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A transition-metal-free method for the construction of 3-substituted or 3,4-

disubstituted quinolines from readily available N,N-dimethyl enaminones and

o-aminobenzyl alcohols is reported. The direct oxidative cyclocondensation

reaction tolerates broad functional groups, allowing the efficient synthesis of

various quinolines in moderate to excellent yields. The reaction involves a C

(sp3)-O bond cleavage and a C=N bind and a C=C bond formation during the

oxidative cyclization process, and the mechanism was proposed.
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Introduction

Quinolines represent an important class of heterocyclic compounds, which widely

occur as a core structural motif in natural products (McCormick et al., 1996; Subbaraju

et al., 2004; McCauley et al., 2020), pharmaceuticals (Gorka et al., 2013; Kokatla et al.,

2013; Jentsch et al., 2018), functional materials (Tong et al., 2003; Kim et al., 2005; Zhang

et al., 2014), organocatalysis or ligands (Biddle et al., 2007; Zhang and Sigman., 2007;

Esteruelas et al., 2016), and valuable building blocks (Wan et al., 2016; Duan et al., 2018;

Wang et al., 2019; Ankade et al., 2021). Due to their great importance, considerable efforts

have been focused on the development of efficient synthetic methods to their structures

and modifications over the past years. Classical methodologies (Bharate et al., 2015; Li

et al., 2017; Harry et al., 2020), such as Camps, Combes, Conrad–Limpach, Doebner,

Friedländer, Knorr, Pfitzinger, Pavorov, Skraup synthesis, and others, are known for the

construction of quinoline rings; however, these reactions usually suffer from some

limitations, such as harsh reaction conditions, tedious workup procedures, and special

substrate designs (prefunctionalized anilines). Recently, many elegant strategies toward

quinolone rings, such as using new building blocks (Jin et al., 2016; Tiwari et al., 2017; Wu

et al., 2017; Trofimov et al., 2018) andmulticomponent reactions (Chen et al., 2018; Wang
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et al., 2018; Zhao et al., 2019; Yang and Wan., 2020), have been

developed to construct substituted quinolines. Despite these

advances, the development of easy and efficient approaches

for the construction of substituted quinolines remains to be

explored.

Recently, o-aminobenzyl alcohols are versatile

intermediates which have attracted increasing attention in

organic synthesis owing to their high reactivity in the

construction of N-heterocycles (Makarov et al., 2018; Wang

et al., 2018; Xie et al., 2018; Yang and Gao., 2018), especially

FIGURE 1
X-ray diffraction structure of 3j.

SCHEME 1
Synthesis of quinolines from o-aminobenzyl alcohols.
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quinolines. In this regard, two strategies have been developed

to construct the quinoline framework from o-aminobenzyl

alcohols: acceptorless dehydrogenative coupling (ADC)

reactions and [4 + 2]-cycloaddition reactions. The types of

ADC reactions of o-aminobenzyl alcohols with ketones or

secondary alcohols or nitriles to the construction of

quinolines by the release of H2 and H2O as only by-

products have been well-developed (Scheme 1). However,

such attractive synthetic strategies required expensive

transition-metal (TM) pincer complexes, such as Ir (Wang

et al., 2016; Genc et al., 2019), Ru (Maji et al., 2018; Wan et al.,

2019), Ni (Das et al., 2018; Das et al., 2018; Singh et al., 2018),

Mn (Mastalir et al., 2016; Barman et al., 2018; Das et al., 2019),

Cu (Tan et al., 2018), or Re (Wei et al., 2019) complexes. In

addition, aza-ortho-quinone methides (aza-o-QMs), in situ

generated from o-aminobenzyl alcohols as short-lived and

highly reactive diene species, have been extensively

investigated and applied in organic synthesis (Huang and

Kang., 2017; Mei et al., 2017; Lee et al., 2019; Wang et al.,

2021). In 2016, a KOH-promoted regioselective synthesis of

quinolones via [4 + 2]-cycloaddition of aza-o-QMs with

internal alkynes was disclosed by Verma and co-workers

(Saunthwal et al., 2016) (Scheme 1b). In 2018, Shi and co-

workers established chiral phosphoramide catalytic

asymmetric [4 + 2]-cycloaddition of aza-o-QMs with

o-hydroxystyrenes to afford chiral tetrahydroquinolines (Li

et al., 2018) (Scheme 1c). This [4 + 2]-cycloaddition protocol

enriched the partners of aza-o-QMs to construct quinolones.

