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Abstract
Photographic	capture–recapture	is	a	valuable	tool	for	obtaining	demographic	informa-
tion	 on	 wildlife	 populations	 due	 to	 its	 noninvasive	 nature	 and	 cost-	effectiveness.	
Recently,	several	computer-	aided	photo-	matching	algorithms	have	been	developed	to	
more	efficiently	match	 images	of	unique	 individuals	 in	databases	with	 thousands	of	
images.	However,	the	identification	accuracy	of	these	algorithms	can	severely	bias	es-
timates	of	vital	rates	and	population	size.	Therefore,	it	is	important	to	understand	the	
performance	 and	 limitations	 of	 state-	of-	the-	art	 photo-	matching	 algorithms	 prior	 to	
implementation	in	capture–recapture	studies	involving	possibly	thousands	of	images.	
Here,	we	compared	the	performance	of	four	photo-	matching	algorithms;	Wild-	ID,	I3S	
Pattern+,	APHIS,	and	AmphIdent	using	multiple	amphibian	databases	of	varying	image	
quality.	We	measured	the	performance	of	each	algorithm	and	evaluated	the	perfor-
mance	in	relation	to	database	size	and	the	number	of	matching	images	in	the	database.	
We	found	that	algorithm	performance	differed	greatly	by	algorithm	and	image	data-
base,	with	recognition	rates	ranging	from	100%	to	22.6%	when	limiting	the	review	to	
the	10	highest	 ranking	 images.	We	found	that	 recognition	rate	degraded	marginally	
with	increased	database	size	and	could	be	improved	considerably	with	a	higher	number	
of	 matching	 images	 in	 the	 database.	 In	 our	 study,	 the	 pixel-	based	 algorithm	 of	
AmphIdent	exhibited	 superior	 recognition	 rates	 compared	 to	 the	other	approaches.	
We	recommend	carefully	evaluating	algorithm	performance	prior	to	using	it	to	match	a	
complete	database.	By	choosing	a	suitable	matching	algorithm,	databases	of	sizes	that	
are	unfeasible	to	match	“by	eye”	can	be	easily	translated	to	accurate	individual	capture	
histories	necessary	for	robust	demographic	estimates.

K E Y W O R D S

AmphIdent,	APHIS,	capture–recapture,	I3S,	photographic	identification,	Wild-ID

1  | INTRODUCTION

Understanding	species	population	dynamics	is	an	important	step	to-
ward	 successful	 conservation.	 Capture–mark–recapture	 (CMR)	 and	

capture–recapture	(CR)	models	have	proven	to	be	very	useful	for	esti-
mating	population	demography	and	for	testing	ecological	hypotheses	
(Cormack,	1964;	Jolly,	1965;	Lebreton,	Burnham,	Clobert,	&	Anderson,	
1992;	Seber,	1965).	CMR	studies	typically	require	invasive	techniques	
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(e.g.,	tags,	toe-	clipping,	visual	implant	elastomers,	or	insertion	of	pas-
sive	 integrated	 transponders)	 (Bailey,	 2004;	 Guimarães	 et	al.,	 2014;	
Winandy	&	Denoël,	2011).	However,	 these	 invasive	approaches	can	
be	cost	prohibitive	to	implement	and	could	potentially	affect	individ-
ual	 behavior	 or	 survival	 (Wilson	 &	 McMahon,	 2004).	 Alternatively,	
many	 species	 have	 variable	 body	 markings	 that	 are	 individual-	
specific	 (Arzoumanian,	Holmberg,	&	Norman,	2005;	Gamble,	Ravela,	
&	McGarigal,	 2008;	Karlsson	 et	al.,	 2005)	 and	 can	 serve	 as	 a	 natu-
ral	mark.	 Photographic	 CR	 exploits	 these	 natural	markings	 and	 has	
evolved	as	a	viable	alternative	to	invasive	techniques	applied	to	a	wide	
range	of	species	(Arzoumanian	et	al.,	2005;	Bolger,	Morrison,	Vance,	
Lee,	&	Farid,	2012;	Sacchi,	Scali,	Mangiacotti,	Sannolo,	&	Zuffi,	2016).

Visually	matching	 images	 of	 the	 same	 individual	 “by	 eye”	 is	 po-
tentially	feasible	with	hundreds	of	images,	but	is	impractical	with	the	
large	 databases	 necessary	 to	 estimate	vital	 rates	 or	 population	 size	
(Dunbar,	 Ito,	 Bahjri,	 Dehom,	 &	 Salinas,	 2014;	 Gore,	 Frey,	 Ormond,	
Allan,	 &	 Gilkes,	 2016;	 Kelly,	 2001;	 Sacchi	 et	al.,	 2016).	 Recently,	
photo-	matching	algorithms	have	been	developed	and	successfully	ap-
plied	to	match	images	of	unique	individuals	in	large	databases	(Bolger	
et	al.,	 2012).	 These	 methods	 are	 typically	 not	 fully	 automated	 and	
require	 the	 user	 to	 evaluate	 a	 number	 of	 top	 ranked	matches	 (e.g.,	
10	or	20	images)	based	on	a	similarity	score	the	algorithm	calculates	
for	all	unique	pairs	of	images	(Crall,	Stewart,	Berger-	Wolf,	Rubenstein,	
&	 Sundaresan,	 2013;	Morrison,	Yoshizaki,	Nichols,	 &	 Bolger,	 2011).	
Several	recent	studies	have	evaluated	the	performance	and	effective-
ness	of	available	photo-	matching	algorithms,	but	they	are	typically	re-
stricted	to	a	single	matching	algorithm	and	image	database	[although	
see	Morrison,	Keinath,	Estes-	Zumpf,	Crall,	and	Stewart	(2016)].	For	a	
researcher	to	understand	the	limitations	of	different	photo-	matching	
algorithms—and	 to	be	able	 to	choose	 the	best	algorithm	for	 the	 re-
quired	purpose,	a	comparison	of	multiple	photo-	matching	algorithms	
and	diverse	databases	is	necessary.	So,	for	all	photographic	CR	studies	
over	all	taxa	a	proper	evaluation	of	the	appropriate	algorithm	is	essen-
tial	before	the	onset	of	the	analysis.

