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Pain is a significant problem in diseases affecting the spinal cord, including demyelinating disease. To date, stud-
ies have examined the reliability of clinical measures for assessing and classifying the severity of spinal cord in-
jury (SCI) and also to evaluate SCI-related pain. Most of this research has focused on adult populations and
patients with traumatic injuries. Little research exists regarding pediatric spinal cord demyelinating disease.
One reason for this is the lack of reliable and useful approaches to measuring spinal cord changes since currently
used diagnostic imaging has limited specificity for quantitative measures of demyelination. No single imaging
technique demonstrates sufficiently high sensitivity or specificity to myelin, and strong correlation with clinical
measures. However, recent advances in diffusion tensor imaging (DTI) andmagnetization transfer imaging (MTI)
measures are considered promising in providing increasingly useful and specific information on spinal cord dam-
age. Findings from these quantitative imaging modalities correlate with the extent of demyelination and
remyelination. These techniques may be of potential use for defining the evolution of the disease state, how it
may affect specific spinal cord pathways, and contribute to the management of pediatric demyelination syn-
dromes. Since pain is a major presenting symptom in patients with transverse myelitis, the disease is an ideal
model to evaluate imaging methods to define these regional changes within the spinal cord. In this review we
summarize (1) pediatric demyelinating conditions affecting the spinal cord; (2) their distinguishing features;
and (3) current diagnostic and classification methods with particular focus on pain pathways. We also focus
on concepts that are essential in developing strategies for the detection, monitoring, treatment and repair of pe-
diatric myelitis.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Injury to the spinal cord presents a significant clinical and therapeu-
tic problem (Table 1) that includes significant neuropathic pain syn-
dromes. While most spinal cord injuries are in adults, both traumatic
and non-traumatic injuries present in children, with the most common
being neoplasms and vascular (Citterio et al., 2004) and demyelinating
diseases including acute transverse myelitis (Nair et al., 2005; Galvin
et al., 2013). Transverse myelitis is “a neurological disorder caused
by inflammation across both sides of one level, or segment, of the spinal
cord” (National Institute of Neurological Disorders and Stroke (NINDS),
2015). The term ‘myelitis’ refers to inflammation of the spinal cord
while the term ‘transverse’ refers to the location of the inflammation
across the width of the spinal cord.

Acute transverse myelitis may occur as an isolated inflammatory
process or as part of a chronic demyelinating disorder such as multiple
sclerosis (MS), neuromyelitis optica (NMO), acute disseminated en-
cephalomyelitis (ADEM) or a syndrome characterized as polio-like my-
elitis or acute flaccidmyelitis (Greninger et al., 2015; Pfeiffer et al., 2015;
Mirand and Peigue-Lafeuille, 2015). Transverse myelitis can be classi-
fied into two types: complete or partial. Complete transverse myelitis
usually involves major bilateral loss in motor, sensory and sphincter
function. It can be associated with a long spinal cord lesion exceeding
three vertebral bodies in length, referred to as Longitudinally Extensive
Transverse Myelitis (LETM).

Damage resulting from the inflammation to the fibers in the spinal
cord tracts results in a constellation of symptoms and signs characteris-
tic of spinal cord damage including pain, weakness or paralysis, urinary
retention and loss of control of bowel function. In some patients there is
complete recovery, while in others, these symptoms, including pain,
may persist for years. Routine Magnetic Resonance Imaging (MRI) has
been the imagingmodality of choice in the detection of neuroinflamma-
tion; however, studies have shown it to have poor correlationwith clin-
ical status of patients with demyelinating injuries (Verhey and Banwell,
2013; Alper et al., 2011; Pidcock et al., 2007; Banwell et al., 2009). Find-
ing more sensitive approaches to defining the location, severity and
evolution (i.e., persistence or recovery) of regional demyelination may
contribute to a more informed approach to diagnosis and treatment.

Pain in spinal cord disease is frequently severe and disabling
(Cardenas and Felix, 2009). The incidence of pain is reported in approx-
imately 65% of patients with chronic SCI, with nearly one third of these
patients rating their pain as severe (Yezierski, 1996; Siddall and Loeser,
2001; Schomberg et al., 2012). The pain may be musculoskeletal,
Table 1
Incidence rates and etiology in non-traumatic spinal cord injuries.

Sample characteristics Etiol

Reference Size (n) Mean age (years) Male/female ratio Infla

McKinley et al., 1999 86 61.2 1:1 10
Scivoletto et al., 2003 177 54.0 1.7:1 40
Citterio et al., 2004 330 55.2 1.7:1 63
New et al., 2005 70 69.0 0.8:1 12
Nair et al., 2005 297 32.0 1.07:1 192
Galvin et al., 2013 68 8.3 1.8:1 15
neuropathic and less commonly visceral. In spinal cord demyelination,
pain is believed to develop followingdamage to the spinothalamic path-
ways that under normal condition carry nociceptive information to the
brain (Defresne et al., 2003; Siddall et al., 1997). Symptomatically, these
changes result in pain at and below the level of the damage.

