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Abstract

Background: Most genes in mammals generate several transcript isoforms that differ in stability and translational
efficiency through alternative splicing. Such alternative splicing can be tissue- and developmental stage-specific,
and such specificity is sometimes associated with disease. Thus, detecting differential isoform usage for a gene
between tissues or cell lines/types (differences in the fraction of total expression of a gene represented by the
expression of each of its isoforms) is potentially important for cell and developmental biology.

Results: We present a new method IUTA that is designed to test each gene in the genome for differential isoform
usage between two groups of samples. IUTA also estimates isoform usage for each gene in each sample as well as
averaged across samples within each group. IUTA is the first method to formulate the testing problem as testing
for equal means of two probability distributions under the Aitchison geometry, which is widely recognized as the
most appropriate geometry for compositional data (vectors that contain the relative amount of each component
comprising the whole). Evaluation using simulated data showed that IUTA was able to provide test results for many
more genes than was Cuffdiff2 (version 2.2.0, released in Mar. 2014), and IUTA performed better than Cuffdiff2 for
the limited number of genes that Cuffdiff2 did analyze. When applied to actual mouse RNA-Seq datasets from
six tissues, IUTA identified 2,073 significant genes with clear patterns of differential isoform usage between a pair
of tissues. IUTA is implemented as an R package and is available at http://www.niehs.nih.gov/research/resources/
software/biostatistics/iuta/index.cfm.

Conclusions: Both simulation and real-data results suggest that IUTA accurately detects differential isoform usage.
We believe that our analysis of RNA-seq data from six mouse tissues represents the first comprehensive characterization
of isoform usage in these tissues. IUTA will be a valuable resource for those who study the roles of alternative
transcripts in cell development and disease.
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Background
Alternative splicing is widespread in higher eukaryotes
as a way to increase cellular and functional complexity
[1-6]. Most human genes are alternatively spliced [7-9],
and most human alternative spicing is tissue-specific
[9,10]. Recently, the Encyclopedia of DNA Elements
(ENCODE) project catalogued human transcripts genome-
wide in two major cellular sub-compartments (nucleus and
cytosol) for 15 cell lines [11], thus providing the most
in-depth picture to date of the human transcriptome.
One finding from that study is that about 10–13 isoforms
are expressed per gene per cell line [11].
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Growing evidence suggests that alternative splicing is
important in cell functions. For example, it plays an
important role in cell development [12-16]. Recently,
Merkin et al. [8] studied tissue-specific splicing pat-
terns in four mammals and one bird and identified
many exons exhibiting highly conserved tissue-specific
splicing patterns. Differential alternative splicing may be
associated with diseases [17]; for example, overexpression
of four-repeat tau mRNA isoforms has been reported in
progressive supranuclear palsy [18]. Abnormally spliced
mRNAs are also found in a high proportion of cancerous
cells [19].
Traditionally, the expression level of individual iso-

forms is quantified one isoform at a time using a specific
primer. Recent advances in next-generation sequencing
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technology [20,21] allow genome-wide profiling of
isoforms (transcripts). Although RNA-Seq conve-
niently provides a global view of the transcriptome at
the gene level, deconvolution of the overall expression
of a gene into the expression of its individual isoforms
from sequence reads is not trivial because similar isoforms
can generate identical sequence reads. Many of the tools
that have recently been developed for this purpose detect
differences in expression between two groups of samples
for each individual isoform of a gene [22-27], rather than
for all its isoforms simultaneously.
In this paper, we focus on detecting differential isoform

usage: “differential” meaning differences between two
groups of samples and “isoform usage” denoting the
set of relative abundances (proportions of total gene
expression) of all isoforms of a gene. Isoform usage so
defined is assessed by a vector of fractions summing to
one. Consequently, detecting differential isoform usage
for a given gene between two groups of samples is a
different problem from that mentioned earlier of detecting
differential expression for any particular individual isoform.
The former problem, by focusing on the entire compos-
itional vector, implicitly incorporates the constraint that
the fractional contributions of the component isoforms
sum to one.
Existing methods for detecting differential isoform

usage can be categorized into two types depending on
whether or not they use information on isoform structure,
e.g., gene annotation. Methods that require isoform struc-
tures, either known a priori or inferred from RNA-Seq
data, include Cuffdiff2 [26], the chi-square test in [28],
rDiff.parametric in [29] and the Probability Splice Graph
(PSG) model in [30]. Methods that do not depend on
isoform-structure information include the Flow Difference
Metric (FDM) model in [31], DiffSplice in [32] and the
rDiff.nonparametric in [29]. All of these methods essen-
tially test for a difference between two groups in their
underlying distributions of isoform usage; and they all
make use of alignment data obtained from the RNA-Seq
sequence reads (either single-end reads or paired-end
reads).
Among methods that utilize prior information on

isoform structure, Cuffdiff2 [26] either uses the known
isoform-structure information or uses information on
isoform structure inferred from the RNA-Seq alignment
data by Cufflinks [33]. The alignment data are also used
to estimate the abundance of isoforms of genes. These
estimates are then used to test for differential isoform
usage between the two groups for those genes with all
isoforms sharing the same start site. Another method in
this category, the chi-square test in [28], first utilizes the
known isoform-structure information to identify regions
that are unique to particular isoforms and uses the
counts of the alignments in those unique regions to test
for differential isoform usage. Similarly, for each gene,
rDiff.parametric [29] first identifies genomic regions
that are not common to all isoforms in the gene and
uses the counts of the alignments in those regions to
test for differential isoform usage by a negative-binomial
model. Finally, PSG [34], uses known isoform structure in-
formation to construct a splice graph, aligns the RNA-Seq
reads to the splice graph, estimates the weights of the
edges in each sample from the aligned reads, then uses
those estimated weights to test for differential isoform
usage with a likelihood ratio test.
Each of these procedures has limitations, however.

