interact with downstream signaling molecules. 
This protein appears to contribute to sepsis-induced impairment in lung  antibacterial 
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defense, at least in animal models (Holub et al.  2003  ) . Speci fi cally, CLP-induced 
impairment in anti-pseudomonal lung host defense is reversed in mice de fi cient in 
ST2. Interestingly, responsiveness of ST2 −/−  AM was not altered, whereas the 
expression of IFN- g  and TNF- a  from CD4+ and CD8+ T cells was preserved in 
ST2 −/−  mice in the setting of abdominal sepsis, as compared to similarly treat wild-
type animals. 

 Toll-like receptor signaling can also be modulated by both extracellular and 
intracellular decoys. Single immunoglobulin IL-1R-related protein (SIGIRR) is a 
member of the IL-1 receptor superfamily but is unable to signal. However, the 
extracellular domain of this molecule inhibits Toll-IL-1 signaling by interfering 
with binding of ligands to TLR4, TLR5, TLR9, and IL-1 receptor I, whereas the 
intracellular domain interferes with the complexing of IRAK-1 with TRAF-6 
(Thomassen et al.  1999 ; Wald et al.  2003 ; Qin et al.  2005  ) . SIGIRR is expressed 
predominantly by epithelial cells, including alveolar epithelial cells, but also to a 
lesser degree in monocytic populations. Mice de fi cient in SIGIRR have enhanced 
in fl ammatory responses to LPS challenge. Moreover, SIGIRR is upregulated in 
the PBM of septic patients, and is associated with the development of endotoxin 
tolerance in these cells (Adib-Conquy et al.  2006  ) . MyD88 short (MyD88s) is an 
alternatively spliced variant of the parent molecule, MyD88. MyD88s functions 
as a dominant negative molecule by blocking recruitment of IRAK-4 to the toll-
IL-1 signaling domain, resulting in reduced phosphorylation of IRAK-1 (Burns 
et al.  2003 ; Rao et al.  2005  ) . The expression of MyD88s is induced in monocytes 
in response to LPS and is constitutively expressed in blood monocytes isolated 
from patients with sepsis (Adib-Conquy et al.  2006  ) . Tollip disrupts IRAK-1 and 
IRAK-4 interactions, whereas microRNA 146 (miRNA 146) post-transcription-
ally inhibits IRAK-1 and TRAF6 expression (Nahid et al.  2011  ) . The suppressors 
of cytokine signaling (SOCS) are a family of molecules that predominately inhibit 
JAK-Stat signaling, but also disrupt TLR signaling cascades through a yet 
unde fi ned mechanism. While these latter molecules could contribute to suppres-
sion of TLR-mediated responses during critical illness, there is no data to show 
enhanced expression and/or activity in blood monocytes or lung macrophages in 
patients at risk for the development of VAP.   

    8.10   Microenvironmental Factors that Regulate 
Innate Host Responses in VAP 

    8.10.1   Mechanical Ventilation 

 Initiation of mechanical ventilation (MV) is a vital therapeutic intervention in 
patients with respiratory failure. A consequence of mechanical ventilation is the 
inhomogeneous distribution of pressure and volumes to various regions of lung, 
resulting in excessive stretch in some alveolar units (referred to as volutrauma), 
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and repeated alveolar collapse in other regions (referred to as atelectotrauma) 
(Pugin et al.  1998  ) . Excessive lung stretch results in activation of several tran-
scriptional pathways, including the NF-kB and the MAPK kinase pathway (Fos, 
Jun), which contributes to the release of various in fl ammatory mediators such as 
TNF- a , IL-1 b , IL-6, and IL-8 (Gharib et al.  2009 ; Halbertsma et al.  2005 ; Jaecklin 
et al.  2011  ) . These cellular mediators not only trigger deleterious lung injury 
responses and possibly multiple organ dysfunction (An et al.  2011  ) , but may also 
promote the reprogramming of leukocytes and structural cells that occurs in criti-
cal illness. Importantly, MV at moderate to high lung volumes can also prime the 
lung for enhanced lung injury or systemic organ failure in response to an infec-
tious challenge (e.g., second hit). For instance, as compared to spontaneously 
breathing animals, the intrapulmonary administration of  S. aureus  or  E. coli  to 
mechanically ventilated mice results in enhanced lung in fl ammation and lung 
injury, without changes in lung bacterial clearance (Dhanireddy et al.  2006  ) . 
Likewise, the i.p. administration of LPS to mice undergoing high tidal volume 
MV substantially increased lung and systemic cytokine expression and extrapul-
monary organ injury, as compared to non-mechanically ventilated controls 
(O’Mahony et al.  2006  ) . Mechanisms accounting for synergistic interactions 
between lung stretch and infectious challenge have not been clearly de fi ned. 
However, previous work has shown that stretch of human alveolar epithelial cells 
increases the expression of TLR2 by sixfold (Charles et al.  2011  ) . Moreover, 
mechanical ventilation increased the relative expression of TLR2 and TLR4 in 
lung tissue and increased the generation of endogenous ligands for TLR4 in bron-
choalveolar lavage  fl uid (Vaneker et al.  2008  ) . Recent work has shown that 
mechanical ventilation also generates other TLR4-independent and MyD88-
dependant endogenous TLR ligands (Chun et al.  2010  ) . Hyperin fl ation of the lung 
with high tidal volume not only promotes a signi fi cant increase in the expression 
of TLR4, but also paradoxically induces the expression of IRAK-M, an important 
negative regulator of TLR signaling (Villar et al.  2010  ) . 