In this review we summarize (1) spinal cord demyelinating condi-
tions in the pediatric population; (2) their distinguishing features; and
(3) classification methods in spinal cord disease with particular focus
on pain.We also focus on the current and developing approaches to ob-
jective measures of spinal cord damage and recovery using different
MRI methods.
1.1. Search terms and methodology

English language literature search of demyelination of spinal cord in
children and MRI measures in pain was undertaken using PubMed
(http://www.ncbi.nlm.nih.gov/pubmed) from inception until March
2015. Keywords included the terms ‘demyelination’, ‘myelitis’, ‘spinal
cord’, ‘pediatric’, ‘neuropathic pain’ and ‘imaging’. Of note, using search
terms “pediatric AND myelitis AND pain AND diffusion” yielded no re-
sults suggesting a paucity of information in the field.
2. Pediatric spinal cord demyelination

Inflammatory demyelinatingmyelopathies represent themajority of
pediatric non-traumatic SCI (Nair et al., 2005; Verhey and Banwell,
2013). These are often grouped under the term “myelitis” which
comprises acute transverse myelitis, NMO and spinal cord relapses in
MS. Each year, an estimated 1400 new cases of acute transversemyelitis
occur in the United States (Banwell et al., 2009). Among these cases,
20% are reported in children less than 18 years of age (Alper et al.,
2011). Transverse myelitis was believed to affect males and females
equally with a reported 1.04 ratio (Pidcock et al., 2007). However a
more recent study showed a slight male predominance (ratio =
1:0.9) in children less than 10 years of age and a female predominance
(ratio=1:1.2) in patients older than 10 years (Banwell et al., 2009). The
reason for these disparities remains unclear. Demyelination is believed
to be the pathological basis in transverse myelitis and presents acutely
in children, with symptoms appearing over 24–48 h (National
Institute of Neurological Disorders and Stroke (NINDS), 2015; Chitnis,
2013).
ogy (n) Pain assessment

mmatory Vascular Neoplasm Degenerative

7 22 Not available Not performed
36 39 61 Reported by 42%
81 81 60 Not performed
10 23 18 Not performed
3 85 Not available Reported by 49.3%
Not available 40 Not available Not performed

http://www.ncbi.nlm.nih.gov/pubmed
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2.1. Diagnosis of transverse myelitis

In 2002, the Transverse Myelitis Consortium Working Group es-
tablished criteria for diagnosis of acute transverse myelitis (Transverse
Myelitis ConsortiumWorking Group, 2002). The diagnosis requires pa-
tients to undergo lumbar puncture to assess Cerebrospinal Fluid (CSF)
white blood cells and IgG index and un-enhanced or gadolinium-
enhanced MRI of the brain and spinal cord (Kerr and Ayetey, 2002;
Jacob and Weinshenker, 2008; Pittock and Lucchinetti, 2006).

The typical pathological features of the disease process, as indicated
by T2-weighted MRI (Fig. 1A–C), include cord enlargement and a focal
increase in signal intensity. Some lesions may involve both transverse
halves of the cord leading to the interruption of the spinal cord path-
ways (Choi et al., 1996). More pronounced changes in white matter
than in gray matter were reported in one study (Misra et al., 1996)
while another study reported both gray and white matter regions to
be equally damaged in transverse myelitis (Krishnan et al., 2004).

At onset, myelitis is manifested by a spectrum of symptoms includ-
ing limb weakness, sensory disturbance, back pain, and bladder and
bowel dysfunction. Symptoms are sudden and progress rapidly over a
few hours to a few days. It has been reported that 45% of patients wors-
en within 24 h (Krishnan et al., 2004) and children less than 3 years old
whose deficits reached maximal severity in less than 24 h of onset are
less likely to regain full ambulatory ability (Verhey and Banwell, 2013;
Pidcock et al., 2007; Defresne et al., 2003).

2.2. Disease prognosis and long-term consequences

Despite the unfavorable statistics on myelitis-related complications,
children and young adults with this disorder show a more favorable
outcome in neurological recovery compared with adults (Alper et al.,
2011). Overall, 30–62% of patients with transverse myelitis have long-
term neurological deficits (Alper et al., 2011) but may vary in degree.
For example, 80% of children reportedly recovered to independent am-
bulation (Verhey and Banwell, 2013) and a study conducted on 95 chil-
dren showed that 70% experienced full physical recovery and 30% had
deficits in gait and bladder/bowel function (Deiva et al., 2015).