Cuffdiff2 cannot test for differential isoform usage directly
when the isoforms of a gene do not share the same
transcription start site (TSS), as it is designed to detect
differential alternative splicing events for isoforms
originating from the same pre-mRNA. The chi-square
test in [28] can only be applied to genes that contain
unique regions among the isoforms; so its power is
expected to be limited when the unique regions are
small. Similarly, rDiff.parametric [29] is expected to
have limited power when regions that are not common
to all isoforms are small. Finally, PSG [30] does not
accommodate biological replicates and requires exactly
one biological sample per group.
Tools that do not require isoform structures to test for

differential isoform usage employ permutation tests to
compare the alignments of sequence reads over the gene
region in the two groups and provide an overall test for
each gene. FDM [31] constructs a splice graph for each
gene in each sample using the RNA-Seq alignment data,
calculates the Flow Difference Metric (FDM, a metric to
measure the difference between two above splice graphs)
for every pair of the constructed splice graphs (one for a
sample), and tests for differential isoform usage using
those FDMs. DiffSplice [32] also constructs a splice graph
from the RNA-Seq alignment data for each sample, and
indirectly tests for differential isoform usage by testing for
the differential distribution of the alignments over the
genomic locations where “alternative splicing occurs” in
the gene, i.e., the Alternative Splicing Modules (ASM’s) in
[32]. rDiff.nonparametric represents each alignment in a
gene as a binary vector whose length is the number of
base pairs in the gene, calculates the average of these bin-
ary vectors from all samples in each group, and then tests
for differential isoform usage using the Euclidean distance
between the two averages as the test statistic. One advan-
tage of these three procedures is that they do not require
the isoform structure information and so can be applied
to genomes with incomplete or unknown annotations.
However, there are disadvantages too. For example, FDM
and DiffSplice do not use the available data efficiently
because, when applied to paired-end reads, they do not
directly incorporate the uncertainty of the unsequenced
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portion of the underlying mRNA fragments into their
models. Such uncertainty is only partially handled by
alignment tools such as MapSplice (for FDM) and
MapPER (for DiffSplice) before the data analysis. Also,
none of these methods can pinpoint which isoforms
are involved in differential isoform usage, as individual
isoforms are never identified in these methods.
In this paper, we present Isoform Usage Two-step

Analysis (IUTA), a novel approach for detecting genes
with differential isoform usage between two groups of
samples. IUTA requires knowledge of the gene’s isoform
structure and availability of multiple samples (at least
two per group). For a given gene, IUTA first estimates
isoform usage in each sample based on paired-end
RNA-Seq alignment data using a statistical model simi-
lar to one used by MISO [23]. IUTA then tests for dif-
ferential isoform usage between the two groups using
those estimates. Because isoform usage is a type of
compositional data, i.e., vectors that contain the pro-
portions of each component comprising the whole unit
[35], IUTA defines the statistical testing problem as a
test of equal means for two multivariate distributions
under the Aitchison geometry [36] instead of under
the usual Euclidean geometry. The Aitchison geometry
is widely regarded more suitable for compositional data
analysis than Euclidean geometry [37]. Fully elucidating
the reasons this preference is beyond our scope here, but
the following example will illustrate the issue. Consider
two three-isoform genes in two conditions. For Gene A,
isoform usage is (0.05, 0.55, 0.40) in Condition 1 and
(0.10, 0.50, 0.40) in Condition 2. For Gene B, the corre-
sponding isoform usage vectors are (0.30, 0.30, 0.40) and
(0.35, 0.25, 0.40). Most biologists, regarding fold-change
as the way to assess differential expression, intuitively
regard Gene A has having a greater disparity in isoform
usage between the conditions than Gene B because the
proportion of the first isoform doubles for Gene A but
only increases about 14% for Gene B and the changes in
the second components are more comparable between
the genes. The Euclidean distance between conditions is
the same for both genes (the absolute change in first and
second components is each 0.05); whereas the Aitchison
distance between conditions is based on log-ratios (see
Additional file 1) and is larger for Gene A compared to
Gene B (0.609 vs. 0.238), in accord with intuition. IUTA is
the first approach that tests for differential isoform usage
under Aitchison geometry. IUTA is implemented as a
R package and is available at http://www.niehs.nih.gov/
research/resources/software/biostatistics/iuta/index.cfm.
We performed several simulation studies to show the

performance of IUTA and to compare it with the
Cuffdiff2 (version 2.2.0, released Mar. 2014), in which the
developers improved the related testing procedures
substantially from their old published procedures [26].
We restricted our comparison to Cuffdiff2, rather than
including other methods that detect differential isoform
usage, because Cuffdiff2 is perhaps the most commonly
used tool that both tests for differential isoform usage and
estimates isoform usage vectors. The results showed that
IUTA is robust and has advantages over Cuffdiff2. We also
applied IUTA to six tissue-specific RNA-Seq datasets from
the Mouse Genomes Project at the Wellcome Trust
Sanger Institute. We carried out 15 pair-wise comparisons
among the six tissues to identify both genes with differen-
tial isoform usage between any two given tissues and
genes with unique isoform usage in a given tissue com-
pared to all others. This analysis represents the first
genome-wide analysis of isoform usage in those tissues.
Our results on those data are consistent with other
biological literature and will be valuable to those who
study tissue-specific isoform usage.

