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Abstract
Photographic capture–recapture is a valuable tool for obtaining demographic informa-
tion on wildlife populations due to its noninvasive nature and cost-effectiveness. 
Recently, several computer-aided photo-matching algorithms have been developed to 
more efficiently match images of unique individuals in databases with thousands of 
images. However, the identification accuracy of these algorithms can severely bias es-
timates of vital rates and population size. Therefore, it is important to understand the 
performance and limitations of state-of-the-art photo-matching algorithms prior to 
implementation in capture–recapture studies involving possibly thousands of images. 
Here, we compared the performance of four photo-matching algorithms; Wild-ID, I3S 
Pattern+, APHIS, and AmphIdent using multiple amphibian databases of varying image 
quality. We measured the performance of each algorithm and evaluated the perfor-
mance in relation to database size and the number of matching images in the database. 
We found that algorithm performance differed greatly by algorithm and image data-
base, with recognition rates ranging from 100% to 22.6% when limiting the review to 
the 10 highest ranking images. We found that recognition rate degraded marginally 
with increased database size and could be improved considerably with a higher number 
of matching images in the database. In our study, the pixel-based algorithm of 
AmphIdent exhibited superior recognition rates compared to the other approaches. 
We recommend carefully evaluating algorithm performance prior to using it to match a 
complete database. By choosing a suitable matching algorithm, databases of sizes that 
are unfeasible to match “by eye” can be easily translated to accurate individual capture 
histories necessary for robust demographic estimates.

K E Y W O R D S

AmphIdent, APHIS, capture–recapture, I3S, photographic identification, Wild-ID

1  | INTRODUCTION

Understanding species population dynamics is an important step to-
ward successful conservation. Capture–mark–recapture (CMR) and 

capture–recapture (CR) models have proven to be very useful for esti-
mating population demography and for testing ecological hypotheses 
(Cormack, 1964; Jolly, 1965; Lebreton, Burnham, Clobert, & Anderson, 
1992; Seber, 1965). CMR studies typically require invasive techniques 
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(e.g., tags, toe-clipping, visual implant elastomers, or insertion of pas-
sive integrated transponders) (Bailey, 2004; Guimarães et al., 2014; 
Winandy & Denoël, 2011). However, these invasive approaches can 
be cost prohibitive to implement and could potentially affect individ-
ual behavior or survival (Wilson & McMahon, 2004). Alternatively, 
many species have variable body markings that are individual-
specific (Arzoumanian, Holmberg, & Norman, 2005; Gamble, Ravela, 
& McGarigal, 2008; Karlsson et al., 2005) and can serve as a natu-
ral mark. Photographic CR exploits these natural markings and has 
evolved as a viable alternative to invasive techniques applied to a wide 
range of species (Arzoumanian et al., 2005; Bolger, Morrison, Vance, 
Lee, & Farid, 2012; Sacchi, Scali, Mangiacotti, Sannolo, & Zuffi, 2016).

Visually matching images of the same individual “by eye” is po-
tentially feasible with hundreds of images, but is impractical with the 
large databases necessary to estimate vital rates or population size 
(Dunbar, Ito, Bahjri, Dehom, & Salinas, 2014; Gore, Frey, Ormond, 
Allan, & Gilkes, 2016; Kelly, 2001; Sacchi et al., 2016). Recently, 
photo-matching algorithms have been developed and successfully ap-
plied to match images of unique individuals in large databases (Bolger 
et al., 2012). These methods are typically not fully automated and 
require the user to evaluate a number of top ranked matches (e.g., 
10 or 20 images) based on a similarity score the algorithm calculates 
for all unique pairs of images (Crall, Stewart, Berger-Wolf, Rubenstein, 
& Sundaresan, 2013; Morrison, Yoshizaki, Nichols, & Bolger, 2011). 
Several recent studies have evaluated the performance and effective-
ness of available photo-matching algorithms, but they are typically re-
stricted to a single matching algorithm and image database [although 
see Morrison, Keinath, Estes-Zumpf, Crall, and Stewart (2016)]. For a 
researcher to understand the limitations of different photo-matching 
algorithms—and to be able to choose the best algorithm for the re-
quired purpose, a comparison of multiple photo-matching algorithms 
and diverse databases is necessary. So, for all photographic CR studies 
over all taxa a proper evaluation of the appropriate algorithm is essen-
tial before the onset of the analysis.

