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Abstract: Flexible electronic devices are developing rapidly, especially in medical applications. This
paper reports an arrayed flexible piezoelectric micromachined ultrasonic transducer (FPMUT) with
a sandwich structure for adjuvant treatment of bone injury. To make the device conformable and
stretchable for attaching to the skin surface, the flexible substrate of polydimethylsiloxane (PDMS)
was combined with the flexible metal line interconnection between the bulk lead zirconate titanate
(PZT) arrays. Simulations and experiments were carried out to verify the resonant frequency and
tensile property of the reported FPMUT device. The device had a resonant frequency of 321.15 KHz
and a maximum sound pressure level (SPL) of 180.19 dB at the distance of 5 cm in water. In addition,
detailed experiments were carried out to test its acoustic performance with different pork tissues, and
the results indicated good ultrasound penetration. These findings confirm that the FPMUT shows
unique advantages for adjuvant treatment of bone injury.
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1. Introduction

Ultrasound is widely used in the field of medicine, especially in elderly rehabilitation [1–3], because
of its excellent mechanical effects. This includes kidney stone lithotripsy with ultrasonic diagnostic
technology and noninvasive tumor therapy with high-intensity focused ultrasound (HIFU) [4–10].
Recent research on the effect of ultrasound on chondrocyte proliferation and matrix production of
human articular cartilage has shown the potential of low-intensity pulsed ultrasound (LIPU) for
adjuvant treatment of bone injury [11,12]. As the core component of an ultrasonic system, acoustic
transducers are mostly based on piezoelectric or capacitive mechanisms. Piezoelectric ultrasonic
transducers convert electrical signals into mechanical energy by means of the piezoelectric effect
of materials and then transmit them. A capacitive ultrasonic transducer is a kind of electrostatic
transducer. Its diaphragm generates ultrasonic sound by virtue of electrostatic attraction. However,
for traditional ultrasound transducers, the two-dimensional arrays with rigid substrates are incapable
of adapting to the human body curve, while the line arrays are difficult to operate [13,14]. Thus, the
reported ultrasound transducers are both uncomfortable and inconvenient for long-term adjuvant
treatment of bone injury.
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With advancements in the material and fabrication process of flexible electronic devices [15–28],
flexible ultrasound wearable technology has been greatly improved. Most of the current flexible
ultrasonic transducers integrate micro piezo elements on a flexible substrate to make the whole device
flexible. Mastronardi et al. [29] proposed a promising wearable ultrasound technology based on
a piezoelectric transducer realized on flexible, highly oriented aluminum nitride with significant
mechanical displacement in spite of being attached on a rigid support. Lee et al. [30] proposed a
flexible piezoelectric micromachined ultrasonic transducer (FPMUT) that could be used to study
brain stimulation by ultrasound. The ultrasound transducer array was then strongly bonded onto a
polydimethylsiloxane (PDMS) substrate to achieve flexibility. By measuring the ultrasound output
pressure, the PMUT showed a sound intensity (Isppa) of 44 mW/cm2 at 80 V, which is high enough
for low-intensity ultrasound brain stimulation. A flexible ultrasonic device using 4 × 4 arrayed bulk
lead zirconate titanate (PZT) with a high resonant frequency of 2 MHz has been reported [31,32].
Experiments showed the frequency difference of each element was within 3%, and the whole device
could be well fitted to a cylindrical surface with a radius of 1 cm. Despite great advancements in
PMUT, traditional ultrasonic treatment equipment cannot be closely fitted with the human skin, and
its lack of comfortability and portability still limits its application in the medical field. To the best of
our knowledge, there have been few reports on flexible ultrasonic transducers for ultrasonic-assisted
treatment of bone injury due to the limitations of the device structure.