Methods
Overview of IUTA
Suppose we have paired-end RNA-Seq alignment data
for multiple samples from each of two groups (at least
two samples per group). As a first step, for each gene in
each sample, IUTA uses alignment data (in BAM format)
to estimate the isoform usage according to the isoform
structure from an annotation file. IUTA employs a stat-
istical framework that is similar to, but different in some
aspects from MISO’s [23]. In a second step, IUTA uses
the estimates from the first step to test for differential
isoform usage in each gene between the two groups.

Estimating isoform usage
Suppose a gene has K isoforms. Let θij = (θij1,⋯, θijK)
be the isoform usage of the gene for sample j in group i
where i = 0, 1 and 1 ≤ j ≤ Ji (Ji is the number of samples
in group i). Each θijk represents the relative abundance
of isoform k, that is, the proportion of the total number of
transcripts for that gene with isoform k. To define a likeli-
hood function for θij, we let lk be the length of isoform k
(1 ≤ k ≤K), and introduce the following notation, in which
the group and sample indices i and j are ignored for the
sake of brevity. Let r = (r1,⋯, rN) be the observed align-
ment data over the gene region, where N is the number of
aligned paired-end sequence reads and rn (1 ≤ n ≤N) is the
alignment, i.e., the genomic location information for the
pair n. Let R = (R1,⋯, RN) be the random vector for which
r is a realization. For n = 1,⋯,N, let In be the random
variable indicating the isoform from which read Rn is
sequenced; let Fn be the random variable representing the
fragment from which read Rn is sequenced; and let Ln be
the random variable representing the length of Fn. Also let
lk
n be the length of the fragment of isoform k (1 ≤ k ≤K)
that matches rn (1 ≤ n ≤N), i.e., the two ends of the frag-
ment are identical with read pair n, and define lk

n as 0 if
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there is no fragment of isoform k that matches rn. Let f ( ⋅ )
be the fragment length distribution (unknown but can be
estimated from the data).
The likelihood function for a single gene (in sample j

of group i) is then defined as:

L θð Þ ¼ PðR ¼ r θj Þ ¼
YN
n¼1

P Rn ¼ rn θj Þ:ð

Because P(Rn = rn, In = k|θ) = P(Rn = rn, In = k, Ln = lk
n|θ),

we can write

L θð Þ ¼
YN
n¼1

XK
k¼1

P Rn ¼ rn; In ¼ k; Ln ¼ lnk θj Þ:�

Expressing the joint probability as a product of condi-
tional probabilities, we have

L θð Þ ¼
YN
n¼1

XK
k¼1

PðIn ¼ k θj ÞPðLn ¼ lnk In ¼ k; θj Þ

�PðRn ¼ rnjIn ¼ k; Ln ¼ lnk ; θÞ
¼

YN
n¼1

XK
k¼1

pkf lnk
� � 1

lk−lnk þ 1
;

where pk ¼ PðIn ¼ k θj Þ ¼ lkθkXK

u¼1
luθu

; k = 1,⋯, K. The

unknown fragment length distribution f (⋅) can be esti-
mated from r (Additional file 1). Note that the sample
index (ij) of pk (should be pkij) is also ignored in the
above discussion.
IUTA’s likelihood function is similar to the likelihood

function in MISO [23], with three main differences.
First, MISO defines pk differently than IUTA does, using

pk ¼ lk−μþ1ð ÞθkXK

u¼1
lu−μþ1ð Þθu

; where μ is the mean of the empir-

ical fragment length distribution f ’ that is obtained by
mapping all paired-end reads to long constitutive 3′ UTRs
(UnTranslated Regions). Second, MISO uses a discrete
normal distribution (with mean and variance pre-
determined by the empirical fragment length distribu-
tion in any RNA-Seq sample processed by the same
assay) in the place of f while we estimate f from the
analyzed RNA-Seq sample in a completely different way
(Additional file 1). Finally, IUTA and MISO calculate
P(Rn = rn|In = k, Ln = lk

n, θ) differently: IUTA uses 1
lk−lnkþ1

while MISO uses 1
m rn;lkð Þ , where m(rn, lk) is the number of

“mappable positions” defined to reflect an overhang
restriction when a read straddles a splice junction.
To find the maximum likelihood estimates (MLEs) of θ,

we first use an expectation-maximization (EM) algorithm
to find the MLE of p, denoted p̂ ¼ pb1;⋯; pbK� �

, based on
the likelihood function L(θ) (treating the In’s as unobserved
latent variables). We then calculate the MLEs of θ,
denoted θ̂ ¼ θb1;⋯; θbK� �
, from p̂ where θbk ¼ pbk=lkXK

u¼1
pbu=lu

(1 ≤ k ≤K). The details of the EM algorithm, including the
choice of the starting point of the algorithm, are provided
in Additional file 1.

Testing for differential isoform usage
Let θi be the mean isoform usage (in Aitchison geometry)
of the gene of interest in group i, where i = 0, 1. We want
to test:

H0 : θ0 ¼ θ1 versusH1 : θ0≠θ1:

Using an isometric log-ratio (ilr) transformation [38], a
distance-preserving one-to-one mapping from the open

simplex SK ¼ x1;⋯; xKð Þjxk > 0; 1 ≤ k ≤K ;
XK

k¼1
xk ¼ 1

n o
with Aitchison geometry to the real space ℝK − 1 with
Euclidean geometry, we can test the equivalent hypo-
theses:

H0
0 : ilr θ0ð Þ ¼ ilr θ1ð ÞversusH 0

1 : ilr θ0ð Þ≠ilr θ1ð Þ:
The ilr transformation allows us to honor the Aitchison

geometry on the simplex when carrying out statistical
calculations in familiar Euclidean space. Details of the
Aitchison geometry and the ilr transformation are
provided in Additional file 1.
We take a hierarchical approach to deriving a probabil-

ity model for a sample-specific isoform usage estimate θbij ,
the MLE of the sample-specific mean isoform usage (θij)
in sample j of condition i (this MLE is obtained from the
EM algorithm previously mentioned). Let Θbij denote the
random variable for sample-specific estimated isoform
usage, whose observed value is θbij . Our hierarchical model
specifies a first-stage distribution for ilr Θbij� �

conditional
on the sample-specific mean θij and a second-stage distri-
bution for ilr(θij) conditional on the group-specific mean
θi. This second stage of the hierarchy implicitly views the
θij as random quantities that vary around a fixed group-
specific mean θi.
More specifically, we assumed in the first stage of the

hierarchy that the distribution of Θbij , after ilr- transform-
ation, has a normal distribution on ℝK − 1 [39] centered at
ilr(θij) with variance-covariance matrix Υij, that is,

ilr Θbij� � eN k−1 ilr θij
� �

;Υij
� �

; ð1Þ
where N k−1 denotes the multivariate normal distribution
in ℝK − 1. We require that Θbij lie in the open simplex, i.e.,
that all relative abundances are positive so that the ilr
transformation is applicable. To satisfy the requirement, if
an isoform’s relative abundance is estimated as zero in
some, but not all, samples, IUTA replaces values estimated
as zero with a small positive value (0.0001 by default;
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adjustable by the user). If an isoform’s relative abundance
values are estimated as zero in all samples of both groups,
then that isoform is excluded from consideration in the
testing stage. The variance-covariance matrix Υij can vary
across samples in the same group because read coverage
may differ among samples. For the second stage of the
hierarchy, we assumed that each sample-specific mean θij
for 1 ≤ j ≤ Ji, after ilr- transformation, arises independently
from a normal distribution on ℝK − 1 centered at ilr(θi)
with variance-covariance matrix Σi, that is,

ilr θij
� �eN K−1 ilr θið Þ;Σið Þ; ð2Þ

Similar to the first stage, we require that θij lie in the
open simplex. Also note that the model allows each
condition to have a distinct variance-covariance matrix
Σi. Combining Equations (1) and (2), gives the marginal
probability model for sample-specific estimated isoform
usage Θbij:

ilr Θbij� �eN K−1 ilr θið Þ;Σi þ Υij
� �

:

We simplified this model somewhat in our testing
procedures by proceeding as though Υij = Υi for 1 ≤ j ≤ Ji.
Although this simplifying assumption is arbitrary, a
simulation study showed that IUTA is robust to moderate
departures from it (see Additional file 1). Consequently,
the statistical tests implemented in IUTA assume that
all samples within group i have a common marginal
variance-covariance matrix, Σi +Υi, that differs between
groups.
Thus, under our assumptions, testing H0’ versus H1’ is

a test of whether two multivariate normal distributions
have equal mean vectors when they have different
variance-covariance matrices. In the statistical literature,
this problem is called the multivariate Behrens-Fisher
problem. We employed the SKK [40], CQ [41] and KY
test [42] to test for H0’ versus H1’. Details are provided
in Additional file 1. Notice that when K = 2, the KY test
becomes the Welch’s t-test [43]. In implementing these
tests, IUTA employs the observed values of θbij from
each group to empirically estimate the group-specific
variance-covariance matrix Σi +Υi for each group i. The
KY test requires that the estimate of Σi +Υi be positive
definite for each group; but the SKK and CQ tests do
not, though their critical values are justified using large-
sample theory. These latter two tests are appropriate for
situations where the number of isoforms in a group is
greater than the number of samples in the group. Conse-
quently, IUTA can in principle accommodate genes with
any number of isoforms provided there are at least two
samples per group (though statistical power would, of
course, suffer with such small sample sizes).
Simulations
We performed three simulation studies. The first one
aimed at two goals: 1) to compare the three tests (SKK,
CQ and KY) implemented in IUTA, and 2) to compare
IUTA (with SKK) with Cuffdiff2 (version 2.2.0, release in
Mar. 2014). The second simulation studied the robust-
ness of IUTA to the violation of the constant variance-
covariance assumption that Υij = Υi for 1 ≤ j ≤ Ji. We
induced differences in Υij among samples by simulat-
ing differences in read coverage among samples. The
third aimed to assess further the robustness of IUTA to
differences of read coverage among samples.
In the first two simulation studies, we selected 8,628

mouse genes with number of isoforms between two and
ten from the UCSC known mouse genes (mm10) annota-
tion [44]. In the last simulation study, we randomly se-
lected five genes (Zfp407, Loxl2, Bptf, Pde4dip, and Stab2)
with 2, 3, 5, 7 and 8 isoforms, respectively, and then two
additional genes (Dido1 and Ifi203), both with 8 isoforms.
Details of gene selection are provided in Additional file 1.
In the first two simulation studies, we divided the

8,628 genes into two sets (8,060 genes with 2–5 isoforms
and 568 genes with 6–10 isoforms). Using each set of
genes, we simulated 10 RNA-Seq alignment datasets (five
for each group) in BAM format (http://genome.ucsc.edu/
FAQ/FAQformat.html#format5.1). The average read cover-
age for each gene in the first simulation study was 100, and
the average read coverage for each gene in the second
simulation study varied among the samples (either 30, 50,
70, 90, or 110) in each group. In the last simulation study,
we chose six different levels of read coverage (10, 30, 50,
70, 90, and 110). At each read-coverage level, we carried
out 1,000 in silico experiments for each gene. In each of
the 1000 experiments, we also simulated 10 RNA-Seq
alignment datasets (five for each group).
The parameters Σ0 and Σ1 used in the simulation

studies for the 8,628 genes were obtained from Cufflinks
analysis of 10 mouse placenta RNA-Seq data sets (five
wild-type and five Zfp36l3 knockout) (unpublished)
provided by Perry Blackshear (NIEHS). The details of all
simulations are provided in Additional file 1.