Here,	 we	 compare	 the	 performance	 of	 four	 popular	 photo-	
matching	algorithms	used	in	previous	photographic	CR	studies	of	am-
phibians:	Wild-	ID,	I3SPattern+,	APHIS,	and	AmphIdent.	We	consider	
amphibians	 to	be	a	suitable	object	 for	case	studies	 for	 the	purpose	
of	 comparing	 photo-	matching	 algorithm	performance	 as	 they	often	
have	 large	population	 sizes	 and	many	 species	 exhibit	 individual	 ex-
ternal	 markings	 that	 make	 them	 suitable	 for	 individual	 recognition	
(Sacchi	et	al.,	2016).	However,	we	note	that	the	used	 image	match-
ing	algorithms	are	generally	applicable	to	other	taxa	with	similar	spot	
patterns.	Here,	we	compare	the	performance	of	the	image	matching	
algorithms	using	 four	amphibian	databases	of	varying	 image	quality	
(database	 size	 ranging	 from	 2,197	 to	 12,488	 images).	We	 estimate	
recognition	rates	for	each	algorithm	and	evaluate	the	effects	of	data-
base	size	and	image	characteristics.	We	focused	our	analysis	on	im-
ages	with	binary	patterns	(e.g.,	distinctive	body	markings	that	can	be	
represented	by	only	two	colors)	as	these	patterns	are	most	common	
with	 herpetofauna	 and	 other	wildlife	which	 have	 unique	 individual	
markings	 (Drechsler,	Helling,	&	Steinfartz,	 2015;	 Speed,	Meekan,	&	
Bradshaw,	2007).

2  | MATERIALS AND METHODS

2.1 | Photo-matching algorithms

In	 the	 present	 investigation,	 we	 compare	 two	 feature-	based	 and	
two	 pixel-	based	 photo-	matching	 algorithms.	 The	 feature-	based	
candidate	algorithms	Wild-	ID	and	I3S	Pattern+	were	chosen	due	to	
their	popularity	in	the	scientific	community,	although	other	feature-	
based	algorithms	can	be	found	 in,	 for	example,	Crall	et	al.	 (2013);	
Lahiri,	Tantipathananandh,	Warungu,	Rubenstein,	and	Berger-	Wolf	
(2011).	AmphIdent	and	APHIS	were	chosen	as	the	pixel-	based	can-
didates	as	they	have	been	applied	to	the	largest	databases	among	
pixel-	based	 algorithms	 (Petrovska-	Delacretaz,	 Edwards,	 Chiassoli,	
Chollet,	&	Pilliod,	2014;	Schoen,	Boenke,	&	Green,	2015).

2.1.1 | Wild- ID

The	 feature-	based	 algorithm	 of	Wild-	ID	 (http://dartmouth.edu/fac-
ulty-directory/douglas-thomas-bolger)	 uses	 the	 scale-	invariant	 fea-
ture	 transform	 (SIFT)	 feature	detector	 (Lowe,	2004)	 to	 find	distinct	
features	in	a	given	image	(Bolger	et	al.,	2012).	SIFT	is	useful	for	pat-
tern	matching	as	it	is	invariant	to	scale,	viewpoint,	rotation,	and	illumi-
nation,	which	cannot	be	completely	mitigated	with	images	of	animals	
taken	in	the	field.	To	evaluate	the	similarity	of	patterns	in	two	images,	
the	feature	descriptors	of	both	images	are	compared	with	regard	to	
similar	descriptors	and	geometrically	consistent	appearance.	A	simi-
larity	score	is	then	calculated	based	on	goodness	of	fit	between	the	
feature	vectors	of	both	images.

2.1.2 | I3SPattern+

Interactive	 Individual	 Identification	 System	 (I3S)	 (http://www.
reijns.com/i3s)	 is	 a	 suite	 of	 different	 feature-	based	 pattern	 com-
parison	 algorithms	 specialized	 for	 certain	 types	 of	 patterns.	 I3S	
Pattern+	 is	optimized	specifically	 to	match	binary	patterns,	where	
the	binarization	can	be	performed	interactively.	Similar	to	Wild-	ID,	
I3S	Pattern+	relies	on	a	feature	descriptor	[speeded-	up	robust	fea-
tures	(SURF)	(Bay,	Tuytelaars,	&	Van	Gool,	2006)].	For	each	image	
pair,	 I3S	Pattern+	determines	key	points	 in	 the	pattern,	 based	on	
the	output	of	 the	SURF	algorithm.	 I3S	Pattern+	 then	 calculates	 a	
similarity	score	based	on	how	close	key	points	of	both	images	are	
to	one	another.

2.1.3 | AmphIdent

AmphIdent	(http://www.amphident.com)	uses	a	pixel-	based	approach	
instead	 of	 a	 feature	 detector	 to	 calculate	 a	 similarity	 score	 for	 two	
images	(Matthe,	Schönbrodt,	&	Berger,	2008).	Initially,	each	image	is	
scaled	down	by	25%	per	dimension,	assigning	to	the	resulting	pixels	
the	average	of	the	4	×	4	original	pixels.	The	similarity	score	for	two	im-
ages	is	based	on	the	sum	of	the	absolute	differences	of	corresponding	
pixel	values	in	both	images.	To	improve	robustness	against	translation,	
scaling	and	cropping	differences,	one	image	is	scaled	and	translated	by	

http://dartmouth.edu/faculty-directory/douglas-thomas-bolger
http://dartmouth.edu/faculty-directory/douglas-thomas-bolger
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http://www.amphident.com


     |  5863MATTHÉ eT Al.

combinations	of	different	scales	and	translations.	The	final	similarity	
score	is	the	maximum	score	calculated	over	all	the	investigated	trans-
formations.	AmphIdent	uses	specialized	modules	for	different	amphib-
ian	species.	However,	all	modules	do	apply	the	same	general	matching	
algorithm,	and	only	differ	in	the	way	patterns	are	converted	into	binary	
images.	Hence,	only	generally	applicable	matching	algorithms	are	com-
pared	in	this	study.

2.1.4 | APHIS

APHIS	 (http://imedea.uib-csic.es/bc/ecopob/)	 implements	 two	 dif-
ferent	 matching	 algorithms	 (Oscar	 et	al.,	 2015).	 One	 feature-	based	
approach	 which	 is	 similar	 to	 I3SPattern+;	 however,	 the	 key	 points	
are	selected	manually	by	the	user.	In	this	study,	we	focus	on	the	sec-
ond	algorithm,	where	APHIS	employs	a	pixel-	based	approach,	named	
image	template	matching	(ITM)	which	uses	the	matchTemplate	func-
tion	of	the	Open	Computer	Vision	Libraries	(Itseez,	2016).	This	func-
tion	 slides	one	 image	over	another	 to	 find	 the	position	where	both	
images	match	best.	Initially,	the	ITM	method	was	proposed	to	match	
lizards	Podarcis muralis,	where	the	pattern	area	was	equally	split	into	
three	 columns	 and	 two	 rows	 of	 patches,	 and	 the	 overall	 similarity	
score	was	 the	 sum	of	 the	 result	 of	 the	matchTemplate	 function	 for	
each	patch.	Oscar	et	al.	(2015)	propose	the	ITM	method	for	colored	
images,	while	pointing	out	that	images	with	strong	contrast	perform	
better	with	the	ITM	method.	Therefore,	in	this	study,	we	investigate	
the	ITM	performance	for	both	colored	and	binarized	images.	In	prin-
ciple,	 the	 technique	 of	APHIS	 is	 similar	 to	AmphIdent;	 however,	 in	
contrast	 to	AmphIdent,	 it	neither	performs	the	25%	downscaling	or	
scale	optimization.