 A frequent consequence of mechanical ventilation and diseases that cause acute 
respiratory failure is alveolar collapse and atelectasis. Alveolar collapse is due, in 
part, to reductions in surfactant that occur in patients receiving mechanical ventila-
tion and in patients with VAP (Nakos et al.  2003  ) . Atelectasis has been shown to 
promote bacterial overgrowth, and use of open ventilation strategies and adminis-
tration of exogenous surfactant can reduce bacterial numbers in an animal model of 
VAP (van Kaam et al.  2004  ) . Moreover, administration of positive end-expiratory 
pressure (PEEP) at 5–8 cmH 

2
 O to non-hypoxemic mechanically ventilated patients 

can reduce the incidence of VAP (Manzano et al.  2008  ) . Surfactant proteins A and 
D can agglutinate  P. aeruginosa , and SP-D can serve as an opsonin to enhance 
phagocytosis of  P. aeruginosa  (McCormack  2006  ) . Pseudomonal elastase has been 
shown to degrade SP-A and SP-D, and these proteins are decreased in the lungs of 
patients with cystic  fi brosis (Mariencheck et al.  2003  ) . However, changes in SP-A 
and SP-D levels during mechanical ventilation and/or VAP have not been well 
characterized.  
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    8.10.2   High Ambient Oxygen Concentrations 

 Administration of high concentrations of oxygen (FIO 
2
  >50%) used during transient 

or prolonged mechanical ventilation is a common treatment for patients with respi-
ratory failure (Gore et al.  2010  ) . Although therapeutically necessary, hyperoxia 
results in the generation of reactive oxygen species (ROS), which promote the 
breakdown of critical barriers leading to systemic cellular and organ injury (Lee and 
Choi  2003  ) . In the lung, ROS cause severe cellular damage and death, exposure of 
the basement membrane and disruption of the alveolar capillary membrane leading 
to increased pulmonary permeability, in fl ux of in fl ammatory cells, and impaired gas 
exchange (Bhandari and Elias  2006  ) . Hyperoxic exposure can also exacerbate alve-
olar epithelial injury and apoptosis in response to infectious challenge with 
 P.  aeruginosa  or  L. pneumophila , resulting in increased bacterial dissemination 
(Kikuchi et al.  2009  ) . Moreover, high oxygen tensions inhibit the function of innate 
immune cells. For instance, macrophages exposed to elevated concentration of oxy-
gen both in vitro and in vivo display reduced phagocytosis and killing of Gram-
negative bacteria which correlated with changes in cell morphology and actin 
polymerization (O’Reilly et al.  2003  ) . In addition, in vivo hyperoxia exposure 
increased the susceptibility to  K. pneumoniae  lung infections, an effect that was 
partially attributed to reduced BAL GM-CSF levels and cell surface expression of 
TLR4 by AM (Baleeiro et al.  2003  ) . Importantly, systemic treatment of these mice 
with GM-CSF during hyperoxia preserved macrophage functionality and decreased 
the severity of lung infection (Baleeiro et al.  2006  ) . Taken together, hyperoxia is 
detrimental to the host by promoting greater alveolarcapillary injury, impairing 
local antibacterial responses, and increasing the risk of bacterial dissemination.  