Results
Comparison among three different tests in IUTA
Our simulation study demonstrated that the SKK test
and CQ test performed comparably and both outperformed
the KY test (Additional file 1: Figure S1). As the KY test is
only applicable when the dimension of the data is less than
the sample sizes, we used the SKK test for all subsequent
analyses.

Performance comparison between IUTA and Cuffdiff2
We also used the above simulated datasets to compare the
performance between IUTA and Cuffdiff2. Out of the

http://genome.ucsc.edu/FAQ/FAQformat.html#format5.1
http://genome.ucsc.edu/FAQ/FAQformat.html#format5.1
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8,628 (see Additional file 1 for details on the gene selec-
tion) mouse mm10 UCSC known genes [44], IUTA was
able to analyze all of them for differential isoform usage.
In comparison, Cuffdiff2 could only analyze 4159 (48%).
Cuffdiff2 was unable to analyze the other 4,469 genes for
two reasons. First and foremost, Cuffdiff2 is designed
specifically to test differential isoform usage for a given
transcription start site (TSS). Nearly half of the genes
(4,381 out of 8,628) contained isoforms with different
TSSs, thus, Cuffdiff2 eliminated those genes from test-
ing. Second, Cuffdiff2 is not well suited for testing genes
whose isoform structures are similar. Even with the
average reads coverage of 100 used in our simulation,
Cuffdiff2 declared that 88 of the 4,247 did not have
enough alignments for testing. For the 4,159 genes that
both IUTA and Cuffdiff2 analyzed, IUTA outperformed
Cuffdiff2 (Figure 1).

Robustness of IUTA to a constant variance-covariance
assumption
To see how IUTA performed when the constant variance-
covariance assumption that Υij =Υi for 1 ≤ j ≤ Ji (see the
Methods section) is violated, we repeated the same simu-
lations as above but varied the read coverage among the
five samples of each group for each gene (either 30, 50, 70,
90, or 110), as this variation in coverage would induce
variation in the precision with which isoform usage was
estimated in each sample. The ROC curves for IUTA
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Figure 1 Performance comparison between IUTA and Cuffdiff2
using simulated data. Receiver Operating Characteristic (ROC)
curves based on the 4159 mouse genes that can be tested by both
Cuffdiff2 and IUTA. False positive rate (proportion of true negatives
that are claimed as positives) and true positive rates (proportion of
true positives that are claimed as positives) were computed by
varying the p-value cutoffs.
(Additional file 1: Figure S2) were nearly identical to
those in Figure 1. Again, the SKK and CQ tests per-
formed comparably and both outperformed the KY test.
With smaller coverage per sample than in the previous
simulation, Cuffdiff2 could analyze only 4,136 of the
8,628 genes that IUTA analyzed. As before, for the
genes both tools could analyze, IUTA performed slightly
better than Cuffdiff2. Those results demonstrated that
IUTA is robust to the violation of the constant variance-
covariance assumption.

Robustness of IUTA to the depth of read coverage
For seven genes (Zfp407, Loxl2, Bptf, Pde4dip, Stab2,
Dido1 and Ifi203), we chose six different levels of average
read coverage, namely, 10, 30, 50, 70, 90, and 110, and
carried out 1,000 simulations at each read-coverage level.
We ran IUTA on the 42,000 datasets (7 × 6 × 1000). Type-I
error rate and power were computed based on the nominal
α level 0.05. As shown in Table 1, the Type-I error rate and
power were consistent across the different levels of read
coverage for each gene, except for Bptf, a gene with five
isoforms, two of which (uc007mac.1 and uc007mae.2) con-
tain 28 long exons and are highly similar. Among the three
genes (Dido1, Ifi203, and Stab2) with eight isoforms, IUTA
had the smallest power for Stab2, a long gene (166,733 bp)
with 69 exons for which the eight isoforms have many
exons in common. For the other two genes (Ifi203 and
Dido1) with eight isoforms but with fewer exons in
common, IUTA showed higher power. Therefore, we
concluded that the read coverage had little effect the
performance, but the isoform structure mattered.
Inspection of Table 1 revealed a troubling feature of

IUTA_SKK: although the tests were performed at nominal
α level 0.05, the empirical type I error rate (false positive
rate) was larger than 0.05 for almost every simulated data
set. IUTA_CQ, but not IUTA_KY, showed the same fail-
ure to maintain the correct Type I error rate (results not
shown). Although we had not included CuffDiff2 in this
simulation originally, we now undertook a similar simula-
tion study to compare IUTA and CuffDiff2 with respect to
Type I error rates. We selected three genes (Dhx9, Mr1
and Trim11), each had 4 isoforms sharing the same
transcript start site. We considered two different levels of
read coverage (30 and 90). For each gene at each read-
coverage, we simulated 1000 data sets with 5 replicates in
each of the two groups under the null hypothesis that
both groups had the same isoform usage. The empirical
type I error rates for all three tests (IUTA_SKK,
IUTA_CQ and Cuffdiff2) were larger than nominal 0.05
(Table 2). We conclude that both Cuffdiff2 and IUTA
fail to control the Type I error rate at the nominal level.
Taken together, our simulation studies demonstrated

that IUTA performed better than Cuffdiff2 for genes that
both could analyze and was able to analyze more genes



Table 1 Empirical Type I error rate (empirical power) of IUTA_SKK at nominal Type I error rate 0.05 for various levels
of read coverage for a selection of genes