2.2 | Image preprocessing

Several	image	preprocessing	steps	were	performed	on	the	databases	
prior	to	matching	 images	with	the	photo-	matching	algorithms.	First,	
as	all	investigated	algorithms	rely	on	a	consistent	posture	of	the	indi-
viduals,	images	of	longish	species	(e.g.,	newts	and	salamanders)	were	
straightened	(Drechsler	et	al.,	2015;	Gamble	et	al.,	2008).	Specifically,	
this	involved	manually	marking	the	spine	of	the	individuals	prior	to	an	
image	operation	which	warps	the	spine	to	a	straight	line	adjusting	ad-
jacent	pixels	to	the	spine	accordingly.	Second,	a	consistent	rectangular	
region	of	the	image	was	cropped	to	serve	as	the	extracted	pattern	for	
the	individual.	Both	actions	did	not	require	more	than	30	s	of	manual	
operation.

Subsequently,	for	I3S,	APHIS,	and	AmphIdent,	images	were	bina-
rized	by	a	thresholding	algorithm,	that	for	I3S	was	manually	aided	and	
performed	automatically	for	APHIS	and	AmphIdent,	using	the	specific	
AmphIdent	species	module.	For	Wild-	ID,	matching	performance	with	
colored	 patterns	 are	 reported,	 as	matching	with	 binary	 patterns	 re-
sulted	in	inferior	recognition	rates.

Note	that	despite	the	amount	of	time	spent	on	manually	prepro-
cessing	large	databases,	a	considerable	time-	saving	is	achieved	com-
pared	to	manually	matching	all	pairs	of	images.	In	particular,	the	time	
for	computer-	aided	matching	grows	linearly	with	the	database	size	N,	

whereas	as	the	number	of	pairs	to	compare	manually	is	N ×	(N −	1)/2	
(Arntzen,	Goudie,	Halley,	&	Jehle,	2004),	the	number	of	required	man-
ual	comparisons	grows	quadratically	(Table	1).

2.3 | Performance metrics

Algorithm	performance	was	evaluated	on	images	which	were	visually	
matched	 “by	eye”	 in	all	of	 the	databases.	To	estimate	performance,	
only	 a	 representative	 subset	 of	 matching	 images	 in	 the	 database	
needs	to	be	known.	As	false	acceptance	rate	in	photographic	capture-	
recapture	 is	virtually	 zero	 (Petrovska-	Delacretaz	et	al.,	2014;	Sacchi	
et	al.,	2016),	our	analysis	focuses	on	the	recognition	rate,	that	is,	how	
well	 the	 algorithms	 manage	 to	 highly	 rank	 images	 that	 are	 known	
matches	based	on	 the	similarity	 score.	For	each	database,	 similarity	
scores	were	measured	 between	 all	 images	with	 the	 three	 different	
photo-	matching	algorithms.	The	rank	of	known	matching	images	was	
then	calculated	based	on	all	the	other	images	in	the	database.	For	ex-
ample,	 if	 the	 similarity	 score	of	 a	 known	match	was	higher	 than	all	
other	similarity	scores	in	the	database,	the	retrieved	rank	of	the	pair	
was	1.	From	the	retrieved	rank	for	all	known	matches	in	a	specific	da-
tabase,	their	cumulative	density	function	(CDF)	cdf(r)	was	calculated.	
This	CDF	is	a	measure	for	the	quality	of	the	matches	provided	by	the	
algorithm.

Specifically,	 the	 cdf(r)	 is	 defined	 as	 the	 number	 of	 known	 pairs	
that	are	ranked	at	r	or	better,	divided	by	the	overall	number	of	known	
image	pairs.	For	example,	cdf(5)	=	0.95	can	be	interpreted	as	meaning	
that	95%	of	all	known	matches	are	retrieved	at	rank	5	or	better.	The	
complementary	CDF	(CCDF)	1	−	cdf(r)	is	the	false	rejection	rate	(FRR)	
when	visually	reviewing	the	r	top	ranked	images.

To	 investigate	 the	 performance	 of	 each	 photo-	matching	 algo-
rithm	with	 different	 database	 sizes,	we	 sampled	 smaller	 databases	
from	the	original	databases	by	randomly	selecting	x	images	from	the	
original	databases	and	recalculated	cdf(r)	for	the	different	database	
sizes.	This	procedure	was	repeated	50	times	for	each	unique	data-
base	 size	 and	 the	 reported	 cdf(r)	 represents	 the	 average	 of	 those	
iterations.

The	measure	of	the	rank	CDF	describes	the	matching	performance	
for	a	single	matching	image	(e.g.,	a	single	recapture).	With	image	data-
bases	that	contain	more	than	two	images	of	the	same	individual,	we	
also	evaluated	recognition	rate	with	more	than	one	matching	image	in	
the	 image	database.	We	expected	that	performance	would	 improve,	
as	the	photo-	matching	algorithm	has	multiple	chances	of	a	matching	
image	receiving	a	high	similarity	score.

TABLE  1 Estimates	of	overall	required	processing	time	(hours)	
with	manual	and	computer-	assisted	matching,	for	different	database	
sizes	N.	We	assumed	the	manual	preprocessing	takes	30	s	per	image	
and	a	manual	comparison	takes	1	s.	With	computer	aided	matching,	
the	top	10	ranking	images	are	reviewed

N 100 500 1,000 5,000 10,000

Manual	matching 1.4 34.6 138 347 1,339

Computer-	aided 1.1 5.6 11.1 55.5 111

http://imedea.uib-csic.es/bc/ecopob/
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2.4 | Image databases

We	analyzed	four	amphibian	databases	of	varying	image	quality,	that	
were	used	in	previously	published	CR	studies	(Table	2,	Figure	1).	The	
databases	were	 chosen	 to	 offer	 a	 large	 diversity	 of	 species,	 image	
qualities,	and	database	sizes,	limited	by	the	accessibility	of	the	images	
to	the	authors.