    8.10.3   Microbial Flora Within the Lung Microenvironment 

 Emerging clinical and epidemiological data suggests a possible link between colo-
nization with  Candida  species and susceptibility to  P. aeruginosa  pulmonary infec-
tion.  Candida  species is among the most common organisms recovered from 
endotracheal tube bio fi lm and tracheal secretions in patients with VAP (Adair et al. 
 1999  ) . Historically,  Candida  has been considered a commensal organisms rather 
than a true pathogen, and therefore believed to play no role in VAP disease patho-
genesis. However, an observational study found a statistical association between 
airway colonization with Candida species and the development of  P. aeruginosa  
VAP (Azoulay et al.  2006  ) . In a rat model of  P. aeruginosa  pneumonia, prior bron-
chial instillation of live but not heat-killed  C. albicans  resulted in increased suscep-
tibility to subsequent bacterial challenge (Roux et al.  2009  ) . Mechanisms accounting 
for impaired in vivo clearance responses were not identi fi ed, but  C. albicans  was 
found to inhibit AM respiratory burst ex vivo. While these intriguing  fi ndings 
require con fi rmation in other experimental model systems, they do raise the 
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 possibility that Candida and perhaps other commensal organisms may contribute 
meaningful to VAP pathogenesis.   

    8.11   Novel Therapeutic Approaches to Reverse Critical 
Illness-Induced Immunosuppression 

 Antibiotics, prophylactic measures to reduce oropharyngeal colonization and 
microaspiration, and approaches to stimulate mucocilliary transport are the main-
stay of therapy to prevent and treat VAP. While these treatments are effective in 
some patients, adjuvant therapies are needed in others to bolster innate host 
responses, especially in the elderly and in patients with chronic immunosuppressive 
therapy. The recognition that critical illness can induce a profound state of immune 
dysregulation has prompted a reevaluation of potential immunologic approaches 
being used in the treatment of sepsis and other forms of critical illness (Pockros 
et al.  2007a  ) . Effective immunoadjuvant therapy must necessarily promote antimi-
crobial effects without exacerbating deleterious lung in fl ammatory responses. 

    8.11.1   Immunostimulatory Therapy (Interferon- g  and GM-CSF) 

 Common features of both endotoxin tolerance and immune dysregulation of critical 
illness is impaired TLR signaling, NF- k B-dependent responses, reduced APC func-
tion, and a shift toward type 2 rather than type 1 immune responses. Two cytokines 
that have been shown to partially reverse these changes in vitro and in vivo are 
IFN- g  and GM-CSF. In endotoxin-tolerized monocytes, treatment with IFN- g  or 
GM-CSF can reverse the tolerance phenotype, in part by facilitating interactions 
between IRAK and MyD88, resulting in enhanced downstream activation of NF- k B 
(Adib-Conquy and Cavaillon  2002  ) . Similarly, ex vivo treatment of blood mono-
cytes from trauma patients with IFN- g  or GM-CSF, but not G-CSF, enhanced LPS-
induced cytokine production, and HLA-DR expression (Lendemans et al.  2007  ) . 

 These preclinical studies served as the foundation for several small clinical trials 
in patients with sepsis. Docke and colleagues administered IFN- g  to patients with 
sepsis in an attempt to reverse the cytokine imbalance and restore monocyte func-
tion (Docke et al.  1997  ) . In this uncontrolled study, nine patients with evidence of 
sepsis-induced immunosuppression (decreased blood monocyte HLA-DR expres-
sion) were administered IFN- g  at a dose of 100  m g subcutaneously daily. Treatment 
with IFN- g  resulted in increased monocyte HLA-DR expression in all patients, 
along with a restoration of monocyte TNF- a  production to levels observed in mono-
cytes isolated from healthy subjects. Resolution of sepsis occurred in eight of the 
nine treated patients (Docke et al.  1997  ) . In two small single center clinical trials, 
the i.v. administration of hrGM-CSF to patients with sepsis resulted in  improvements 
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in ex vivo effector responses in PBMs or neutrophils (Nierhaus et al.  2003 ; Presneill 
et al.  2002  ) . Moreover, one of the studies revealed improvements in PaO 