Gene No. of isoforms
Read coverage

10 30 50 70 90 110

Zfp407 2 0.06 (0.99) 0.08 (1.00) 0.08 (1.00) 0.08 (1.00) 0.08 (1.00) 0.07 (1.00)

Loxl2 3 0.07 (1.00) 0.07 (1.00) 0.10 (0.99) 0.09 (1.00) 0.11 (0.99) 0.11 (0.99)

Bptf 5 0.30 (0.96) 0.29 (0.96) 0.27 (0.96) 0.27 (0.95) 0.25 (0.95) 0.23 (0.96)

Pde4dip 7 0.04 (0.92) 0.04 (0.94) 0.07 (0.95) 0.04 (0.93) 0.06 (0.96) 0.07 (0.96)

Dido1 8 0.11 (0.87) 0.10 (0.89) 0.10 (0.90) 0.11 (0.88) 0.11 (0.87) 0.10 (0.89)

Ifi203 8 0.09 (0.77) 0.10 (0.76) 0.08 (0.77) 0.09 (0.70) 0.10 (0.76) 0.09 (0.74)

Stab2 8 0.08 (0.35) 0.07 (0.43) 0.06 (0.45) 0.07 (0.44) 0.07 (0.51) 0.08 (0.44)
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than Cuffdiff2. IUTA was robust to the read coverage,
but both IUTA and Cuffdiff2 failed to maintain the
nominal Type I error rate. IUTA was more powerful for
genes whose isoforms have fewer exons in common than
for genes with many exons in common.

Applications of both IUTA and Cuffdiff2 to real RNA-Seq
datasets from mouse tissues
We applied IUTA to 36 RNA-Seq datasets from the
Mouse Genomes Project at the Wellcome Trust Sanger
Institute (accession number: ERP000591). These datasets
consist of six biological replicates from each of six
mouse tissues (liver, spleen, lung, heart, thymus, and
hippocampus).
We first aligned the sequence reads to the mouse

(GRCm38 or mm10) RefGene gene models using Tophat
(version 2.0.8) [45]. Next, we carried out all 15 pair-wise
comparisons between any two tissues using IUTA. In
each comparison, we estimated the isoform usage in each
sample, gene by gene, and then tested for differential
isoform usage while controlling the family-wise error
rate (FWER) at 0.01 with the Bonferroni correction. The
numbers of genes with statistically significant differen-
tial isoform usage are listed in Table 3 with their official
gene symbols provided in Additional file 2. The smallest
number of genes with differential isoform usage was
Table 2 Empirical Type I error rates at nominal Type I error
rate 0.05 for three tests at two levels of read-coverage for
three genes

Gene Read coverage
Test

IUTA_SKK IUTA_CQ Cuffdiff2

Dhx9
30 0.10 0.10 0.08

90 0.10 0.10 0.09

Mr1
30 0.22 0.13 0.28

90 0.25 0.13 0.28

Trim11
30 0.13 0.11 0.10

90 0.12 0.11 0.11
from the comparison between spleen and heart whereas
the highest number was from the comparison between
thymus and hippocampus. In total, IUTA identified
2,073 genes with differential isoform usage in at least
one comparison. Estimated isoform usage in all six tis-
sues and the pair-wise comparison results (p-values) for
all genes tested are provided in Additional file 3.
Next, we searched for genes with tissue specific isoform

usage. Specifically, we searched for genes whose isoform
usage was significantly different in all comparisons between
a given tissue and remaining five tissues but non-significant
in every comparison that did not involve the given tissue.
Forty-six such genes were identified (Table 4).
One such gene is Pxk, which has two isoforms

(NM_178279 and NM_1454578) (Figure 2). Pxk, also
known as MONaKA, encodes for the PX domain con-
taining serine/threonine kinase. MONaKA has been
suggested to modulate brain NaK-ATPase and may
thereby participate in the regulation of electrical excit-
ability and synaptic transmission [46]. IUTA estimated
that NM_178279 was predominantly expressed in
hippocampus whereas NM_145458 was predominantly
expressed in the other five tissues. Isoform NM_178279
has a unique exon (the middle exon in the Figure 2).
Another example is Eef1d (Figure 3), IUTA estimated that
NM_029563 has a large relative abundance in hippo-
campus and has a relative abundance almost 0 in each of
the other 5 tissues.
Table 3 The number of genes with statistically significant
differential isoform usage between pairs of mouse tissues

Tissue Liver Spleen Thymus Lung Heart Hippocampus

Liver NA 323 680 508 399 847

Spleen 323 NA 311 365 284 676

Thymus 680 311 NA 538 474 1030

Lung 508 365 538 NA 303 781

Heart 399 284 474 303 NA 459

Hippocampus 847 676 1030 781 459 NA



Table 4 Genes with significant tissue-specific isoform
usages from 15 pair-wise comparisons among six tissues

Tissue Gene

Hippocampus

Abi2, Arfgap2, Camta2, Dctn1, Dctn2, Eef1d, Eif4g1,
Ltbp4, Nelf, Nqo2, Pxk, Tecr, Mon2, Traf3, Faim, Parp6,
Gopc, Eya3, 1110021J02Rik, Nt5c2, Cadm1, Camkk2,
Fchsd2, Gnal, Ptprs, Wdr37, Morf4l2

Heart Naca

Liver
Mxi1, Psen2, Ptpn6, Bdh1, Nmi, Tomm6, Efemp2, Ythdf3,
Slc6a8, Masp2, Il33, Stat5b, Timm22, Alkbh7