2.4.1 | Italian crested newt (Triturus carnifex)

This	database	contained	672	images	of	the	Italian	crested	newt	(Triturus 
carnifex)	 Laurenti	 which	were	 taken	 in	 2014	 from	Groane	 Regional	
Park	 in	 northern	 Italy	 (Sannolo,	 Gatti,	 Mangiacotti,	 Scali,	 &	 Sacchi,	
2016).	Each	time	a	newt	was	captured,	it	was	photographed,	then	kept	
for	 one	 hour	 and	 photographed	 again	 to	 simulate	 a	 recapture.	 The	
database	 contained	 the	 simulated	 recaptures	 (386	 matching	 image	
pairs);	 hence,	 all	matches	 in	 this	database	were	known.	To	 increase	
overall	database	size,	we	merged	this	database	with	6,787	images	of	
the	Great	 crested	newt	 (Triturus cristatus)	 Laurenti,	 that	were	 taken	
between	2006	 and	2008	 in	 an	 area	 50	km	east	 of	Berlin,	Germany	
(Berger,	Graef,	&	Pfeffer,	 2013;	Matthe	 et	al.,	 2008).	 The	 extracted	
patterns	of	T. carnifex and T. cristatus	were	similar,	although	T. cristatus 
had	smaller	spots	and	finer	structure	than	T. carnifex	(Figure	2).	Before	
merging,	we	asserted	that	their	subtle	difference	would	not	bias	our	
performance	 analysis,	 by	 checking	 that	 the	 recognition	 rate	 for	 the	
known	pairs	was	independent	of	the	species	in	the	database.	Overall,	
these	images	were	of	high	quality	due	to	a	consistent	method	of	image	
acquisition	(Matthe	et	al.,	2008;	Sannolo	et	al.,	2016).

2.4.2 | Fire salamander (Salamandra salamandra)

This	image	database	was	obtained	by	merging	two	independent	da-
tabases	 of	 the	 fire	 salamander	 (Salamandra salamandra)	 Linnaeus	
and	the	Near	Eastern	fire	salamander	(Salamandra infraimmaculata)	
Martens.	The	dataset	included	446	images	of	individuals	of	a	natural	
fire	salamander	population	that	were	photographed	between	2013	
and	2015	in	the	Netherlands	(Spitzen—van	der	Sluijs	et	al.	unpub-
lished	data).	The	dataset	was	augmented	by	adding	1,751	 images	
of	S. infraimmaculata,	which	were	taken	between	2013	and	2014	in	
Tel	Dan,	 Israel	 (Goedbloed	et	al.,	2017).	Similar	to	the	newt	data-
set,	it	was	visually	confirmed	that	the	patterns	of	both	salamander	
species	were	similar	enough	to	be	merged	 into	a	single	database.	
The	 salamander	 patterns	 consist	 of	 strips	 or	 roundish	 spots	 on	
the	side	of	the	back	with	a	black	area	in	the	middle	(Figure	2).	The	
ground	truth	for	this	dataset	was	obtained	by	visual	comparison	of	
all	446	images	(Spitzen—van	der	Sluijs	et	al.,	unpublished	data).	The	

TABLE  2 Overview	of	image	databases,	preprocessing	steps	and	image	characteristics	which	differed	by	algorithm.	Image	dimensions	are	
given	in	pixels	and	for	APHIS,	the	number	of	patches	for	each	pattern	is	provided	in	italics font

Species Images Straight? Size Wild- ID Size I3S Size AmphIdent Size APHIS

Crested	newt 
(Sannolo	et	al.,	2016)

7,458 YES 320	×	1,280 320	×	1,280 80	×	320 300	×	1,200 
2 × 7 parts

Fire	salamander 
(Spitzen—van	der	Sluijs	et	al.	
unpublished	data)

2,197 YES 320	×	1,280 320	×	1,280 80	×	320 300	×	1,200 
2 × 7 parts

Marbled	salamander 
(Gamble	et	al.,	2008)

12,488 YES 320	×	1,280 320	×	1,280 80	×	320 300	×	1,200 
2 × 7 parts

Yellow-	bellied	toad 
(Neubeck	&	Braukmann,	2014;	
Schellenberg,	2016)

4,063 NO 960	×	800 960	×	800 240	×	200 480	×	400 
3 × 2 parts

F IGURE  1 Representative	images	from	the	four	investigated	
databases.	For	each	species,	two	different	images	of	the	same	individual	
are	shown	to	highlight	the	slight	differences	in	the	pattern	being	matched
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analysis	revealed	95	individuals	that	were	captured	between	2	and	
16	times.	Image	quality	was	high	in	general;	however,	some	images	
were	impaired	by	significant	glare	in	the	center	of	the	images.

2.4.3 | Marbled salamander (Ambystoma opacum)

This	 database	 contained	 12,488	 images	 of	 marbled	 salamanders	
(Ambystoma opacum)	Gravenhorst,	which	were	taken	between	1999	
and	2009	in	western	Massachusetts,	USA.	Detailed	information	about	
the	capture	study	area	and	applied	techniques	for	capturing	are	de-
scribed	in	Gamble	et	al.	(2008).	Marbled	salamanders	exhibit	patterns	
that	are	characterized	by	larger	black	areas	in	the	center	of	the	back	
which	are	separated	by	the	brighter	background.	Ninety-	one	known	
match	pairs	were	 found	 in	 the	database	by	visual	examination	of	a	
subset	of	the	images.	Manual	comparison	within	a	subset	instead	of	
the	entire	database	was	necessary,	as	the	effort	of	comparison	of	all	
12,488	images	was	unfeasible	(cf.	Table	1).	Overall,	image	quality	was	
fair	due	to	low	image	resolution	and	occasional	poor	focus	or	glare.

2.4.4 | Yellow- bellied toad (Bombina variegata)

This	 database	 contained	 4,063	 images	 of	 yellow-	bellied	 toads	
(Bombina variegata)	Linnaeus	and	was	merged	from	two	independent	

databases.	The	yellow-	bellied	toad	patterns	consist	of	smaller	black	
spots	 that	 are	 distributed	 equally	 around	 the	 center	 area	 of	 the	
pattern.	 One	 of	 the	 merged	 databases	 consisted	 of	 354	 images	
and	 was	 collected	 in	 2014	 from	 Hainich	 National	 Park,	 Germany	
(Schellenberg,	 2016).	 The	 other	 merged	 image	 database	 con-
sisted	of	3,709	images,	collected	from	2011	to	2013	in	the	area	of	
Nordhessen,	Germany	(Neubeck	&	Braukmann,	2014).	Special	care	
was	taken	so	that	the	images	of	both	databases	had	the	same	quality	
and	image	properties.	Overall	image	quality	was	high,	although	some	
images	 were	 degraded	 due	 to	 poor	 focus	 or	 glare.	 Known	 image	
matches	were	obtained	by	exhaustive	visual	examination	of	all	 im-
ages	from	Schellenberg	(2016).	The	manual	comparison	revealed	83	
distinct	recaptured	individuals,	that	were	captured	between	two	and	
ten	times	during	the	study.