In this work, a FPMUT array with a sandwich structure was constructed by combining rigid
piezoelectric ceramics with a flexible substrate and a flexible electrode. The FPMUT showed excellent
flexibility and could fit the human skin and tissues. Simulations and experiments were carried out to
verify the resonant frequency and tensile property of the reported FPMUT device. Results showed the
FPMUT could be stretched by 25%, which meets the needs of biological deformation. The FPMUT
could achieve a resonant frequency of 321.15 KHz and a maximum sound pressure level (SPL) of 180.19
dB at the distance of 5 cm in water, which is comparable to the reported results. In addition, different
pork tissues were used to demonstrate its potential application in the adjuvant treatment of bone injury.
The flexible structure and excellent performance make the FPMUT a good candidate as a wearable
ultrasound device.

2. Experiment

2.1. Design of the FPMUT Array

A schematic diagram of the proposed FPMUT array is shown in Figure 1a. The device consists
of a bulk PZT array of 4 × 4 units sandwiched by interconnection and PDMS films. Taking into
consideration the convenience of actual processing and procurement, the bulk PZT has a thickness
of 1 mm, and the typical PZT element is 5 mm × 5 mm × 1 mm (purchased from Baoding Shengke
co. LTD). This is relatively common and makes it easy for use in later processes. A 0.01 mm silver
electrode is required on both sides of the PZT. The 100 µm thick top and bottom substrates are made of
flexible PDMS films due to their low Young’s modulus and high dielectric constant. Flexible polyimide
(PI) are used as the protective layer on both the top and bottom sides of the electrode. The thickness of
each PI layer is about 2.4 µm, and the Cu electrodes are patterned on the PI layers, which is combined
with the PZT array by a low-temperature solder paste. The interconnection is stretched through the
flexibility of PI materials and the tensile properties of the structural design. The combination of flexible
interconnections, the PZT array, and flexible substrates form the FPMUT array.
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Figure 1. (a) Schematic drawing of the flexible piezoelectric micromachined ultrasonic transducer 
(FPMUT) array. (b) Photograph of the FPMUT array. (c) The FPMUT attached to skin of the arm. 

When alternating current is passed through the flexible interconnection with the piezoelectric 
ceramic array, the piezoelectric ceramic will deform due to the piezoelectric effect. At the same time, 
the frequency of the generated ultrasound is related to the frequency of the input voltage. Figure 1b 
shows a picture of the sample device, and Figure 1c shows a demonstration of the device being 
attached to skin. 

2.2. Fabrication Process of the FPMUT Array 

The fabrication process of the FPMUT is shown in Figure 2. First, a 4 inch silicon (Si) wafer 
consisting of about 100 µm PDMS layer was used for the temporary substrate (mixed at 10:1 ratio, 
3000 rpm for 30 s, at 80 °C for 3 h). Then, the PDMS temporary substrate was exposed to oxygen 
plasma to enhance the vitality of the surface (for 60 s). A 2.4 µm thick layer of PI was used as the 
protective layer (2000 rpm for 60 s, at 150 °C for 4 min and at 210 °C for 1 h). Then, a 400 nm thick 
layer of copper (Cu) was deposited by electron beam evaporation onto the PI (type of Ei-5z,  
at 200 °C, 5 × 10−5 Pa, for evaporation rate of 1 Å/s). A 1.5 µm thick AZ5214 positive photo resist (PPR) 
was spin-coated on the Cu layer. This was followed by a UV photolithography and developing 
process to obtain the patterned PPR. The Cu layer was patterned as serpentine structures through 
photolithography and etching (CH COOH/H O /H O = 1:2:10). A second, 2.4 µm thick layer of PI 
and a 150 nm silicon oxide (SiO ) covered the entire structure. Next, photolithography (AZ5214 PPR), 
reactive ion etching (RIE), and oxygen plasma etching patterned the layers of PI in a geometry 
matched to the metal traces (20 Sccm O , 80 mT, 200 W for 55 min). The residue SiO  mask was 
removed using buffered oxide etchant (BOE 1:20). Finally, the flexible interconnection was retrieved 
using water-soluble tape for aligned transfer to the device substrate. The entire device with flexible 
interconnection was put in water for a few minutes, and the tape was gradually dissolved. PZT 
elements and flexible interconnections were bonded through the use of low-temperature solder paste 
(Sn Bi ). A clean squareglass was placed in the container with some trimethylchlorosilane (TMCS) 
as releasing agents. The container was sealed with preservative film for one night for volatilization 
of the mold release agents. After surface treatment on the square glass with mold releasing agents, a 
200 µm thick PDMS layer was spin-coated onto the square glass. The PDMS film, as a flexible 
substrate, could been peeled off completely after a curing process at 80 °C for 3 h. We used this layer 
as the bottom layer of the device. Both top and bottom layers were fabricated using the method 