Lung Cttnbp2nl, C1qtnf5

Spleen Fam149b

Thymus
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Finally, we applied Cuffdiff2 on the liver and spleen
data and compared its performance to that of IUTA.
The Cuffdiff2 was also run using the mouse RefSeq gene
models. For this data (two groups of six replicates, 27–36
million read pairs in each liver replicate and 8–15 million
read pairs in each spleen replicate), both tools run fast,
though Cuffdiff2 was faster (8 hours for Cuffdiff2 and
16 hours for IUTA).
Among the 2385 mouse genes with more than one iso-

form and the same transcription start site (in the mouse
RefSeq gene model) for all isoforms, IUTA was able to
assess statistical significance of isoform usage difference
for 1482 genes whereas Cuffdiff2 was able to do 1478
genes given the RNA-Seq data, of which 1268 genes were
common between the two tools. IUTA detected more sig-
nificant genes than Cuffdiff2 did under the same nominal
False Discovery Rate (0.05): specifically, Cuffdiff2 reported
122 significant genes whereas IUTA identified 297 sig-
nificant genes, among which 83 were in common. Visual
examination of the isoform usage plots of the genes de-
clared significant by IUTA but not by Cuffdiff2 suggests
that the IUTA significant genes are credible. A good
example is the Cd74 gene (Figure 4). Mouse Cd74 gene
has two isoforms. The relative proportion of isoform
NM_001042605 is higher in liver than in spleen, as sup-
ported by the read coverage plot (Figure 4). The unique
(middle) exon in NM_001042605 has higher relative
read coverage in liver than in spleen, whereas the read
coverage on the common exons appears to be similar
among the samples. Although Cuffdiff2 also gave a
small p-value (0.020), it failed to reach significance after
adjusting for false discovery rate (q-value = 0.14). It is
worth pointing out that both IUTA and Cuffdiff2 gave
similar isoform usage estimates for this gene. The esti-
mates from IUTA are (0.25, 0.75) in liver and (0.11, 0.89)
in spleen, whereas those from Cuffdiff2 are (0.22, 0.78) in
liver and (0.11, 0.89) in spleen, respectively. Estimates of
isoform usage were often similar between IUTA and
Cuffdiff2 even when they differed in declaring a gene to
have differential isoform usage between tissues.
Discussion
Recent advances in next-generation sequencing technolo-
gies enable rapid profiling of the entire transcriptome.
Methods for identifying differentially expressed genes
from RNA-Seq data have been developed, either at the
gene level or transcript level. Less attention has been paid,
however, to the development of robust and general
methods for identifying differential isoform usage (the
set of the relative abundances of all isoforms of a gene).
Detecting differential isoform usage is different from
detecting differential isoform expression, which aims
to detect the difference of expression level between
two conditions for each individual isoform of each
gene. For the latter problem, many excellent tools have
been proposed such as MISO [23], Bitseq [22], and
EBseq [24]. Among methods for the former problem,
Cuffdiff2 has gained recognition as the best available
tool. Our proposed method, IUTA, which explicitly makes
use of the compositional nature of isoform-usage estimates,
offers some advantages compared to the recent completely
overhauled version of Cuffdiff2 (http://cufflinks.cbcb.umd.
edu). Because MISO, Bitseq, and EBseq are designed for
testing a statistically different hypothesis than Cuffdiff2
and IUTA, we did not include the former methods in our
simulations.
Using alignments from paired-end reads and a known

isoform structure, IUTA first estimates the isoform
usage for each gene in each sample from each group and
then uses those estimates to test for differential isoform
usage between two groups. Because isoform usage is a
type of compositional data, i.e., vector of all relative pro-
portions of the whole, Aitchison geometry is more suitable
than Euclidean geometry. Aitchison geometry implicitly
respects the bounded sample space induced by the
isoform usage vector’s summing to one, and its distance
metric is fundamentally related to fold-change. Thus,
IUTA formulates the problem of testing for differential
isoform usage under Aitchison geometry and is, to our
knowledge, the first approach to do so.
One aspect of the Aitchison geometry can be problem-

atic, however. Two proportions for the same isoform in
different conditions that are both quite small but differ
by orders of magnitude (say, 10−7 and 10−10) sometimes
have a strong influence on conclusions. Even though dis-
tinguishing such small values is beyond the ability current
technology, estimates of isoform usage occasionally con-
tain them. Through the simulation and real data studies,
we found that genes with one or more isoforms having
near-zero usage in both conditions were often declared to
have statistically significant differential usage even when
the other entries of the isoform-usage vector were quite
similar. To deal with this issue of near-zero estimated
usage for some isoforms, IUTA replaces those values,
together with sporadic estimated zeros, by a user-specified

http://cufflinks.cbcb.umd.edu
http://cufflinks.cbcb.umd.edu


Figure 2 Visualization of differential isoform usage for Pxk across the six mouse tissues. (Top) pie plot representations of tissue-specific
isoform usage; (bottom) observed RNA-Seq read coverage (in each tissue).
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small positive value (0.0001 by default) to facilitate the
testing procedure. Setting an even larger value such as
0.01 would ensure that the top-ranked significant genes
are those with a large change in their isoform usages. The
user can investigate whether near-zero values are influ-
encing conclusions by seeing whether changes in this
tuning parameter impact which genes IUTA declares as
having differential isoform usage. This ability represents
a practical approach to a knotty problem in compositional
data analysis.
A distressing feature of both IUTA and Cuffdiff2 was

their failure to maintain the nominal Type I error rate –
both rejected the null hypothesis too often when it was
true. Because procedures for controlling false discovery rate
rely on p values from individual tests, a set of genes de-
clared to have differential isoform usage at a false discovery