3  | RESULTS

3.1 | Recognition rates by image database and 
photo-matching algorithm

We	found	that	image-	matching	performance	differed	between	both	
algorithm	and	database,	with	AmphIdent	performing	best	among	all	
of	 the	databases	 (Figure	3	and	Table	3).	The	greatest	performance	

F IGURE  2 Representative	patterns	
of	Triturus carnifex,	Triturus cristatus,	
Salamandra salamandra, and Salamandra 
infraimmaculata.	Images	of	newts	and	
salamanders	have	been	merged	into	
single	databases.	Compared	to	the	Italian	
crested	newt,	patterns	of	the	Great	
crested	newt	had	smaller	dots	and	finer	
structure
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differences	between	the	algorithms	by	database	was	observed	with	
the	fire	salamander	database.	Wild-	ID	ranked	11.6%	and	22.6%	of	
all	known	matches	as	the	top	ranking	image	and	among	the	top	10	
ranked	images,	respectively.	I3S	ranked	51.9%	and	73.4%	as	the	top	
ranking	 image	 and	 among	 the	 top	10	 ranked	 images,	 respectively.	
APHIS	 using	 color	 images	 ranked	74.4%	 and	84.3%	of	 the	 known	
matches	as	the	top	ranking	and	the	top	10	ranked	images,	and	using	
binarized	 images	 83.0%	 and	 88.0%	 of	 the	 known	 matches	 were	
ranked	top	and	within	 the	top	10,	 respectively.	AmphIdent	 ranked	
98.3%	 and	 99.8%	 of	 all	 known	matches	 as	 the	 top	 ranking	 image	
and	among	the	top	10	ranked	images,	respectively.	The	smallest	dif-
ference	in	performance	between	the	algorithms	by	species	was	ob-
served	with	the	yellow-	bellied	toad	database	(Figure	3	and	Table	3).	
Using	Wild-	ID,	93.2%	and	96.4%	of	 the	known	matches	were	ob-
tained	 at	 rank	 1	 and	 among	 the	 top	 10,	 respectively.	 I3S	 ranked	
80.4%	and	88.6%	of	all	known	matches	at	 the	 top	and	among	the	
top	10	images,	respectively.	APHIS	using	color	images	ranked	86.3%	

and	89.6%	at	the	top	and	among	the	top	10	images,	and	one	percent	
higher	 using	 binary	 images.	 AmphIdent	 ranked	 96.9%	 and	 98.3%	
of	all	known	matches	as	the	top	and	among	the	top	10	images,	re-
spectively.	Wild-	ID	outperformed	I3S	in	three	of	the	four	databases,	
and	 I3S	was	better	 than	Wild-	ID	 in	 the	 image	database	of	 the	 fire	
salamanders.	APHIS	using	binary	images	generally	performed	better	
than	when	using	color	images.	APHIS	outperformed	I3S	and	Wild-	ID	
in	the	fire	salamander	database	and	performed	similar	to	I3S	with	the	
other	databases.

3.2 | Recognition rates by image database size

We	found	that	recognition	rate	decreased	with	larger	database	sizes,	
but	 performance	 decreased	 differently	 between	 photo-	matching	
algorithms	(Figure	3	and	Table	3).	Recognition	rates	for	Wild-	ID	and	
I3S	improved	with	smaller	database	sizes	and	improvement	was	high-
est	with	 the	marbled	 salamander	database,	but	did	not	 significantly	

F IGURE  3 Rank	CDFs	for	all	algorithms	and	databases,	by	database	size.	Blue	and	red	lines	correspond	to	pixel-	based	and	feature-	based	
algorithms,	respectively.	Solid	and	dashed	lines	represent	recognition	rates	with	a	single	and	three	matching	images	in	the	database,	respectively
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improve	 with	 the	 toad	 and	 fire	 salamander	 databases.	 Recognition	
rates	 of	 I3S	 only	 decreased	 slightly	 with	 the	 newt	 database	 size,	
while	 Wild-	ID	 significantly	 decreased	 with	 a	 larger	 newt	 database	
size.	Interestingly,	with	the	newt	database,	I3S	performed	better	than	
Wild-	ID	with	the	complete	database,	but	the	opposite	was	true	with	
the	smallest	database	size	(500	images).	AmphIdent	was	least	sensi-
tive	to	changes	 in	database	size	as	 it	performed	well	with	the	com-
plete	 databases;	 however,	 a	 slight	 performance	 decrease	was	 seen	
with	growing	database	size	 (Figure	3	and	Table	3).	Compared	to	I3S	
and	Wild-	ID,	APHIS	was	less	sensitive	to	increasing	database	size.

3.3 | Recognition rate by image ranking

We	found	recognition	rates	to	improve,	sometimes	dramatically,	when	
evaluating	 the	10th	or	higher	 ranked	 image	compared	with	 just	 the	
top	ranking	image	(Figure	3	and	Table	3).	Performance	increases	were	
greatest	with	the	marbled	salamander	database.	With	the	marbled	sal-
amander	database,	 I3S	recognition	rate	 increased	from	12.6%	when	
only	the	top	ranked	image	was	considered,	to	30.8%	when	consider-
ing	the	top	10	ranked	images.	In	the	same	database,	the	performance	
of	Wild-	ID	could	be	improved	from	39.6%	to	65.9%	when	considering	
the	top	10	instead	of	only	the	top-	ranked	image.	AmphIdent	perfor-
mance	was	improved	from	89.6%	to	97.3%	(Figure	3	and	Table	3).	For	

APHIS,	recognition	rate	improved	from	roughly	36%	to	46%,	regard-
less	of	whether	colored	or	binary	 images	were	used.	 In	general,	 the	
biggest	improvement	was	found	with	the	algorithms	that	performed	
poorly	when	only	considering	the	top	ranked	 image.	However,	con-
sidering	the	curves	in	Figure	3,	the	curves	for	APHIS	are	not	as	steep	
as	the	curves	of	I3S	and	Wild-	ID.	Hence,	sometimes	the	curves	cross,	
showing	that	APHIS	can	perform	better	than	other	algorithms	when	
considering	the	top	rank	only,	but	perform	poorer	when	considering	
the	top	10	ranked	images.

3.4 | Recognition rate by number of matching images

The	overall	performance	improved	greatly	with	an	increasing	num-
ber	of	available	matches	in	the	database.	For	the	yellow-	bellied	toad	
image	database,	considering	the	top-	ranked	image	only,	Wild-	ID	in-
creased	 from	 a	 93.2%	 recognition	 rate	 with	 one	matching	 image	
to	 100%	 recognition	 rate	when	 three	matching	 images	 are	 avail-
able	in	the	database	(Figure	3).	However,	due	to	the	poor	recogni-
tion	 rate	 in	 the	 fire	 salamander	 image	 database,	 even	with	 three	
matching	 counterparts	 in	 the	 database,	 Wild-	ID	 achieved	 only	 a	
30%	 recognition	 rate	 with	 the	 top-	ranked	 match	 and	 49%	when	
considering	the	top	10	ranked	images.	I3S	also	improved	based	on	
the	number	of	matches	in	the	image	database,	as	 it	achieved	92%	

TABLE  3 Obtained	rank	CDF	values	for	the	algorithms	in	the	investigated	databases.	The	numbers	in	the	cells	are	cdf(1)	and	cdf(10),	that	is,	
the	ratio	of	images	that	are	ranked	at	top	and	among	the	top	ten	images,	respectively

Salamandra	
spec.