Here, we compare the performance of four popular photo-
matching algorithms used in previous photographic CR studies of am-
phibians: Wild-ID, I3SPattern+, APHIS, and AmphIdent. We consider 
amphibians to be a suitable object for case studies for the purpose 
of comparing photo-matching algorithm performance as they often 
have large population sizes and many species exhibit individual ex-
ternal markings that make them suitable for individual recognition 
(Sacchi et al., 2016). However, we note that the used image match-
ing algorithms are generally applicable to other taxa with similar spot 
patterns. Here, we compare the performance of the image matching 
algorithms using four amphibian databases of varying image quality 
(database size ranging from 2,197 to 12,488 images). We estimate 
recognition rates for each algorithm and evaluate the effects of data-
base size and image characteristics. We focused our analysis on im-
ages with binary patterns (e.g., distinctive body markings that can be 
represented by only two colors) as these patterns are most common 
with herpetofauna and other wildlife which have unique individual 
markings (Drechsler, Helling, & Steinfartz, 2015; Speed, Meekan, & 
Bradshaw, 2007).

2  | MATERIALS AND METHODS

2.1 | Photo-matching algorithms

In the present investigation, we compare two feature-based and 
two pixel-based photo-matching algorithms. The feature-based 
candidate algorithms Wild-ID and I3S Pattern+ were chosen due to 
their popularity in the scientific community, although other feature-
based algorithms can be found in, for example, Crall et al. (2013); 
Lahiri, Tantipathananandh, Warungu, Rubenstein, and Berger-Wolf 
(2011). AmphIdent and APHIS were chosen as the pixel-based can-
didates as they have been applied to the largest databases among 
pixel-based algorithms (Petrovska-Delacretaz, Edwards, Chiassoli, 
Chollet, & Pilliod, 2014; Schoen, Boenke, & Green, 2015).

2.1.1 | Wild-ID

The feature-based algorithm of Wild-ID (http://dartmouth.edu/fac-
ulty-directory/douglas-thomas-bolger) uses the scale-invariant fea-
ture transform (SIFT) feature detector (Lowe, 2004) to find distinct 
features in a given image (Bolger et al., 2012). SIFT is useful for pat-
tern matching as it is invariant to scale, viewpoint, rotation, and illumi-
nation, which cannot be completely mitigated with images of animals 
taken in the field. To evaluate the similarity of patterns in two images, 
the feature descriptors of both images are compared with regard to 
similar descriptors and geometrically consistent appearance. A simi-
larity score is then calculated based on goodness of fit between the 
feature vectors of both images.

2.1.2 | I3SPattern+

Interactive Individual Identification System (I3S) (http://www.
reijns.com/i3s) is a suite of different feature-based pattern com-
parison algorithms specialized for certain types of patterns. I3S 
Pattern+ is optimized specifically to match binary patterns, where 
the binarization can be performed interactively. Similar to Wild-ID, 
I3S Pattern+ relies on a feature descriptor [speeded-up robust fea-
tures (SURF) (Bay, Tuytelaars, & Van Gool, 2006)]. For each image 
pair, I3S Pattern+ determines key points in the pattern, based on 
the output of the SURF algorithm. I3S Pattern+ then calculates a 
similarity score based on how close key points of both images are 
to one another.

2.1.3 | AmphIdent

AmphIdent (http://www.amphident.com) uses a pixel-based approach 
instead of a feature detector to calculate a similarity score for two 
images (Matthe, Schönbrodt, & Berger, 2008). Initially, each image is 
scaled down by 25% per dimension, assigning to the resulting pixels 
the average of the 4 × 4 original pixels. The similarity score for two im-
ages is based on the sum of the absolute differences of corresponding 
pixel values in both images. To improve robustness against translation, 
scaling and cropping differences, one image is scaled and translated by 
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combinations of different scales and translations. The final similarity 
score is the maximum score calculated over all the investigated trans-
formations. AmphIdent uses specialized modules for different amphib-
ian species. However, all modules do apply the same general matching 
algorithm, and only differ in the way patterns are converted into binary 
images. Hence, only generally applicable matching algorithms are com-
pared in this study.

2.1.4 | APHIS

APHIS (http://imedea.uib-csic.es/bc/ecopob/) implements two dif-
ferent matching algorithms (Oscar et al., 2015). One feature-based 
approach which is similar to I3SPattern+; however, the key points 
are selected manually by the user. In this study, we focus on the sec-
ond algorithm, where APHIS employs a pixel-based approach, named 
image template matching (ITM) which uses the matchTemplate func-
tion of the Open Computer Vision Libraries (Itseez, 2016). This func-
tion slides one image over another to find the position where both 
images match best. Initially, the ITM method was proposed to match 
lizards Podarcis muralis, where the pattern area was equally split into 
three columns and two rows of patches, and the overall similarity 
score was the sum of the result of the matchTemplate function for 
each patch. Oscar et al. (2015) propose the ITM method for colored 
images, while pointing out that images with strong contrast perform 
better with the ITM method. Therefore, in this study, we investigate 
the ITM performance for both colored and binarized images. In prin-
ciple, the technique of APHIS is similar to AmphIdent; however, in 
contrast to AmphIdent, it neither performs the 25% downscaling or 
scale optimization.