In spite of these powerful works, there is still a demand for new

protocols for generation of quinolines from o-aminobenzyl

alcohols. As our ongoing interest in quinoline synthesis

(Lu et al., 2017; Zhou et al., 2018) and enaminone

TABLE 1 Optimization of the reaction conditions.a,b

Entry Acid [eq.] Oxidant [eq.] Solvent T [oC] Yield [%]b

1 AcOH (1.0) DMSO 100 n.dc

2 PivOH (1.0) DMSO 100 n.dc

3 ZnCl2 (1.0) DMSO 100 n.dc

4 TFA (1.0) DMSO 100 25

5 CSA (1.0) DMSO 100 15

6 TsOH (1.0) DMSO 100 32

7 TsOH (1.0) Oxone (1.0) DMSO 100 68

8 TsOH (1.0) TBHP (1.0) DMSO 100 37

9 TsOH (1.0) Fe2O3 (1.0) DMSO 100 46

10 TsOH (1.0) AgNO3 (1.0) DMSO 100 59

11 TsOH (1.0) DDQ (1.0) DMSO 100 32

12 TsOH (1.0) m-CPBA (1.0) DMSO 100 40

13 TsOH (1.0) K2S2O8 (1.0) DMSO 100 82

14 TsOH (1.0) K2S2O8 (1.0) DMF 100 53

15 TsOH (1.0) K2S2O8 (1.0) Toluene 100 27

16 TsOH (1.0) K2S2O8 (1.0) MeCN reflux 58

17 TsOH (1.0) K2S2O8 (1.0) 1,4-Dioxane 100 38

18 TsOH (1.0) K2S2O8 (1.0) EtOH reflux 62

19 TsOH (1.0) K2S2O8 (1.0) H2O 100 59

20 TsOH (0.5) K2S2O8 (1.0) DMSO 100 54

21 TsOH (1.5) K2S2O8 (1.0) DMSO 100 79

22 TsOH (1.0) K2S2O8 (0.5) DMSO 100 51

23 TsOH (1.0) K2S2O8 (1.5) DMSO 100 81

24 TsOH (1.0) K2S2O8 (1.0) DMSO 80 28

25 TsOH (1.0) K2S2O8 (1.0) DMSO 120 67

The bold values is designed to highlight the optimal reaction conditions.
aReaction conditions: 1a (0.5 mmol) and 2a (0.5 mmol) in 3.0 ml solvent for 1.0 h.
bIsolated yields.
cNot detected.
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chemistry (Yu et al., 2011; Yu et al., 2013; Xu et al., 2016; Zhou

et al., 2017; Fu et al., 2020; Chen et al., 2021; Huang and Yu.,

2021; Yu et al., 2021; Zhang et al., 2021; Fu et al., 2022; Liu

et al., 2022; Ying et al., 2022), herein, we report a transition-

metal-free direct oxidative cyclocondensation strategy of

o-aminobenzyl alcohols with N,N-dimethyl enaminones to

synthesize 3-substituted or 3,4-disubstituted quinoline

derivatives in moderate to excellent yields (Scheme 1d).

Results and discussion

Our investigation started with the reaction of readily

available N,N-dimethyl enaminone 1a with o-aminobenzyl

alcohol 2a as model substrates in (Table 1). We carried out

the model reaction in the presence of AcOH in DMSO at 100°C,

but the desired product 3a was not obtained (entry 1). Various

acids were screened, such as pivalic acid (PivOH), ZnCl2,

trifluoroacetic acid (TFA), 10-camphorsulfonic acid (CSA),

and p-toluenesulfonic acid (TsOH), which suggested that

TsOH was the most suitable acid for this reaction in 32%

yield. A series of oxidants show positive effects for the

reaction (entries 7–13). To our delight, K2S2O8 was found to

be the most effective one to give the desired quinolone 3a for

greatly increasing the yield to 82% (entry 13). Further

experiments showed that DMSO was the first choice for

solvents; other solvents, such as DMF, toluene, MeCN, 1,4-

dioxane, EtOH, and water, were inferior (entries 14–19). With

respect to the acid and oxidant loading, 1.0 equiv of TsOH and

1.0 equiv of K2S2O8 were found to be optimal (entries 20–23).

The reaction temperature was also screened, and the results

showed that 100°C was still with giving the best yield (entries

24–25).