DBSize 500 2,000 2,197

AmphIdent .984/.998 .984/.998 .983/.998

I3S .536/.761 .520/.737 .519/.734

Wild-	ID .137/.268 .118/.230 .116/.226

APHIS	Color .750/.854 .745/.844 .744/.843

APHIS	BW .832/.884 .830/.881 .830/.880

Triturus	spec. DBSize 500 2,000 4,000 7,000 7,458

AmphIdent .999/1.0 .999/1.0 .999/1.0 .999/1.0 .999/1.0

I3S .671/.845 .667/.838 .663/.827 .659/.815 .658/.813

Wild-	ID .726/.854 .700/.839 .676/.831 .648/.814 .645/.812

APHIS	Color .751/.833 .734/.817 .723/.801 .714/.794 .713/.794

APHIS	BW .800/.871 .792/.863 .788/.857 .784/.846 .784/.845

Ambystoma	
opachum

DBSize 500 2,000 4,000 7,000 12,488

AmphIdent .960/.989 .944/.989 .929/.986 .912/.983 .896/.973

I3S .296/.484 .218/.423 .182/.385 .151/.343 .126/.308

Wild-	ID .650/.823 .551/.783 .495/.736 .447/.696 .396/.659

APHIS	Color .450/.595 .409/.527 .388/.493 .372/.474 .363/.456

APHIS	BW .464/.602 .413/.558 .385/.526 .368/.487 .352/.462

Bombina	
variegata

DBSize 500 2,000 4,000 4,063

AmphIdent .977/.988 .973/.983 .969/.983 .969/.983

I3S .845/.920 .821/.902 .804/.886 .804/.886

Wild-	ID .953/.973 .941/.967 .932/.964 .932/.964

APHIS	Color .875/.915 .867/.904 .863/.896 .863/.896

APHIS	BW .886/.927 .879/.914 .873/.907 .873/.907
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and	 97%	 recognition	 rate	when	 evaluating	 the	 top	 ranked	 image	
with	three	existing	matches	in	the	database	of	fire	salamanders	and	
toads,	respectively.	The	performance	of	APHIS	using	binary	images	
improved	 to	 97%	 and	98%	 in	 the	 salamander	 and	 toad	 database,	
and	to	95%	and	97.5%	when	using	colored	images	when	consider-
ing	 the	 top	 rank	 only,	 respectively.	 AmphIdent	 performance	 only	
slightly	 increased	 with	 more	matching	 images	 in	 the	 database	 as	
recognition	 rate	was	 already	 nearly	 100%	with	 a	 single	matching	
image	(Figure	3).

4  | DISCUSSION

Our	results	show	that	performance	can	differ,	at	times	substantially,	
depending	 on	 photo-	matching	 algorithm	 used,	 database,	 database	
characteristics	 (e.g.,	 image	quality	and	numbers	of	matching	 images	
in	the	database),	and	the	number	of	ranked	photos	evaluated.	To	our	
surprise,	 many	 of	 the	 photo-	matching	 algorithms	 had	 recognition	
rates	with	our	amphibian	databases	that	would	not	be	acceptable	for	
use	 in	 subsequent	demographic	analyses.	Our	 results	 also	highlight	
the	 need	 to	 first	manually	measuring	 recognition	 rates	 (potentially	
with	multiple	photo-	matching	algorithms)	of	known	visually	matched	
images	prior	to	selecting	a	specific	photo-	matching	algorithm	and	au-
tomating	the	photo-	matching	process.

4.1 | Photo-matching algorithm performance

Photo-	matching	algorithms	can	be	categorized	by	their	use	of	pixel-	
based	 (AmphIdent	and	APHIS)	or	 feature-	based	algorithms	 (I3S	and	
Wild-	ID).	Our	results	show	a	remarkable	performance	difference	be-
tween	the	 individual	algorithms;	however,	a	clear	superiority	of	one	
algorithm	group	was	not	observed.

The	 issue	 with	 photo-	matching	 algorithms	 that	 are	 based	 on	
local	features	 is	that	they	require	the	 local	patterns	to	be	very	sta-
ble	among	matching	images.	Variability	in	patterns	between	match-
ing	 images	 is	 typically	 not	 due	 to	 an	 individual’s	 pattern	 changing	
through	 time	 [Ferner	 (2010);	 Mettouris,	 Megremis,	 and	 Giokas	
(2016),	 but	 see	 Drechsler	 et	al.	 (2015)	 and	 Kenyon,	 Phillott,	 and	
Alford	 (2010)]	but	a	 result	of	 slight	differences	due	 to	animal	pos-
ture,	hormone	status,	 injury,	environmental	 influences,	or	even	dirt	
(Jorgensen	 &	 Larsen,	 1960;	 Kindermann,	 Narayan,	 &	Hero,	 2014).	
Additionally,	 glare,	 focus,	 camera	 angle,	 and	 flash	 can	 also	 cause	
small	 perturbations	 between	 the	 images.	 For	 example,	 the	 three	
matching	images	of	a	fire	salamander	shown	in	Figure	4a	are	ranked	
at	1st,	92nd	and	1st,	438th	by	 I3S	and	Wild-	ID,	 respectively,	even	
though	 the	 patterns	 visually	 appear	 very	 similar.	 Slight	 variations	
among	 the	 spots	occur,	 especially	on	 the	 rightmost	pattern.	These	
subtle	differences	 in	the	pattern	 influence	the	feature	detectors	to	
consider	different	key	point	locations.	The	extracted	key	points	from	
I3S	show	that	the	leftmost	and	center	image	share	a	great	amount	of	
similarly	located	points,	while	the	key	points	in	the	rightmost	pattern	
differ,	 and	 therefore,	 this	matching	pattern	 is	not	 ranked	highly	by	
I3S	and	Wild-	ID,	despite	 its	very	similar	appearance.	Note	that	the	

pixel-	based	algorithms	AmphIdent	and	APHIS	scored	both	images	as	
a	match.