When any spinal cord disease occurs at a young age, patients are at
high risk for scoliosis development (Parent et al., 2011). In a retrospec-
tive study of 130 patients injured between birth and the age of 21 years,
97% of patients injured before the growth spurt developed scoliosis
compared to 52% injured after adolescent growth spurt (Dearolf et al.,
Fig. 1.MRI pathological features in myelitis. Sagittal T2-weighted images of (A) 13 year old fem
with MS. Arrows show lesion sites.
1990). These numbers were further validated by Apple and associates
who reported that scoliosis developed in 23% of childrenwith SCI youn-
ger than 12 years of age compared to only 5% of adults (Apple et al.,
1995). The patients studied included both traumatic and non-
traumatic injuries. Longitudinal studies are needed to examine inquired
scoliosis in children with myelitis.

2.3. Classification methods in spinal cord disease

2.3.1. The International Standards for Neurological Classification of Spinal
Cord Injury (ISNCSCI)

Since their first edition in 1982, the International Standards for Neu-
rological Classification of Spinal Cord Injury (ISNCSCI) have progressive-
ly improved and are now adopted world-wide as a method to evaluate
and classify the neurological consequence of spinal cord injury
(Maynard et al., 1997; Kalsi-Ryan et al., 2014). The evaluation involves
strength testing of ten muscles in the upper limb and ten muscles in
the lower limb, sensory testing to light touch and sharp–dull discrimi-
nation by way of pin-prick and, evaluation of deep anal pressure and
contraction. Scores from the evaluation are used to classify, among
other injury characteristics, the neurological, motor and sensory levels
and the severity of injury (complete\incomplete). The determination
of complete or incomplete is based on sensory examination at the
S4–5 dermatome and results of the anorectal examination. The
ISNCSCI are used in the classification of traumatic and non-traumatic
SCI for all age groups and are the recommended method for evaluating
acute neurological status and also for recording neurological recovery
over time (Gupta et al., 2008; Waring et al., 2010; Kirshblum et al.,
2011; Burns et al., 2012). There are no studies testing the validity and
sensitivity of the ISNCSCI in pediatric non-traumatic SCI. Thus, the in-
ability to reliably evaluate the consequence of myelitis using the
ISNCSCI and to classify the severity of injury in children may pose con-
siderable barriers to prognostication of recovery, definition of rehabili-
tation goals and evaluation of clinical trials designed for neurorepair
and neurorecovery.

2.3.2. The Expanded Disability Status Scale (EDSS)
The Expanded Disability Status Scale (EDSS) was developed in 1983

and has been widely used as a primary endpoint to measure impair-
ment in clinical trials of MS (Kurtzke, 1983). The EDSS allows clinicians
to categorize and score patients3 disability in eight functional systems:
ale with NMO, (B) 10 year old female with transverse myelitis and (C) 10 year old female



Fig. 2. Pain pathways in spinal cord demyelinating lesions. Pain sensation follows a
series of mechanisms starting from peripheral nociceptor fibers to higher cerebral struc-
tures: A- and C-nociceptor fibers synapse at the spine dorsal column, pain information is
relayed through the dorsal column of the spinal cord and ascends contralaterally to the
thalamus via the spinothalamic pathway. A number of cortical and subcortical regions
have outputs to descending painmodulation. The rostral ventromedial medulla (RVM) re-
ceives afferent input from the periaqueductal gray (PAG), axons in the RVMproject to the
spinal corddorsal horn. Demyelinating lesions can affect the peripheral nervefibers, spinal
cord columns, or the ascending/descending pathways.
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pyramidal, cerebral, brainstem, sensory, bowel and bladder, visual and
cerebellar. Outcome measures receive scores ranging from 0.0 to 10.0
with half-point increments. In a study involving children with spinal
cord inflammatory diseases the EDSS has been applied, in combination
with the ISNCSCI, to identify early prognostic factors of relapse and dis-
ability (Deiva et al., 2015). In adult patients with spinal cord lesions,
scores from EDSS were used to evaluate disability and monitor treat-
ment progress in patients with NMO (Torres et al., 2015) and were
shown to correlate with results from diffusion tensor imaging in pa-
tients with MS and NMO (Naismith et al., 2013).

3. Pain in myelitis

3.1. Pain prevalence

Approximately 40–80% of personswithmyelitis report pain as oneof
the earliest symptoms (Wolf et al., 2012). In a study of 24 children with
acute transverse myelitis, 88% suffered from pain and 70% of these pa-
tients reported that pain interfered with their daily physical activities
and rehabilitation efforts (Defresne et al., 2003). Data from studies in
both pediatric and adult populations indicate that chronic pain in child-
hood is predictive of pain, disability, and psychiatric disorders in adult-
hood (Werhagen et al., 2007; Green et al., 2012).We are unaware of any
studies evaluating the temporal course of pain in childrenwithmyelitis,
although, in adults, pain symptoms persist even after recovery from
transverse myelitis (National Institute of Neurological Disorders and
Stroke (NINDS), 2015; Defresne et al., 2003; Miyazawa et al., 2003).