Figure 3 Visualization of differential isoform usage for Eef1d across the six mouse tissues. (Top) pie plot representations of tissue-specific
isoform usage; (bottom) observed RNA-Seq read coverage (in each tissue).
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rate of, say, 0.05 will actually represent a larger, perhaps
much larger, false discovery rate when using these two pro-
cedures. The most likely reason for the failure of IUTA to
control the Type I error rate is that the validity of its tests’
p values is justified theoretically for large numbers of
replicate samples but not for the few replicate samples
used in studies of isoform usage. We believe that this
issue is likely widespread among genome-wide tests that
based on only a few replicate samples. We found it true
of Cuffdiff2 also. Because many comparisons among
competing procedures are based on ROC curves, the
failure to properly control Type I error rate or false discovery
rate may not be noticed by those developing methods – as
almost happened to us.
An ideal solution to the failure to control Type I error

rates in isoform usage testing is elusive. Though much



Figure 4 Visualization of differential isoform usage for Cd74 in the mouse liver and spleen tissues. (Top) pie plot representations of
tissue-specific isoform usage; (bottom) observed RNA-Seq reads coverage (in each sample of each tissue).
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larger numbers of samples in each group would amelior-
ate the problem, the cost of experiments would be pro-
hibitive. Permutation testing is another option. Although
we found that a permutation approach for the tests
IUTA_SKK and IUTA_CQ helped to maintain the nominal
Type I error rate (see details in the Additional file 1), the
minimum possible p values for permutation tests with few
samples can be too large to reach statistical significance
after FDR or other genome-wide multiple-comparison
adjustment. Maintaining the correct Type I error rates will
remain a challenge whenever inferences must be based on
a relatively small number of replicate samples.
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IUTA has several advantages over existing tools: first,
IUTA directly incorporates the uncertainty of the under-
lying DNA fragments corresponding to the paired-end
reads into the RNA-Seq data model when estimating the
isoform usage. Second, IUTA utilizes all paired-end
reads that are mapped to a gene, not only those that are
mapped to the unique regions of a gene, to test for signifi-
cance. Third, IUTA takes into consideration biological
variation between by requiring biological replicates and
accommodates technical replicates by combining all tech-
nical replicates for a given biological replicate into a single
data set. Lastly, for each gene, IUTA provides not only the
p-value for differential isoform usage for each gene but also
the estimate of isoform usage for each gene in each sample.
We evaluated IUTA’s performance through simulation

studies in comparison to Cuffdiff2. Cuffdiff2 was designed
to test either if alternative TSSs are differentially used
(differential promoter usage) between groups of samples
or if, for genes with a unique TSS, alternative splicing
events occur between two groups of samples. Thus, for
testing differential isoform usage, Cuffdiff2 is limited to
genes with all isoforms resulting from the same pre-
mRNA, i.e., sharing the same TSS. In contrast, IUTA is
applicable to all genes with at least two isoforms regard-
less of their TSS. Consequently, IUTA can test many more
genes differential isoform usage than can Cuffdiff2 for the
same data. Moreover, we showed that IUTA performed
better than Cuffdiff2 for the subset of genes Cuffdiff2
could analyze. IUTA is programmed in R which has
the advantage of code that is easily modified and
integrated with other tools, such as those available
through Bioconductor but has disadvantages in pro-
cessing speed compared to other languages.
When applied to the tissue transcriptome data from

the Mouse Genomes Project from the Wellcome Trust
Sanger Institute, IUTA identified 2,073 genes with differ-
ential isoform usage between any two given tissues and
46 genes with tissue-specific isoform usage. We believe
that our analysis results are the first systematic catalogue
of differential isoform usage between the six mouse
tissues. We examined a few of those genes and found
literature support. Although the functional relevance
for many of those genes remains unknown, we believe
that the analysis results that we provide in Additional
files 2 and 3 for those tissues/cell lines will be useful to
those interested in alternative splicing. Of course, all
results based on computational tools like IUTA and
Cuffdiff2 should be confirmed in the laboratory.

Conclusions
IUTA, conveniently implemented in an R package, is
unique among tools for genome-wide estimation and
testing of isoform usage in that it utilizes contempor-
ary statistical techniques for compositional data.
Though the development of computational/statistical
methods for genome-wide analysis of alternative splicing
is in its early stages, consortiums like TCGA are generating
large numbers of RNA-Seq datasets that could be used to
probe isoform usage. We expect that new computational
methods like ours will catalyse routine genome-wide
analysis of alternative splicing, making it as commonplace
as genome-wide analysis of gene expression.

Additional files

Additional file 1: IUTA_Supplementary_Material. This pdf file
contains all supplementary notes and supplementary figures.

Additional file 2: Differential_IU_genes. This Excel file lists all genes
identified by IUTA as exhibiting differential isoform usage between any
two of the six mouse tissues. The RNA-Seq data sets were from the Mouse
Genomes Project at the Wellcome Trust Sanger Institute (accession number:
ERP000591). The file contains 15 columns (one for each of 15 pair-wise
comparisons among 6 mouse tissues), the genes identified as having
differential isoform usage between two tissues are listed under the column
corresponding to those two tissues. The FWER is controlled at 0.01 by
Bonferroni correction for each comparison.

Additional file 3: IU_all_mouse_genes. This Excel file lists the p-values
for all the genes that were analyzed by IUTA during the 15 pair-wise
comparisons between any two of the six mouse tissues. The RNA-Seq
data sets were from the Mouse Genomes Project at the Wellcome Trust
Sanger Institute (accession number: ERP000591). The file contains 9
columns (one for the gene symbol, one for the isoforms, six for the
estimated isoform usage in the 6 mouse tissues, one for the 15 p-values
from the 15 pair-wise differential isoform usage tests).
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