Wild-	ID	outperformed	I3S	in	all	databases	except	the	fire	salaman-
der	image	database,	even	though	the	SURF	feature	detector	of	I3S	is	
thought	to	be	more	robust	than	SIFT,	which	is	used	by	Wild-	ID	(Bay	
et	al.,	 2006).	The	poor	performance	by	 I3S	 can	mainly	be	explained	
by	a	shortcoming	of	the	 I3S	matching	algorithm:	 I3S	solely	uses	the	
locations	of	 identified	 local	 features	to	find	an	affine	transform	that	
matches	the	feature	positions	of	one	image	to	the	positions	on	other	
images.	However,	 it	 ignores	 a	 numeric	 characterization	 of	 each	 de-
tected	 feature	point	provided	by	SURF,	and	hence,	 it	 considers	 two	
patterns	 to	match,	 even	when	 their	 feature	descriptors	have	differ-
ent	values.	Wild-	ID	 instead	 performs	 a	 search	 for	matching	 feature	
descriptors	 first	 and	 subsequently	 evaluates	 the	 distances	 between	
the	 locations	 of	 these	 features.	This	 additional	 processing	 improves	
performance	of	Wild-	ID	compared	to	I3S	and	explains	the	superiority	
in	recognition	rates	of	Wild-	ID	over	I3S	in	our	study.	The	poor	perfor-
mance	of	Wild-	ID	in	the	fire	salamander	database	can	be	explained	by	
the	significant	amount	of	glare	in	the	fire	salamander	images.	Wild-	ID,	
which	works	 directly	 on	 the	 color	 images,	 considers	 these	 glare	 re-
gions	as	important	features.	However,	as	glare	is	not	stable	between	
matching	 images,	Wild-	ID	performance	 is	degraded.	 In	contrast,	 I3S	
works	on	the	binary	patterns	where	the	glare	was	removed	by	the	bi-
narization	operation.

A	pixel-	based	algorithm	does	not	rely	on	specific	key	points	 in	
the	images.	Instead,	it	considers	the	images	as	a	whole	and	is	hence	
more	robust	to	subtle	changes.	Both	APHIS	and	AmphIdent	calcu-
late	 a	 cross	 correlation	 between	 the	 pixels	 of	 the	 compared	 pat-
terns,	which	can	equalize	for	deformation	of	spots,	as	 long	as	the	
overall	appearance	of	the	images	are	similar.	Pixel-	based	algorithms	
rely	 on	 a	 consistent	 cropping	 of	 the	 pattern,	 such	 that	matching	
spots	of	two	patterns	occur	at	(roughly)	the	same	position	in	the	im-
ages.	In	order	to	equalize	for	different	spot	positions	that	can	occur	
due	to	animal	posture	or	the	cropping	region,	both	AmphIdent	and	
APHIS	 divide	 the	 entire	 patterns	 into	 small	 parts	 and	 compute	
the	 cross	 correlation	 for	 each	 part	 separately.	 By	 employing	 the	
cross-	correlation	 calculation,	 the	 overall	 matching	 success	 is	 not	
degraded	when	two	matching	spots	have	slightly	different	appear-
ances:	As	long	as	they	share	a	decent	amount	of	similar	pixels,	the	
cross-	correlation	 will	 yield	 high	 similarity	 scores,	 indicating	 that	
both	 images	belong	to	the	same	 individual.	 In	addition	to	 individ-
ual	 translations	 of	 each	 part,	AmphIdent	 allows	 individual	 scaling	
of	each	part,	which	explains	the	superior	result	of	AmphIdent	com-
pared	to	APHIS.

Figure	4b	shows	example	images	of	a	yellow-	bellied	toad,	where	
the	pixel-	based	algorithms	were	not	able	to	reliably	retrieve	the	match-
ing	image.	Considering	the	left-	most	image	as	the	unknown	image,	all	
algorithms	retrieved	the	center	image	at	the	top	rank.	Comparing	the	
left	and	right	 images,	 it	becomes	apparent	that	the	cropped	regions	
of	 interest	 are	 very	 different.	 Therefore,	 the	 pixel-	based	 algorithms	
do	not	reliably	recognize	this	match.	On	the	other	hand,	the	feature-	
based	algorithm	Wild-	ID	positioned	the	matching	image	at	rank	1,	as	
it	could	identify	the	characteristic	shape	of	the	pattern	in	the	image.
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4.2 | Number of matching images in the database

Recognition	rates	greatly	improved	for	all	photo-	matching	algorithms	
when	images	had	more	than	one	matching	image	in	the	database.	This	
is	because	a	correct	match	is	counted	whenever	at	least	one	matching	
image	occurs	in	the	top-	ranked	images.	Hence,	when	multiple	match-
ing	 images	 are	 available	 in	 the	database,	 each	 algorithm	has	 several	
chances	to	measure	a	high	similarity	score	for	a	matching	image,	mak-
ing	 it	 more	 likely	 that	 one	 matching	 image	 occurs	 among	 the	 top-	
ranked	images.	Note	that	normally,	having	two	matching	images	in	the	
database	implies	that	a	previous	match	was	already	found	with	only	a	
single	matching	image	in	the	database.	Hence,	the	performance	with	
a	 single-	matching	 image	 limits	 the	overall	performance	and	 is	 there-
fore	a	more	meaningful	and	direct	measure	of	algorithm	performance.	

Alternatively,	as	reported	by	Sannolo	et	al.	(2016),	two	images	of	the	
same	individual	could	be	taken	and	directly	integrated	into	the	image	
database,	because	the	match	is	known	a priori.	However,	this	approach	
requires	increased	effort	with	image	preprocessing	and	image	database	
management,	rendering	it	impracticable	for	large-	scale	databases.

4.3 | Comparison with previous studies

The	recognition	rates	that	we	observed	for	Wild-	ID	and	I3S	appear	to	
contradict	to	several	published	results.	Mettouris	et	al.	(2016)	reported	
a	100%	recognition	rate	for	alpine	newts	(Ichthyosaura alpestris)	and	
smooth	newts	 (Lissotriton vulgaris)	when	using	Wild-	ID	with	a	data-
base	of	3,333	images.	However,	images	were	sorted	into	four	classes	
depending	on	gender	and	species,	yielding	very	small	databases	(162,	

F IGURE  4 A	representative	image	
of	an	individual	fire	salamander	(a)	or	
yellow-	bellied	toad	(b)	with	two	matching	
images.	Within	each	subplot,	the	colored	
image	is	the	original	image,	whereas	the	
gray	image	is	the	binarized	version	overlaid	
with	the	key	points	that	were	detected	
by	I3S(circles).	The	numbers	indicate	the	
retrieved	rank	of	the	matching	images	with	
the	different	photo-matching	algorithms

(a)

(b)
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136,	26,	and	13	images	per	class)	for	the	photo-	matching	evaluation,	
and	the	overall	number	of	matching	image	pairs	was	only	25.

Bendik,	Morrison,	 Gluesenkamp,	 Sanders,	 and	 O’Donnell	 (2013)	
used	 Wild-	ID	 to	 match	 images	 of	 Jollyville	 Plateau	 salamanders	
(Eurycea tonkawae)	and	reported	a	recognition	rate	of	99.3%	with	a	da-
tabase	of	1,367	images.	However,	recognition	rate	was	based	on	a	rank	
of	100	or	better	which	is	beyond	the	ranking	considered	in	our	study	
and	is	not	a	realistic	number	of	images	to	review,	with	a	large	database.