3.2. Pain assessment

Pain assessment in SCI is generally performed using the Internation-
al Spinal Cord Injury Pain Classification (ISCIP) system (Hjermstad et al.,
2011). The classification systemplaces SCI-related pain into four catego-
ries, namely, neuropathic, nociceptive, unknown andpain of other etiol-
ogy. The predominant pain process is neuropathic pain. Neuropathic
pain is defined by the International Association for the Study of Pain
(IASP) as pain triggered by a lesion or disease to the somatosensory ner-
vous system (Bryce et al., 2012). It is generally described as a burning,
aching, tingling or stabbing sensation. Neuropathic pain is divided into
three subtypes: at level SCI pain, below level SCI pain and other neuro-
pathic pain. It is important to note that term level refers to the neurolog-
ical level of injury defined by the ISNCSCI as the lowest (most caudal)
dermatome ormyotomewith normal sensory andmotor function. Neu-
ropathic pain can be unilateral or bilateral and can occur in complete or
incomplete injuries. In a study on the prevalence of neuropathic pain in
non-traumatic SCI, 15% of the patients reported pain at injury level
while 23% had below level pain (Werhagen et al., 2007). One study
mentioned neuropathic pain above injury level possibly due to complex
regional pain syndromes and compressive peripheral neuropathy
(Sezer et al., 2015).

A number of tools are beingdeveloped andused in the screening and
assessment of SCI-related pain. Despite its somewhat subjective nature,
Quantitative Sensory Testing (QST) has been well investigated in pa-
tientswith SCI. The test uses thermal, electrical and vibratory stimuli ad-
ministered at different dermatomes to detect the pain thresholds (Savic
et al., 2007; Boakye et al., 2012). The assessment of pain intensity is
often performed using questionnaires and self-reported scales. The Vi-
sual Analogue Scale (VAS), Numeric Rating Scale (NRS), Leeds Assess-
ment of Neuropathic Symptoms and Signs (LANSS), and PainDETECT
questionnaire (PD-Q) provide an estimation of pain and information
on pain evolution over time and the effect of treatment (Hjermstad
et al., 2011; Haanpää et al., 2011; Saulino, 2014; Nakipoglu-Yuzer
et al., 2013; Freynhagen et al., 2006). These pain assessment methods
have been tested extensively in the adult population and in traumatic
injuries. The types of pain experienced by individuals with myelitis
may be caused by different underlying physiological mechanisms than
traumatic injury. Given the high prevalence of pain in childrenwithmy-
elitis, a validated assessment and classification system for pain needs to
be established in order to identify characteristic features of pain and de-
termine suitable treatment.

3.3. Pain pathways in myelitis pathogenesis

Pain sensation follows a series of mechanisms and pathways inte-
grated from the peripheral nerves to higher cerebral structures. Pain re-
lated to transverse myelitis is poorly understood. However, pain from
spinal cord injuries and pain associatedwithMSwere reported to result
from damage to any structure on the spinothalamic pathway or from
demyelination of the dorsal column primary afferents (Fig. 2) (Masri
and Keller, 2012; Solaro and Messmer Uccelli, 2010). The sequence of
events leading to pain in patients withmyelitis may start following a le-
sion involving thedorsal horn of the spinal cord, and subsequently alter-
ations in the myelinated, thinly myelinated and unmyelinated axons of
the A- and C-nociceptor fibers as they terminate at the spinal substantia
gelatinosa (lamina II). Consequently, the injured/demyelinated afferent
axons will exhibit a reduction in electrical conduction (McDonald and
Sadowsky, 2002) and a change in electrophysiological properties lead-
ing to the generation of ectopic signals. Ectopic discharge has been
best evaluated in the peripheral nervous system for C-fibers (Serra
et al., 2012) and A-beta fibers (Devor, 2009). Such changes in electrical
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activitymay contribute to central sensitization and the sensation of pain
at the level of the brain. Pain signals are relayed through the dorsal col-
umn of the spinal cord, and ascend contralaterally to the thalamus via
the spinothalamic pathway. The pain sensory signals terminate in a
number of brain regions including the primary and secondary somato-
sensory cortices, the posterior insula cortex as well as other brain re-
gions involved in emotional processing (Peyron et al., 2000). Several
zones in the brain are implicated in pain regulation or modulation: a
number of cortical and subcortical regions have outputs to descending
modulatory regions in the brainstem (Villemure and Schweinhardt,
2010). The periaqueductal gray (PAG) is the primary control center for
descending pain modulation (Hemington and Coulombe, 2015) and re-
ceives input from various structures in the brain. PAG neurons send
descending axons to the rostral ventromedial medulla (RVM) (Odeh
and Antal, 2001) and axons in the RVM project to the spinal cord
dorsal horn where they depress the activity of nociceptive neurons
(Schweinhardt and Bushnell, 2010).We are unawarewhether these de-
scending pathways are altered in transverse myelitis, but these changes
could conceivably contribute to diminished descending modulation of
pain.