2.2 | Image preprocessing

Several image preprocessing steps were performed on the databases 
prior to matching images with the photo-matching algorithms. First, 
as all investigated algorithms rely on a consistent posture of the indi-
viduals, images of longish species (e.g., newts and salamanders) were 
straightened (Drechsler et al., 2015; Gamble et al., 2008). Specifically, 
this involved manually marking the spine of the individuals prior to an 
image operation which warps the spine to a straight line adjusting ad-
jacent pixels to the spine accordingly. Second, a consistent rectangular 
region of the image was cropped to serve as the extracted pattern for 
the individual. Both actions did not require more than 30 s of manual 
operation.

Subsequently, for I3S, APHIS, and AmphIdent, images were bina-
rized by a thresholding algorithm, that for I3S was manually aided and 
performed automatically for APHIS and AmphIdent, using the specific 
AmphIdent species module. For Wild-ID, matching performance with 
colored patterns are reported, as matching with binary patterns re-
sulted in inferior recognition rates.

Note that despite the amount of time spent on manually prepro-
cessing large databases, a considerable time-saving is achieved com-
pared to manually matching all pairs of images. In particular, the time 
for computer-aided matching grows linearly with the database size N, 

whereas as the number of pairs to compare manually is N × (N − 1)/2 
(Arntzen, Goudie, Halley, & Jehle, 2004), the number of required man-
ual comparisons grows quadratically (Table 1).

2.3 | Performance metrics

Algorithm performance was evaluated on images which were visually 
matched “by eye” in all of the databases. To estimate performance, 
only a representative subset of matching images in the database 
needs to be known. As false acceptance rate in photographic capture-
recapture is virtually zero (Petrovska-Delacretaz et al., 2014; Sacchi 
et al., 2016), our analysis focuses on the recognition rate, that is, how 
well the algorithms manage to highly rank images that are known 
matches based on the similarity score. For each database, similarity 
scores were measured between all images with the three different 
photo-matching algorithms. The rank of known matching images was 
then calculated based on all the other images in the database. For ex-
ample, if the similarity score of a known match was higher than all 
other similarity scores in the database, the retrieved rank of the pair 
was 1. From the retrieved rank for all known matches in a specific da-
tabase, their cumulative density function (CDF) cdf(r) was calculated. 
This CDF is a measure for the quality of the matches provided by the 
algorithm.

Specifically, the cdf(r) is defined as the number of known pairs 
that are ranked at r or better, divided by the overall number of known 
image pairs. For example, cdf(5) = 0.95 can be interpreted as meaning 
that 95% of all known matches are retrieved at rank 5 or better. The 
complementary CDF (CCDF) 1 − cdf(r) is the false rejection rate (FRR) 
when visually reviewing the r top ranked images.

To investigate the performance of each photo-matching algo-
rithm with different database sizes, we sampled smaller databases 
from the original databases by randomly selecting x images from the 
original databases and recalculated cdf(r) for the different database 
sizes. This procedure was repeated 50 times for each unique data-
base size and the reported cdf(r) represents the average of those 
iterations.

The measure of the rank CDF describes the matching performance 
for a single matching image (e.g., a single recapture). With image data-
bases that contain more than two images of the same individual, we 
also evaluated recognition rate with more than one matching image in 
the image database. We expected that performance would improve, 
as the photo-matching algorithm has multiple chances of a matching 
image receiving a high similarity score.

TABLE  1 Estimates of overall required processing time (hours) 
with manual and computer-assisted matching, for different database 
sizes N. We assumed the manual preprocessing takes 30 s per image 
and a manual comparison takes 1 s. With computer aided matching, 
the top 10 ranking images are reviewed

N 100 500 1,000 5,000 10,000

Manual matching 1.4 34.6 138 347 1,339

Computer-aided 1.1 5.6 11.1 55.5 111

http://imedea.uib-csic.es/bc/ecopob/
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2.4 | Image databases

We analyzed four amphibian databases of varying image quality, that 
were used in previously published CR studies (Table 2, Figure 1). The 
databases were chosen to offer a large diversity of species, image 
qualities, and database sizes, limited by the accessibility of the images 
to the authors.

2.4.1 | Italian crested newt (Triturus carnifex)

This database contained 672 images of the Italian crested newt (Triturus 
carnifex) Laurenti which were taken in 2014 from Groane Regional 
Park in northern Italy (Sannolo, Gatti, Mangiacotti, Scali, & Sacchi, 
2016). Each time a newt was captured, it was photographed, then kept 
for one hour and photographed again to simulate a recapture. The 
database contained the simulated recaptures (386 matching image 
pairs); hence, all matches in this database were known. To increase 
overall database size, we merged this database with 6,787 images of 
the Great crested newt (Triturus cristatus) Laurenti, that were taken 
between 2006 and 2008 in an area 50 km east of Berlin, Germany 
(Berger, Graef, & Pfeffer, 2013; Matthe et al., 2008). The extracted 
patterns of T. carnifex and T. cristatus were similar, although T. cristatus 
had smaller spots and finer structure than T. carnifex (Figure 2). Before 
merging, we asserted that their subtle difference would not bias our 
performance analysis, by checking that the recognition rate for the 
known pairs was independent of the species in the database. Overall, 
these images were of high quality due to a consistent method of image 
acquisition (Matthe et al., 2008; Sannolo et al., 2016).