Wild-	ID	 has	 also	 been	 previously	 used	 to	 match	 images	 of	 the	
Wyoming	Toad	 (Anaxyrus baxteri)	with	 the	 authors	 reporting	 a	 rec-
ognition	rate	of	approximately	53%,	even	with	a	small	database	size	
(Morrison	 et	al.,	 2016).	 Hence,	 the	 performance	 of	 Wild-	ID	 based	
on	our	 research	 and	previous	 research	performance	of	Wild-	ID	 can	
significantly	differ	between	databases	and	a	 thorough	evaluation	of	
recognition	rate	is	important	prior	to	matching	a	complete	image	da-
tabase	with	Wild-	ID.

I3S	Classic	has	previously	been	used	to	match	images	of	the	com-
mon	wall	lizard	(Podarcis muralis)	and	western	green	lizard	(Lacerta bi-
lineata)	with	a	recognition	rate	of	99%	with	a	database	of	1,043	images	
(Sacchi	et	al.,	2010).	 In	contrast	to	I3S	Pattern+,	I3S	Classic	requires	
the	user	to	manually	set	the	key	points	 instead	of	employing	an	au-
tomatic	feature	detector	as	in	I3S	Pattern+.	This	requires	a	significant	
amount	 of	manual	 processing,	 but	 by	 defining	 a	 consistent	 rule	 for	
setting	the	points,	a	better	identification	rate	can	be	obtained.

I3S	Pattern	was	used	to	match	images	of	Italian	crested	newts	and	
found	a	100%	recognition	rate	with	a	database	of	852	images	(Sannolo	
et	al.,	2016).	In	this	study,	the	database	was	structured	in	a	way	that	
at	least	three	matching	images	for	each	unknown	image	were	included	
in	the	database.	With	this	amount	of	redundancy	 in	the	database,	a	
recognition	rate	of	100%	is	feasible	considering	that	recognition	rate	
greatly	improves	with	multiple	matching	images	in	a	database.

APHIS	was	used	 in	 (Oscar	 et	al.,	 2015)	 to	match	309	 images	of	
the	 Northern	 spectacled	 salamander	 (Salamandrina perspicillata)	 in-
cluding	19	recaptures	and	287	images	of	the	Balearic	lizard	(Podiarcis 
lilfordi)	including	91	recaptures,	where	it	achieved	a	matching	rate	of	
100%	and	93.4%,	 respectively.	A	correct	match	was	counted,	when	
the	match	occurred	among	the	top	20	ranked	 images.	These	results	
are	roughly	in	line	with	the	results	obtained	in	this	study	for	the	toad	
database,	considering	the	small	database	sizes.

In	(Drechsler	et	al.,	2015),	the	authors	used	AmphIdent	to	match	
a	database	of	1,648	images	of	high	quality	with	162	recaptures	of	the	
great	crested	newt	and	obtained	a	recognition	rate	of	98%	when	man-
ually	comparing	the	10	highest	ranked	images.	Moreover,	the	authors	
in	 (Goedbloed	 et	al.,	 2017)	 used	AmphIdent	 to	 compare	 images	 of	
Salamandra infraimmaculata,	obtaining	recognition	rates	of	100%	for	
high-	quality	 images	and	64.8%	for	very	poor	quality	 images.	The	re-
sults	for	high-	quality	images	are	in	line	with	this	work.

4.4 | Implications of high false rejection rates for 
population models

Unfortunately,	even	relatively	low	FRRs	have	been	found	to	bias	esti-
mates	of	vital	rates	and	population	size	(Morrison	et	al.,	2011,	2016;	

Winiarski	&	McGarigal,	2016).	For	example,	Morrison	et	al.	(2016)	re-
ported	a	200%	positively	biased	population	size	with	a	FRR	of	21.3%.	
Statistical	approaches	have	been	developed	to	incorporate	false	rejec-
tion	error	 (FRE)	with	CR	data	(Givens	et	al.,	2015;	Hiby	et	al.,	2013;	
Morrison	et	al.,	2011).	Although	potentially	flexible,	many	existing	sta-
tistical	approaches	incorporating	FRE	focus	on	estimating	population	
size,	rather	than	survival,	with	closed	population	models	and	are	not	
easily	incorporated	with	existing	CR	software	packages.	To	calculate	
accurate	 estimates	of	 survival,	 it	 is	 recommended	 to	have	FRRs	no	
greater	 than	5%	as	 slight	bias	 in	 survival	 estimates,	 especially	 adult	
survival	of	long-	lived	species,	can	significantly	bias	estimates	of	popu-
lation	growth	(Winiarski	&	McGarigal,	2016).	A	more	rigorous	analysis	
of	 the	 implications	of	misidentification	on	 the	population	models	 is	
out	of	scope	of	this	work;	we	refer	the	reader	to	dedicated	publica-
tions,	such	as	Pradel,	Hines,	Lebreton,	and	Nichols	(1997);	Creel	et	al.	
(2003);	Yoshizaki,	Pollock,	Brownie,	and	Webster	(2009);	Wright	et	al.	
(2009);	Link,	Yoshizaki,	Bailey,	and	Pollock	(2010).

FRR	 for	 a	 given	 image	 database	 can	 be	 estimated	 by	 collecting	
matches	from	visually	matching	a	subset	of	images	and	then	using	a	
selected	 photo-	matching	 algorithm	 to	measure	 similarity	 scores	 be-
tween	 all	 images	 in	 the	 database.	This	 allows	 FRR	 to	 be	 calculated	
and	gives	the	user	guidance	with	how	many	ranked	images	should	be	
reviewed	to	obtain	the	required	recognition	rate.

5  | CONCLUSIONS

This	 study	 presented	 a	 thorough	 analysis	 of	matching	 performance	
of	pixel-	based	and	feature-	based	photo-	matching	algorithms	for	am-
phibian	 image	databases.	Even	though	this	presentation	was	 limited	
to	amphibian	databases,	we	believe	the	obtained	results	are	generaliz-
able	to	other	taxa.	None	of	the	investigated	algorithms	is	specifically	
designed	to	match	amphibians,	but	their	principle	can	be	applied	to	any	
spot	pattern.	We	found	that	the	pixel-	based	algorithm	of	AmphIdent	
outperformed	the	other	algorithms,	whose	performance	varied	signifi-
cantly	by	image	database.	Further,	algorithm	performance	depended	
on	image	characteristics,	number	of	reviewed	images,	and	the	number	
of	available	matches	in	the	database.	Hence,	researchers	should	show	
care	 in	 selecting	 a	 photo-	matching	 algorithm	which	maximizes	 rec-
ognition	 rate.	 Improving	 recognition	 rate	will	 improve	 demographic	
estimates	and	enables	the	use	of	very	large	databases	which	are	un-
feasible	or	virtually	impossible	to	visually	match.
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