2
 /FIO 

2
  

ratios, as a measure of pulmonary gas exchange, suggesting reduced lung injury in 
the GM-CSF treated group (Presneill et al.  2002  ) . Prevention of lung injury may be 
due, in part, to the fact that GM-CSF is an alveolar epithelial cell mitogen and can 
protect the alveolar epithelium against hyperoxic and bleomycin-induced injury 
(Baleeiro et al.  2006 ; Moore et al.  2000  )  and in a murine model of in fl uenza pneu-
monia (Sever-Chroneos et al.  2011  ) . These preclinical and clinical  fi ndings served 
as the basis for a multicenter randomized placebo controlled trial of subcutaneous 
GM-CSF administration in 38 patients with severe sepsis and evidence of monocyte 
deactivation (reduced HLA-DR expression). As compared to the placebo group, 
GM-CSF administration resulted in improved monocyte function (restored cell sur-
face TLR2/4 expression, TNF production, and HLA-DR expression) and improved 
clinical outcomes, including reduced APACHE II scores, shorter time of mechani-
cal ventilation, and a trend toward decreased length of ICU and hospital stay. These 
studies and others suggest that immunostimulatory therapy for treatment of critical 
illness-induced immune dysregulation or even end-organ injury appears to be a 
potentially viable therapeutic option that warrants larger controlled trials (Luedke 
and Cerami  1990  ) . An obvious concern of immunostimulatory therapy in patients 
with severe sepsis and/or pneumonia is the potential of exacerbating the “cytokine 
storm” of SIRS. Fortunately, neither IFN- g  nor GM-CSF has precipitated worsening 
of hemodynamic compromise or multiorgan failure, even in patient with severe 
sepsis or septic shock (Docke et al.  1997 ; Nierhaus et al.  2003 ; Meisel et al.  2009  ) . 
Additional consideration could be given to compartmentalized immunostimulatory 
therapy (e.g., aerosolized delivery) to prevent or treat VAP. However, this approach 
may be limited substantially by ventilation-perfusion mismatching that occurs in 
patients with lung disease, and the concern that the leukocyte reprogramming that 
occurs during critical illness is not limited to the lung microenvironment but almost 
certainly occurs more broadly in leukocyte populations systemically.  

    8.11.2   Inhibitors of Apoptosis 

 Activation of the PI3K/Akt pathway in certain leukocyte populations can lessen 
NF- k B-mediated pro-in fl ammatory responses while stimulating pro-survival and 
antimicrobial responses (Williams et al.  2006 ; Wrann et al.  2007 ; Zhang et al.  2007  ) . 
For example, the administration of selective activators of the PI3K/Akt signaling 
pathway (e.g., glucan,  a -lipoic acid) to LPS-challenged mice or mice undergoing 
CLP reduced apoptosis, in fl ammatory cytokine release, and improved mortality 
(Wrann et al.  2007 ; Zhang et al.  2007  ) . 

 Interleukin 15 is a pleurapotential cytokine that regulates DC, T, and NK cell 
activation, proliferation, and survival. The administration of IL-15 to mice with 
abdominal sepsis (CLP) has been shown to block sepsis-induced apoptosis of NK 
cells, DC, and CD8 T cells, and to restore NK cell production of IFN- g  (Inoue et al. 
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 2010  ) . Treatment with IL-15 also mitigated sepsis-induced apoptosis of gut 
 epithelium. Importantly, IL-15 not only reduced mortality in CLP, but also in mice 
administered  P. aeruginosa  i.t. 

 Finally, caspase inhibitors have been shown to reduce lymphocyte apoptosis and 
increase survival in murine models of sepsis (Hotchkiss et al.  2000  ) . A pan-caspase 
inhibitor (IDN-6556) have been employed in the treatment of liver disease in patients 
with Hepatitis C (Pockros et al.  2007b  ) . However, trials targeting caspases or other 
pro-apoptotic molecules or administration of pro-survival factors (e.g., AKT activa-
tors, IL-15) in patients with sepsis or nosocomial pneumonia have not yet been 
reported.   

    8.12   Summary 

 In this review, we have de fi ned the clinical features of VAP, and described the impact 
of critical illness and microenvironment factors introduced during mechanical ven-
tilation on susceptibility to VAP, with special attention to speci fi c molecules as 
potential mediators of immunosuppression and tissue injury. Increases in microbial 
resistance, combined with a burgeoning population of patients at risk, are trends that 
clearly make VAP a major clinical problem now and in the future. Preventative 
strategies and optimal ventilator management have been paramount in reducing the 
incidence of VAP. However, critical illness-induced reprogramming of leukocyte 
innate immune responses clearly contributes to susceptibility to VAP and VAP-
induced tissue injury. Given our past failures, a paradigm shift in how we approach 
patients with evidence of immune dysregulation is required. In order for novel ther-
apies to proceed, better clinical markers are needed to distinguish a deleterious 
innate response (e.g. SIRS) from a state of immunoparalysis (CARS) or mixed 
antagonist response syndrome (MARS) as the in fl ammatory response evolves 
(Wesche et al.  1999  ) . Differentiating these quite disparate but overlapping responses 
in a patient-speci fi c fashion will allow for better selection of patients in which 
immunoadjuvant therapy is more likely to be bene fi cial.      
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