2.4.2 | Fire salamander (Salamandra salamandra)

This image database was obtained by merging two independent da-
tabases of the fire salamander (Salamandra salamandra) Linnaeus 
and the Near Eastern fire salamander (Salamandra infraimmaculata) 
Martens. The dataset included 446 images of individuals of a natural 
fire salamander population that were photographed between 2013 
and 2015 in the Netherlands (Spitzen—van der Sluijs et al. unpub-
lished data). The dataset was augmented by adding 1,751 images 
of S. infraimmaculata, which were taken between 2013 and 2014 in 
Tel Dan, Israel (Goedbloed et al., 2017). Similar to the newt data-
set, it was visually confirmed that the patterns of both salamander 
species were similar enough to be merged into a single database. 
The salamander patterns consist of strips or roundish spots on 
the side of the back with a black area in the middle (Figure 2). The 
ground truth for this dataset was obtained by visual comparison of 
all 446 images (Spitzen—van der Sluijs et al., unpublished data). The 

TABLE  2 Overview of image databases, preprocessing steps and image characteristics which differed by algorithm. Image dimensions are 
given in pixels and for APHIS, the number of patches for each pattern is provided in italics font

Species Images Straight? Size Wild-ID Size I3S Size AmphIdent Size APHIS

Crested newt 
(Sannolo et al., 2016)

7,458 YES 320 × 1,280 320 × 1,280 80 × 320 300 × 1,200 
2 × 7 parts

Fire salamander 
(Spitzen—van der Sluijs et al. 
unpublished data)

2,197 YES 320 × 1,280 320 × 1,280 80 × 320 300 × 1,200 
2 × 7 parts

Marbled salamander 
(Gamble et al., 2008)

12,488 YES 320 × 1,280 320 × 1,280 80 × 320 300 × 1,200 
2 × 7 parts

Yellow-bellied toad 
(Neubeck & Braukmann, 2014; 
Schellenberg, 2016)

4,063 NO 960 × 800 960 × 800 240 × 200 480 × 400 
3 × 2 parts

F IGURE  1 Representative images from the four investigated 
databases. For each species, two different images of the same individual 
are shown to highlight the slight differences in the pattern being matched
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analysis revealed 95 individuals that were captured between 2 and 
16 times. Image quality was high in general; however, some images 
were impaired by significant glare in the center of the images.

2.4.3 | Marbled salamander (Ambystoma opacum)

This database contained 12,488 images of marbled salamanders 
(Ambystoma opacum) Gravenhorst, which were taken between 1999 
and 2009 in western Massachusetts, USA. Detailed information about 
the capture study area and applied techniques for capturing are de-
scribed in Gamble et al. (2008). Marbled salamanders exhibit patterns 
that are characterized by larger black areas in the center of the back 
which are separated by the brighter background. Ninety-one known 
match pairs were found in the database by visual examination of a 
subset of the images. Manual comparison within a subset instead of 
the entire database was necessary, as the effort of comparison of all 
12,488 images was unfeasible (cf. Table 1). Overall, image quality was 
fair due to low image resolution and occasional poor focus or glare.

2.4.4 | Yellow-bellied toad (Bombina variegata)

This database contained 4,063 images of yellow-bellied toads 
(Bombina variegata) Linnaeus and was merged from two independent 

databases. The yellow-bellied toad patterns consist of smaller black 
spots that are distributed equally around the center area of the 
pattern. One of the merged databases consisted of 354 images 
and was collected in 2014 from Hainich National Park, Germany 
(Schellenberg, 2016). The other merged image database con-
sisted of 3,709 images, collected from 2011 to 2013 in the area of 
Nordhessen, Germany (Neubeck & Braukmann, 2014). Special care 
was taken so that the images of both databases had the same quality 
and image properties. Overall image quality was high, although some 
images were degraded due to poor focus or glare. Known image 
matches were obtained by exhaustive visual examination of all im-
ages from Schellenberg (2016). The manual comparison revealed 83 
distinct recaptured individuals, that were captured between two and 
ten times during the study.