3.3.1. Pain mechanisms in transverse myelitis
Though the mechanisms underlying lesion development and evolu-

tion in myelitis remain unknown, the current theory of pathogenesis
suggests that when an infection presents in the immune system with
an antigen similar to myelin, the resulting antibodies eventually attack
myelin (Fig. 3). The cascade of pathological events leading to demyelin-
ation include peripheral interactions between activated lymphocytes
and immunoglobulins, followed by focal monocyte and lymphocyte in-
filtrates into the spinal cord perivascular space. The disruption of the
blood brain barrier permeability leads to a cellular influx of leukocytes
Fig. 3. Schematic diagramof the pathogenesis of transversemyelitis affecting pain pathways. To
the pain pathways (e.g., spinothalamic tracts), pain may be a major symptom in transverse my
elination are believed to start by exposure to antigens, activation of lymphocytes and immunog
Wingerchuk, 2007 and Bukhari, 2012). Macrophages may ‘attack’ astrocytes and myelin, leadin
have abnormal irritability (ectopic firing) and conduction patterns.
(such as eosinophils and neutrophils) and an activation of astrocytes
and glial cells, finally leading to local inflammation, oligodendrocyte
death and axonal conducting abnormalities (Kerr and Ayetey, 2002;
Krishnan et al., 2004; Bukhari et al., 2012; Wingerchuk, 2007). The in-
flammatory lesions can occur at the gray matter anterior horns or
along the spinothalamic pathway thereby perturbing transmission of
pain signals.

This complex circuitry of painmechanisms iswell understood in spi-
nal cord injuries but not in pediatric myelitis where potential restora-
tion of function is more likely. Future research needs to identify
demyelination-related pain, explore cellular interactions in the spinal
cord dorsal horn, and track all the affected pathways at different disease
stages. Mechanism-based research employing advanced imaging tech-
niques and appropriate animal models will allow improved targeted
pharmacological treatments and successful clinical trials.

Little is known about how centralwhitematter changes in the spinal
cordmay produce neuropathic pain. Damagedwhitematter spinal cord
tract may potentially lead to abnormal or ectopic discharges that have
been associated with neuropathic pain as measured in peripheral
nerves (Han et al., 2000; Yoon et al., 1996). General alterations in
nerve function may include trans-synaptic changes or alterations in
neurotransmitter systems. Lesions of the dorsal columns show relative-
ly little spontaneous ectopic discharge, but activity may be enhanced by
peripheral afferent traffic (Papir-Kricheli and Devor, 1988). While un-
known, alterations in spinal cord axons may have enhanced activity as
surmised by clinical evidence of processes such as allodynia reflecting
alterations between damaged and intact neurons (Finnerup et al.,
2003). We are unaware of transverse myelitis affecting the short pro-
cesses of interneurons, a consideration in the potential manifestation
of pain. Potential support for alterations in interneurons includes
(1) that interneuronitis may contribute to motor spasms in the spinal
p:macroscopic changes leading to altered spinal cordfibermyelination; in cases that affect
elitis. Bottom: microscopic changes in the spinal cord. A series of events leading to demy-
lobulins, followed by eosinophils and neutrophils and astrocyte pathology (adapted from
g to local inflammation, oligodendrocyte death and myelin loss. Exposed axons may thus
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cord in patients with acute myelitis (Brown et al., 1997); (2) in periph-
eral neuropathic pain, selective loss of GABAergic interneurons has been
reported (Moore et al., 2002); and (3) the loss of spinal GABAergic inter-
neurons has been reported in spinal cord injury andwas associatedwith
neuropathic pain (Meisner et al., 2010).

4. Imaging spinal cord disease

MRI has brought major contributions to the diagnosis and monitor-
ing of myelitis. The routine imaging protocol includes spin-echo or fast
spin-echo T1-weighted and T2-weighted sequences, usually in the sag-
ittal and axial planes pre-contrast. If a lesion is observed, post-
gadolinium pulse sequences are applied (Thomas and Branson, 2013).
Although routine MRI is the modality of choice in the evaluation of pe-
diatric myelitis, studies have shown it to have poor correlation with
clinical status of patients with myelitis (Defresne et al., 2003; Choi
et al., 1996; Hori et al., 2012; Holland, 2013). Authors report poor lesion
detection in young children with mild acute myelitis and question the
specificity of MRI in detecting transverse myelitis because other demy-
elinating disorders can mimic it by MRI criteria (Thomas and Branson,
2013; Banwell and Dale, 2015). It is suggested to conduct a follow-up
scan 24–48 h later if the initial gadolinium-enhanced MRI scan is nega-
tive (Thomas et al., 2012). However, pediatric transverse myelitis has a
high risk of permanent disability. Its symptoms are sudden andprogress
rapidly over a fewhours to a fewdays. There is a need for timely and ac-
curate imaging protocols with high sensitivity and specificity to dis-
criminate between different demyelinating myelopathies.