Under the optimized reaction conditions, we next

investigated the substrate scope of this direct oxidative

cyclocondensation reaction (Table 2). A wide range of

N,N-dimethyl enaminones 1 bearing different substituents

could be used in this transformation. For example,

TABLE 2 Scope of substrates.a,b

aReaction conditions: N,N-dimethylenaminones 1 (0.5 mmol), aryl methyl ketones 2 (0.5 mmol), TsOH (0.5 mmol), and K2S2O8 (0.5 mmol) in 3.0 ml DMSO at 100 C for 1.0 h.
bIsolated yields.
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N,N-dimethyl enaminones bearing electron-rich (4-OMe, 4-

Me, and 2-Me), electron-neutral (4-H), halogenated (4-Cl, 2-

Cl, and 4-F), and electron-deficient (4-CF3 and 4-NO2)

groups at the aryl ring were tolerated, affording the

corresponding 3-substituted quinoline products in good to

excellent yields (71–84%, 3a−3i). Subsequently, 4-biphenyl

and 1-naphthyl N,N-dimethyl enaminones were also well

compatible with the reaction, giving the expected product

in excellent yields (81–84%, 3j−3k). Furthermore, various

heteroaryl N,N-dimethyl enaminones, including 4-pyridyl, 2-

furanyl, and 2-thienyl, were well tolerated in this reaction,

affording the corresponding products in excellent yields

(83–87%, 3l−3n). The phenylethyl enamamine worked well

for the reaction, furnishing the corresponding quinoline

product 3o in 61% yield. The o-aminobenzyl alcohol scope

was also examined. Bearing halogenation (5-Cl) was well

tolerated on the phenyl ring of the o-aminobenzyl

alcohols, furnishing the corresponding 3-substituted

quinoline products in good to excellent yields (78–89%,

3p−3x). Notably, 1-(o-aminobenzyl) ethanol and

o-aminobenzhydrol were also employed, affording 3,4-

disubstituted quinolines in moderate to excellent yields

(68–91%, 3y−3c’). Moreover, the structure of 3j was

unambiguously confirmed by X-ray crystallographic

analysis (CCDC 1846910, Figure 1).

To further understand the reaction mechanism, some

control experiments were carried out, and the results are

presented in Scheme 2. When N,N-dimethyl enaminone 1b

was reacted with o-aminobenzyl alcohol 2a in the absence of

K2S2O8, the N-aryl enaminone intermediate product 4 was

obtained in 68% yield by a transamination process (Scheme

2). Next, product 3b was obtained in 75% yield by the

intramolecular cyclization reaction of intermediate 4 under

optimized reaction conditions. However, the intramolecular

SCHEME 2
Control experiments.

SCHEME 3
Proposed mechanism.
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cyclization reaction could also proceed smoothly without the

addition of TsOH, affording product 3b in 73% yield (Scheme

2). When N,N-dimethyl enaminone 1b was reacted with 2-

aminobenzaldehyde 5 under the standard conditions or in

the absence of K2S2O8, product 3b was, respectively, isolated

in 78 and 73% yields (Scheme 2). Additionally, the reaction

was unaffected completely by adding the radical inhibitors

Tempo and BHT (Scheme 2). These results revealed that

N-aryl enaminone 4 and 2-aminobenzaldehyde 5 were

important intermediates for this reaction, and the reaction

was not a free-radical process.

Based on the above results and previous studies (Zhou

et al., 2018), a possible mechanism for this transformation is

proposed (Scheme 3). N,N-dimethyl enaminones 1 reacted

with o-aminobenzyl alcohols 2 promoted by TsOH to furnish

the N-aryl enaminone intermediate 6 via a transamination

process. Next, intermediate 6 underwent K2S2O8-assisted

oxidation to form the ketone intermediate 7, which was

then converted into intermediate 8 through intramolecular

cyclization reaction. Finally, quinolone products 3 were

obtained via elimination of a molecule of H2O and

oxidative aromatization.

Conclusion

In conclusion, we have developed a concise protocol for the

synthesis of 3-substituted or 3,4-disubstituted quinolines with

moderate to excellent yields using readily available N,N-dimethyl

enaminones and o-aminobenzyl alcohols promoted by TsOH/

K2S2O8. This direct oxidative cyclocondensation reaction

enriched the quinoline synthesis method from o-aminobenzyl

alcohols.
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