3  | RESULTS

3.1 | Recognition rates by image database and 
photo-matching algorithm

We found that image-matching performance differed between both 
algorithm and database, with AmphIdent performing best among all 
of the databases (Figure 3 and Table 3). The greatest performance 

F IGURE  2 Representative patterns 
of Triturus carnifex, Triturus cristatus, 
Salamandra salamandra, and Salamandra 
infraimmaculata. Images of newts and 
salamanders have been merged into 
single databases. Compared to the Italian 
crested newt, patterns of the Great 
crested newt had smaller dots and finer 
structure
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differences between the algorithms by database was observed with 
the fire salamander database. Wild-ID ranked 11.6% and 22.6% of 
all known matches as the top ranking image and among the top 10 
ranked images, respectively. I3S ranked 51.9% and 73.4% as the top 
ranking image and among the top 10 ranked images, respectively. 
APHIS using color images ranked 74.4% and 84.3% of the known 
matches as the top ranking and the top 10 ranked images, and using 
binarized images 83.0% and 88.0% of the known matches were 
ranked top and within the top 10, respectively. AmphIdent ranked 
98.3% and 99.8% of all known matches as the top ranking image 
and among the top 10 ranked images, respectively. The smallest dif-
ference in performance between the algorithms by species was ob-
served with the yellow-bellied toad database (Figure 3 and Table 3). 
Using Wild-ID, 93.2% and 96.4% of the known matches were ob-
tained at rank 1 and among the top 10, respectively. I3S ranked 
80.4% and 88.6% of all known matches at the top and among the 
top 10 images, respectively. APHIS using color images ranked 86.3% 

and 89.6% at the top and among the top 10 images, and one percent 
higher using binary images. AmphIdent ranked 96.9% and 98.3% 
of all known matches as the top and among the top 10 images, re-
spectively. Wild-ID outperformed I3S in three of the four databases, 
and I3S was better than Wild-ID in the image database of the fire 
salamanders. APHIS using binary images generally performed better 
than when using color images. APHIS outperformed I3S and Wild-ID 
in the fire salamander database and performed similar to I3S with the 
other databases.

3.2 | Recognition rates by image database size

We found that recognition rate decreased with larger database sizes, 
but performance decreased differently between photo-matching 
algorithms (Figure 3 and Table 3). Recognition rates for Wild-ID and 
I3S improved with smaller database sizes and improvement was high-
est with the marbled salamander database, but did not significantly 

F IGURE  3 Rank CDFs for all algorithms and databases, by database size. Blue and red lines correspond to pixel-based and feature-based 
algorithms, respectively. Solid and dashed lines represent recognition rates with a single and three matching images in the database, respectively
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improve with the toad and fire salamander databases. Recognition 
rates of I3S only decreased slightly with the newt database size, 
while Wild-ID significantly decreased with a larger newt database 
size. Interestingly, with the newt database, I3S performed better than 
Wild-ID with the complete database, but the opposite was true with 
the smallest database size (500 images). AmphIdent was least sensi-
tive to changes in database size as it performed well with the com-
plete databases; however, a slight performance decrease was seen 
with growing database size (Figure 3 and Table 3). Compared to I3S 
and Wild-ID, APHIS was less sensitive to increasing database size.

3.3 | Recognition rate by image ranking

We found recognition rates to improve, sometimes dramatically, when 
evaluating the 10th or higher ranked image compared with just the 
top ranking image (Figure 3 and Table 3). Performance increases were 
greatest with the marbled salamander database. With the marbled sal-
amander database, I3S recognition rate increased from 12.6% when 
only the top ranked image was considered, to 30.8% when consider-
ing the top 10 ranked images. In the same database, the performance 
of Wild-ID could be improved from 39.6% to 65.9% when considering 
the top 10 instead of only the top-ranked image. AmphIdent perfor-
mance was improved from 89.6% to 97.3% (Figure 3 and Table 3). For 

APHIS, recognition rate improved from roughly 36% to 46%, regard-
less of whether colored or binary images were used. In general, the 
biggest improvement was found with the algorithms that performed 
poorly when only considering the top ranked image. However, con-
sidering the curves in Figure 3, the curves for APHIS are not as steep 
as the curves of I3S and Wild-ID. Hence, sometimes the curves cross, 
showing that APHIS can perform better than other algorithms when 
considering the top rank only, but perform poorer when considering 
the top 10 ranked images.

3.4 | Recognition rate by number of matching images

The overall performance improved greatly with an increasing num-
ber of available matches in the database. For the yellow-bellied toad 
image database, considering the top-ranked image only, Wild-ID in-
creased from a 93.2% recognition rate with one matching image 
to 100% recognition rate when three matching images are avail-
able in the database (Figure 3). However, due to the poor recogni-
tion rate in the fire salamander image database, even with three 
matching counterparts in the database, Wild-ID achieved only a 
30% recognition rate with the top-ranked match and 49% when 
considering the top 10 ranked images. I3S also improved based on 
the number of matches in the image database, as it achieved 92% 

TABLE  3 Obtained rank CDF values for the algorithms in the investigated databases. The numbers in the cells are cdf(1) and cdf(10), that is, 
the ratio of images that are ranked at top and among the top ten images, respectively

Salamandra 
spec.