4.1. Diffusion tensor imaging (DTI)

New neuroimaging techniques have proven successful in providing
additional information about spinal cord integrity in vivo. One such
technique is DTI. It quantifies diffusion of water molecules in each
voxel of an image in directions parallel and transverse to the plane of
neuronal axons. The unique anisotropic characteristics of the spinal
cord may allow DTI to localize white matter, separate white from gray
matter and assess structural damage of the cord. Fractional Anisotropy
(FA), Axial Diffusivity (AD) and Radial Diffusivity (RD) are parameters
derived from DTI calculations and reflect, respectively, the magnitude
of anisotropy, diffusivity parallel to the spinal cord tracts and diffusivity
perpendicular to the spinal cord tracts.

Since the first in-vivo DTI study of the human spinal cord in 1999,
(Clark et al., 1999) various technical limitations have been reported.
These are posed by the small cord volume, natural curvature, CSF pulsa-
tile motion, respiratory and cardiac movements, susceptibility artifacts
from adjacent tissue interfaces, and in pediatric imaging especially,
there is the added possibility of increased subject motion. Most of
Table 2
Quantitative imaging findings in the healthy spinal cord. WM: white matter. GM: gray matter.

Sample characteristics

Reference Sample size Mean age (years) Imaged lev

Ellingson et al., 2008a N = 13 29.5 Cervical an

Wilm et al., 2009 N = 4 Not reported Full spinal

Cheran et al., 2011 N = 1 31.5 Cervical

Cohen-Adad et al., 2011 N = 14 45 Cervical

Barakat et al., 2012 N = 25 13.3 Cervical

Petersen et al. 2012 N = 28 58 Cervical
these challenges are being addressed by improved receiver coils, fast
imaging techniques, motion reduction during the scans, motion correc-
tion post-scans and cardiac/respiratory gating.

Studies reported the ability of DTI to detect changes in diffusion
characteristics along the spinal cord and differences in these parameters
between the healthy and traumatically injured spinal cord (Ellingson
et al., 2008a; Ellingson et al., 2008b; Mohamed et al., 2011; Barakat
et al., 2012). In the injured spinal cord, quantitative analysis of DTI pa-
rameters typically reveals a reduction in FA and an increase in diffusivity
values (AD, RD and MD). These findings are generally attributed to the
breakdown of the longitudinal order given by the axonal membranes
and/or myelin sheaths. Anisotropic water diffusion is attributed to the
ordered arrangement of myelinated axonal fiber tracts in white matter.
In the case of tissue destruction where this order is affected, anisotropy
is lost leading to a reduction in FA. These pathological features are not
quantifiable on conventional MRI; giving DTI significant clinical value
for examining the integrity of highly ordered white matter tissue.
Tables 2 and 3 provide an overview on DTI parameters in the healthy
and injured spinal cord in the adult and pediatric populations.

Some authors describe improved resolutionwith smallfield-of-view
imaging techniques (Andre et al., 2012; Wilm et al., 2009; Zaharchuk
et al., 2011; Barakat et al., 2011). This technique helped in the differen-
tiation between white and gray matter and subsequently, correlate im-
aging results with clinical measures at the dorsal and ventral areas of
the spine. Specifically, studies indicate that FA, AD, and RD correlate
strongly with motor and sensory scores from ASIA examinations
(Ellingson et al., 2008; Petersen et al., 2012; Jones et al., 2013;
Vedantam et al., 2015). One study reported DTI to correlate with
motor scores but was not sensitive in the detection of sensory informa-
tion (Cohen-Adad et al., 2011). Moreover, a study on adults with trans-
verse myelitis reported FA to be more sensitive to detect abnormalities
than T2-weightedMRI (Lee et al., 2008). Additional reports showed cor-
relation between DTI parameters and severity of demyelination
(Klawiter et al., 2011; Renoux et al., 2006) and a reduction in DTI values
in regions remote from the injury site suggesting its ability to detect
Wallerian axonal degeneration (Petersen et al., 2012). Additionally,
DTI-based visualization methods, such as tractography, can be used for
mapping white matter fiber tract trajectories (Hendrix et al., 2015).
Tractography resultswere reported to be successful in identifying viable
spinal cord fibers in locations that were normal on T2-weighted images
but had abnormal FA values (Renoux et al., 2006).