DBSize 500 2,000 2,197

AmphIdent .984/.998 .984/.998 .983/.998

I3S .536/.761 .520/.737 .519/.734

Wild-ID .137/.268 .118/.230 .116/.226

APHIS Color .750/.854 .745/.844 .744/.843

APHIS BW .832/.884 .830/.881 .830/.880

Triturus spec. DBSize 500 2,000 4,000 7,000 7,458

AmphIdent .999/1.0 .999/1.0 .999/1.0 .999/1.0 .999/1.0

I3S .671/.845 .667/.838 .663/.827 .659/.815 .658/.813

Wild-ID .726/.854 .700/.839 .676/.831 .648/.814 .645/.812

APHIS Color .751/.833 .734/.817 .723/.801 .714/.794 .713/.794

APHIS BW .800/.871 .792/.863 .788/.857 .784/.846 .784/.845

Ambystoma 
opachum

DBSize 500 2,000 4,000 7,000 12,488

AmphIdent .960/.989 .944/.989 .929/.986 .912/.983 .896/.973

I3S .296/.484 .218/.423 .182/.385 .151/.343 .126/.308

Wild-ID .650/.823 .551/.783 .495/.736 .447/.696 .396/.659

APHIS Color .450/.595 .409/.527 .388/.493 .372/.474 .363/.456

APHIS BW .464/.602 .413/.558 .385/.526 .368/.487 .352/.462

Bombina 
variegata

DBSize 500 2,000 4,000 4,063

AmphIdent .977/.988 .973/.983 .969/.983 .969/.983

I3S .845/.920 .821/.902 .804/.886 .804/.886

Wild-ID .953/.973 .941/.967 .932/.964 .932/.964

APHIS Color .875/.915 .867/.904 .863/.896 .863/.896

APHIS BW .886/.927 .879/.914 .873/.907 .873/.907
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and 97% recognition rate when evaluating the top ranked image 
with three existing matches in the database of fire salamanders and 
toads, respectively. The performance of APHIS using binary images 
improved to 97% and 98% in the salamander and toad database, 
and to 95% and 97.5% when using colored images when consider-
ing the top rank only, respectively. AmphIdent performance only 
slightly increased with more matching images in the database as 
recognition rate was already nearly 100% with a single matching 
image (Figure 3).

4  | DISCUSSION

Our results show that performance can differ, at times substantially, 
depending on photo-matching algorithm used, database, database 
characteristics (e.g., image quality and numbers of matching images 
in the database), and the number of ranked photos evaluated. To our 
surprise, many of the photo-matching algorithms had recognition 
rates with our amphibian databases that would not be acceptable for 
use in subsequent demographic analyses. Our results also highlight 
the need to first manually measuring recognition rates (potentially 
with multiple photo-matching algorithms) of known visually matched 
images prior to selecting a specific photo-matching algorithm and au-
tomating the photo-matching process.

4.1 | Photo-matching algorithm performance

Photo-matching algorithms can be categorized by their use of pixel-
based (AmphIdent and APHIS) or feature-based algorithms (I3S and 
Wild-ID). Our results show a remarkable performance difference be-
tween the individual algorithms; however, a clear superiority of one 
algorithm group was not observed.

The issue with photo-matching algorithms that are based on 
local features is that they require the local patterns to be very sta-
ble among matching images. Variability in patterns between match-
ing images is typically not due to an individual’s pattern changing 
through time [Ferner (2010); Mettouris, Megremis, and Giokas 
(2016), but see Drechsler et al. (2015) and Kenyon, Phillott, and 
Alford (2010)] but a result of slight differences due to animal pos-
ture, hormone status, injury, environmental influences, or even dirt 
(Jorgensen & Larsen, 1960; Kindermann, Narayan, & Hero, 2014). 
Additionally, glare, focus, camera angle, and flash can also cause 
small perturbations between the images. For example, the three 
matching images of a fire salamander shown in Figure 4a are ranked 
at 1st, 92nd and 1st, 438th by I3S and Wild-ID, respectively, even 
though the patterns visually appear very similar. Slight variations 
among the spots occur, especially on the rightmost pattern. These 
subtle differences in the pattern influence the feature detectors to 
consider different key point locations. The extracted key points from 
I3S show that the leftmost and center image share a great amount of 
similarly located points, while the key points in the rightmost pattern 
differ, and therefore, this matching pattern is not ranked highly by 
I3S and Wild-ID, despite its very similar appearance. Note that the 

pixel-based algorithms AmphIdent and APHIS scored both images as 
a match.

Wild-ID outperformed I3S in all databases except the fire salaman-
der image database, even though the SURF feature detector of I3S is 
thought to be more robust than SIFT, which is used by Wild-ID (Bay 
et al., 2006). The poor performance by I3S can mainly be explained 
by a shortcoming of the I3S matching algorithm: I3S solely uses the 
locations of identified local features to find an affine transform that 
matches the feature positions of one image to the positions on other 
images. However, it ignores a numeric characterization of each de-
tected feature point provided by SURF, and hence, it considers two 
patterns to match, even when their feature descriptors have differ-
ent values. Wild-ID instead performs a search for matching feature 
descriptors first and subsequently evaluates the distances between 
the locations of these features. This additional processing improves 
performance of Wild-ID compared to I3S and explains the superiority 
in recognition rates of Wild-ID over I3S in our study. The poor perfor-
mance of Wild-ID in the fire salamander database can be explained by 
the significant amount of glare in the fire salamander images. Wild-ID, 
which works directly on the color images, considers these glare re-
gions as important features. However, as glare is not stable between 
matching images, Wild-ID performance is degraded. In contrast, I3S 
works on the binary patterns where the glare was removed by the bi-
narization operation.

A pixel-based algorithm does not rely on specific key points in 
the images. Instead, it considers the images as a whole and is hence 
more robust to subtle changes. Both APHIS and AmphIdent calcu-
late a cross correlation between the pixels of the compared pat-
terns, which can equalize for deformation of spots, as long as the 
overall appearance of the images are similar. Pixel-based algorithms 
rely on a consistent cropping of the pattern, such that matching 
spots of two patterns occur at (roughly) the same position in the im-
ages. In order to equalize for different spot positions that can occur 
due to animal posture or the cropping region, both AmphIdent and 
APHIS divide the entire patterns into small parts and compute 
the cross correlation for each part separately. By employing the 
cross-correlation calculation, the overall matching success is not 
degraded when two matching spots have slightly different appear-
ances: As long as they share a decent amount of similar pixels, the 
cross-correlation will yield high similarity scores, indicating that 
both images belong to the same individual. In addition to individ-
ual translations of each part, AmphIdent allows individual scaling 
of each part, which explains the superior result of AmphIdent com-
pared to APHIS.

Figure 4b shows example images of a yellow-bellied toad, where 
the pixel-based algorithms were not able to reliably retrieve the match-
ing image. Considering the left-most image as the unknown image, all 
algorithms retrieved the center image at the top rank. Comparing the 
left and right images, it becomes apparent that the cropped regions 
of interest are very different. Therefore, the pixel-based algorithms 
do not reliably recognize this match. On the other hand, the feature-
based algorithm Wild-ID positioned the matching image at rank 1, as 
it could identify the characteristic shape of the pattern in the image.
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4.2 | Number of matching images in the database

Recognition rates greatly improved for all photo-matching algorithms 
when images had more than one matching image in the database. This 
is because a correct match is counted whenever at least one matching 
image occurs in the top-ranked images. Hence, when multiple match-
ing images are available in the database, each algorithm has several 
chances to measure a high similarity score for a matching image, mak-
ing it more likely that one matching image occurs among the top-
ranked images. Note that normally, having two matching images in the 
database implies that a previous match was already found with only a 
single matching image in the database. Hence, the performance with 
a single-matching image limits the overall performance and is there-
fore a more meaningful and direct measure of algorithm performance. 

Alternatively, as reported by Sannolo et al. (2016), two images of the 
same individual could be taken and directly integrated into the image 
database, because the match is known a priori. However, this approach 
requires increased effort with image preprocessing and image database 
management, rendering it impracticable for large-scale databases.

4.3 | Comparison with previous studies

The recognition rates that we observed for Wild-ID and I3S appear to 
contradict to several published results. Mettouris et al. (2016) reported 
a 100% recognition rate for alpine newts (Ichthyosaura alpestris) and 
smooth newts (Lissotriton vulgaris) when using Wild-ID with a data-
base of 3,333 images. However, images were sorted into four classes 
depending on gender and species, yielding very small databases (162, 

F IGURE  4 A representative image 
of an individual fire salamander (a) or 
yellow-bellied toad (b) with two matching 
images. Within each subplot, the colored 
image is the original image, whereas the 
gray image is the binarized version overlaid 
with the key points that were detected 
by I3S(circles). The numbers indicate the 
retrieved rank of the matching images with 
the different photo-matching algorithms

(a)

(b)
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136, 26, and 13 images per class) for the photo-matching evaluation, 
and the overall number of matching image pairs was only 25.

Bendik, Morrison, Gluesenkamp, Sanders, and O’Donnell (2013) 
used Wild-ID to match images of Jollyville Plateau salamanders 
(Eurycea tonkawae) and reported a recognition rate of 99.3% with a da-
tabase of 1,367 images. However, recognition rate was based on a rank 
of 100 or better which is beyond the ranking considered in our study 
and is not a realistic number of images to review, with a large database.