4.2. Magnetization transfer imaging (MTI)

MTI is the process by which protons associated with unboundwater
molecules exchange their spin energy with protons bound to macro-
molecules (lipid content in axonal myelin) (Wolff and Balaban, 1994;
Imaging results

els DTI (mean) MTR (mean)

d thoracic FA (WM) = 0.68
FA (GM) = 0.47 MD = 0.83 × 10−3 mm2/s

Not assessed

cord FA (C5) 0.75
FA (T5) =0.69
FA (L) =0.63

Not assessed

FA = 0.67
AD = 1.73 × 10−3 mm2/s
RD = 0.49 × 10−3 mm2/s

Not assessed

FA = 0.6
AD = 1.68 × 10−3 mm2/s
RD = 0.61 × 10−3 mm2/s

32.2

FA = 0.5
AD = 0.97 × 10−3 mm2/s
RD = 0.41 × 10−3 mm2/s

Not assessed

FA = 0.64 Not assessed



Table 3
Quantitative imaging findings and clinical correlations in spinal cord disease.

Sample characteristics Imaging results Clinical correlations

Reference Sample
size

Mean age
(years)

Presentation Imaged levels DTI (mean) MTR
(mean)

ASIA Pain

Renoux et al., 2006 N = 15 42.5 Myelitis Cervical and thoracic FA (lesion) = 0.59 Not assessed Not assessed Not assessed
Lee et al., 2008 N = 10 45 Transverse

myelitis
Cervical FA (lesion) = 0.53 Not assessed Not assessed Not assessed

Cheran et al., 2011 N = 25 39.7 Traumatic SCI Cervical FA = 0.49
AD = 1.28 × 10−3 mm2/s
RD = 0.60 × 10−3 mm2/s

Not assessed Yes Not assessed

Cohen-Adad et al.,
2011

N = 14 45 Traumatic SCI Cervical FA = 0.48
AD = 1.51 × 10−3 mm2/s
RD = 0.73 × 10−3 mm2/s

26.5 Yes Not assessed

Barakat et al., 2012 N = 1 11 Transverse
myelitis

Cervical FA = 0.45
AD = 1.06 × 10−3 mm2/s
RD = 0.51 × 10−3 mm2/s

Not assessed Yes Not assessed

Petersen et al. 2012 N = 19 59.7 Traumatic SCI Cervical FA (C2) = 0.61
FA (C5) = 0.53

Not assessed Yes Not assessed

Mulcahey et al., 2013 N = 10 14 Traumatic SCI Cervical FA = 0.28
AD = 1.15 × 10−3 mm2/s
RD = 0.80 × 10−3 mm2/s

Not assessed Yes Not assessed
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Henkelman et al., 2001). When a saturation off-resonance pulse is ap-
plied, energy (magnetization) from the pool of bound molecules will
move (transfer) to the pool of unbound molecules, reducing the total
observed MR signal, thereby providing an indirect marker for myelin
content (Schwartz and Hackney, 2003; Smith et al., 2012; Smith et al.,
2014). In tissues where there is no energy exchange, the water proton
signal intensity is unchanged. In tissues where there is exchange in en-
ergy, the water signal intensity decreases. A lowmagnetization transfer
ratio (MTR) is an indicator of damage tomyelin and axonalmembranes.

Magnetization transfer techniques have been used in Acute Dissem-
inated Encephalomyelitis, (Inglese et al., 2002) Amyotrophic Lateral
Sclerosis (ALS) (Pradat et al., 2011), MS (Verhey and Sled, 2013;
Zackowski et al., 2009;Wang et al., 2015), and demyelination in the spi-
nal cord (Klawiter et al., 2011). Studies have also shown the possibility
of using MTI to segment gray matter and white matter in the healthy
adult spinal cord (Yiannakas et al., 2012) and in adults with chronic cer-
vical SCI. MTR values were reported to predict sensory disability in dor-
sal columns while ventrolateral MTR values predicted motor disability
(Cohen-Adad et al., 2011). The use ofmagnetization transfer in pediatric
myelitis has not been reported.

Further work is needed to examine the feasibility and reliability of
quantitative imaging biomarkers in children with demyelinating mye-
lopathies. Advances in imaging have overcome many technical hin-
drances that once prevented analysis of the structural and functional
properties of fiber tract. Current research evidence suggests that imag-
ing can potentially be used to quantify tract injury at the acute, sub-
acute and chronic phases of myelitis, discriminate between transverse
myelitis and its mimics, identify subjects at high risk of developing fur-
ther attacks and can also be used to monitor remyelination in clinical
trials.