Wild-ID has also been previously used to match images of the 
Wyoming Toad (Anaxyrus baxteri) with the authors reporting a rec-
ognition rate of approximately 53%, even with a small database size 
(Morrison et al., 2016). Hence, the performance of Wild-ID based 
on our research and previous research performance of Wild-ID can 
significantly differ between databases and a thorough evaluation of 
recognition rate is important prior to matching a complete image da-
tabase with Wild-ID.

I3S Classic has previously been used to match images of the com-
mon wall lizard (Podarcis muralis) and western green lizard (Lacerta bi-
lineata) with a recognition rate of 99% with a database of 1,043 images 
(Sacchi et al., 2010). In contrast to I3S Pattern+, I3S Classic requires 
the user to manually set the key points instead of employing an au-
tomatic feature detector as in I3S Pattern+. This requires a significant 
amount of manual processing, but by defining a consistent rule for 
setting the points, a better identification rate can be obtained.

I3S Pattern was used to match images of Italian crested newts and 
found a 100% recognition rate with a database of 852 images (Sannolo 
et al., 2016). In this study, the database was structured in a way that 
at least three matching images for each unknown image were included 
in the database. With this amount of redundancy in the database, a 
recognition rate of 100% is feasible considering that recognition rate 
greatly improves with multiple matching images in a database.

APHIS was used in (Oscar et al., 2015) to match 309 images of 
the Northern spectacled salamander (Salamandrina perspicillata) in-
cluding 19 recaptures and 287 images of the Balearic lizard (Podiarcis 
lilfordi) including 91 recaptures, where it achieved a matching rate of 
100% and 93.4%, respectively. A correct match was counted, when 
the match occurred among the top 20 ranked images. These results 
are roughly in line with the results obtained in this study for the toad 
database, considering the small database sizes.

In (Drechsler et al., 2015), the authors used AmphIdent to match 
a database of 1,648 images of high quality with 162 recaptures of the 
great crested newt and obtained a recognition rate of 98% when man-
ually comparing the 10 highest ranked images. Moreover, the authors 
in (Goedbloed et al., 2017) used AmphIdent to compare images of 
Salamandra infraimmaculata, obtaining recognition rates of 100% for 
high-quality images and 64.8% for very poor quality images. The re-
sults for high-quality images are in line with this work.

4.4 | Implications of high false rejection rates for 
population models

Unfortunately, even relatively low FRRs have been found to bias esti-
mates of vital rates and population size (Morrison et al., 2011, 2016; 

Winiarski & McGarigal, 2016). For example, Morrison et al. (2016) re-
ported a 200% positively biased population size with a FRR of 21.3%. 
Statistical approaches have been developed to incorporate false rejec-
tion error (FRE) with CR data (Givens et al., 2015; Hiby et al., 2013; 
Morrison et al., 2011). Although potentially flexible, many existing sta-
tistical approaches incorporating FRE focus on estimating population 
size, rather than survival, with closed population models and are not 
easily incorporated with existing CR software packages. To calculate 
accurate estimates of survival, it is recommended to have FRRs no 
greater than 5% as slight bias in survival estimates, especially adult 
survival of long-lived species, can significantly bias estimates of popu-
lation growth (Winiarski & McGarigal, 2016). A more rigorous analysis 
of the implications of misidentification on the population models is 
out of scope of this work; we refer the reader to dedicated publica-
tions, such as Pradel, Hines, Lebreton, and Nichols (1997); Creel et al. 
(2003); Yoshizaki, Pollock, Brownie, and Webster (2009); Wright et al. 
(2009); Link, Yoshizaki, Bailey, and Pollock (2010).

FRR for a given image database can be estimated by collecting 
matches from visually matching a subset of images and then using a 
selected photo-matching algorithm to measure similarity scores be-
tween all images in the database. This allows FRR to be calculated 
and gives the user guidance with how many ranked images should be 
reviewed to obtain the required recognition rate.

5  | CONCLUSIONS

This study presented a thorough analysis of matching performance 
of pixel-based and feature-based photo-matching algorithms for am-
phibian image databases. Even though this presentation was limited 
to amphibian databases, we believe the obtained results are generaliz-
able to other taxa. None of the investigated algorithms is specifically 
designed to match amphibians, but their principle can be applied to any 
spot pattern. We found that the pixel-based algorithm of AmphIdent 
outperformed the other algorithms, whose performance varied signifi-
cantly by image database. Further, algorithm performance depended 
on image characteristics, number of reviewed images, and the number 
of available matches in the database. Hence, researchers should show 
care in selecting a photo-matching algorithm which maximizes rec-
ognition rate. Improving recognition rate will improve demographic 
estimates and enables the use of very large databases which are un-
feasible or virtually impossible to visually match.
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