4.3. Ultrahigh field imaging: a possibility in pediatric myelitis

Rapid progress in the technical improvement of MRI systems led to
the introduction of ultrahigh (N3 T) field imaging techniques. These ul-
trahighfield systemswere developed andoptimized in pursuit of the ul-
timate image resolution. Theoretically, signal-to-noise (SNR) ratio
increases with the field strength and therefore leads to an improved di-
agnostic ability of MRI. Since its first introduction in the 1990s, imaging
at a 7 Tesla magnetic field has gained increasing tolerability by patients
and healthy volunteers (Theysohn et al., 2008; Rauschenberg et al.,
2014; Ugurbil, 2014). To date, approximately 40 7 T units have been
installed worldwide, although operating only in research settings
(Umutlu et al., 2013; Kraff et al., 2015). In a study comparing 3 T to
7 T magnetic fields, 7 T imaging showed significantly higher SNR in
the spinal cord of healthy volunteers (Sigmund et al., 2012). A later
study revealed that 7 TMRI in combination with advanced coil technol-
ogy can detect signal abnormality in the spinal corticospinal tract of pa-
tients with ALS (Cohen-Adad et al., 2013). Ultrahigh field imaging may
be a useful imagingmarker of demyelination. Since contrast is more en-
hanced at ultrahigh field strength, patients with demyelinating lesions
may benefit from reduced gadolinium dosage (Tallantyre et al., 2011).
Further work is required to investigate the utility of ultrahigh field im-
aging in pediatric spinal cord demyelination.

4.4. Myelin Water Fraction imaging

Alterations inmyelin can bemeasured indirectly withMRI by apply-
ing pulse sequences to detect T2 relaxation values present in different
tissue components (Laule et al., 2004). It is believed that T2 relaxation
of approximately 20 ms is attributed to water contained between mye-
lin bilayers (myelin water). The ratio of myelin water signal to total
water is termed the Myelin Water Fraction (MWF) (Whittall et al.,
1997). A study on measuring regional variations in myelin content
along the entire spinal cord showed that MWF values were consistent
with white matter and gray matter contributions in the spinal cord
anatomy (Minty et al., 2009). In a repeatability study comparing MWF
values in young and older adults showed a slight decrease in MWF be-
tween the two groups (MacMillan et al., 2011). In a test–retest study
conducted on healthy volunteers and patients with spinal cord demye-
linating lesions, high reproducibility of MWF estimates was observed in
both groups, with patients showing a decrease in MWF values as com-
pared to controls (Wu et al., 2006). Monitoring changes in myelin con-
tent is essential in studying demyelinating diseases. Myelin water
measurement has the potential to identify preserved myelin and guide
trials of myelin protection and repair in demyelination lesions of the
spinal cord.

4.4.1. Integrating measures of spinal cord dysfunction and brain dysfunc-
tion in pain

Recentwork has used functional imaging to demonstrate connectiv-
ity between rostral brain centers (Sprenger et al., 2015). A similar ap-
proach using functional white matter tractography (seeding rostral
regions with known function as part of ascending pain pathways) may
also be employed in patients with myelitis to map out brain regions as-
sociated with pain and other functions that are affected (Agosta et al.,
2007; Oppenheim et al., 2007). Furthermore, in the future, by combin-
ing spinal cord with brain functional imaging, regions of the brain
known to be affected in neuropathic pain in other conditions may be
used to dissect the contribution of alterations in white matter tracts
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and the evolution of pain, a defined and necessary brain function
(Garcia-Larrea and Peyron, 2013).

5. Conclusions

Pediatric transverse myelitis is relatively uncommon. As a result, we
know very little about the distinguishing characteristics of this popula-
tion. Correct diagnosis for myelitis is limited by the lack of injury classi-
fication standards specific to non-traumatic SCI, and the lack of imaging
techniques to define the extent of injury and preserved neurological
function. Additionally, pain represents amajor problem in pediatricmy-
elitis and an obstacle to effective rehabilitation outcomes. However de-
spite its high prevalence, very little has been described regarding the
management of chronic pain in children with inflammatory demyelin-
ating insults to the spinal cord.

Emerging quantitative MRI techniques offer unique possibilities in
examining white matter integrity and myelin content in the spinal
cord. DTI and MTI can be used to assess axonal integrity and the degree
of demyelination. These quantitative imaging techniques may also be
useful formonitoring the efficacy of new therapeutics formyelitis. How-
ever, the many advantages of quantitative imaging are accompanied by
various technical challenges. Thepediatric spinal cord is small in volume
and subject to susceptibility and motion artifacts that must be ad-
dressed to optimize diagnostic quality. Furthermore, for these quantita-
tive imaging techniques to be used in clinical settings, their reliability
and sensitivity have to be established in pediatric myelitis.
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