Figure 1. (a) Schematic drawing of the flexible piezoelectric micromachined ultrasonic transducer
(FPMUT) array. (b) Photograph of the FPMUT array. (c) The FPMUT attached to skin of the arm.

When alternating current is passed through the flexible interconnection with the piezoelectric
ceramic array, the piezoelectric ceramic will deform due to the piezoelectric effect. At the same time,
the frequency of the generated ultrasound is related to the frequency of the input voltage. Figure 1b
shows a picture of the sample device, and Figure 1c shows a demonstration of the device being attached
to skin.

2.2. Fabrication Process of the FPMUT Array

The fabrication process of the FPMUT is shown in Figure 2. First, a 4 inch silicon (Si) wafer
consisting of about 100 µm PDMS layer was used for the temporary substrate (mixed at 10:1 ratio, 3000
rpm for 30 s, at 80 ◦C for 3 h). Then, the PDMS temporary substrate was exposed to oxygen plasma to
enhance the vitality of the surface (for 60 s). A 2.4 µm thick layer of PI was used as the protective layer
(2000 rpm for 60 s, at 150 ◦C for 4 min and at 210 ◦C for 1 h). Then, a 400 nm thick layer of copper
(Cu) was deposited by electron beam evaporation onto the PI (type of Ei-5z, at 200 ◦C, 5 × 10−5 Pa, for
evaporation rate of 1 Å/s). A 1.5 µm thick AZ5214 positive photo resist (PPR) was spin-coated on the
Cu layer. This was followed by a UV photolithography and developing process to obtain the patterned
PPR. The Cu layer was patterned as serpentine structures through photolithography and etching
(CH3COOH/H2O2/H2O = 1:2:10). A second, 2.4 µm thick layer of PI and a 150 nm silicon oxide (SiO2)
covered the entire structure. Next, photolithography (AZ5214 PPR), reactive ion etching (RIE), and
oxygen plasma etching patterned the layers of PI in a geometry matched to the metal traces (20 Sccm
O2, 80 mT, 200 W for 55 min). The residue SiO2 mask was removed using buffered oxide etchant
(BOE 1:20). Finally, the flexible interconnection was retrieved using water-soluble tape for aligned
transfer to the device substrate. The entire device with flexible interconnection was put in water for
a few minutes, and the tape was gradually dissolved. PZT elements and flexible interconnections
were bonded through the use of low-temperature solder paste (Sn42Bi58). A clean squareglass was
placed in the container with some trimethylchlorosilane (TMCS) as releasing agents. The container was
sealed with preservative film for one night for volatilization of the mold release agents. After surface
treatment on the square glass with mold releasing agents, a 200 µm thick PDMS layer was spin-coated
onto the square glass. The PDMS film, as a flexible substrate, could been peeled off completely after a
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curing process at 80 ◦C for 3 h. We used this layer as the bottom layer of the device. Both top and
bottom layers were fabricated using the method mentioned above, and another surface of the PZT unit
was then bonded with the top layers using the low-temperature solder paste. The top and bottom
layers with PDMS were pasted by fresh PDMS solution to form the complete device.
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Figure 2. Process flow of the FPMUT.

The effect of flexible interconnection in different steps is shown in Figure 3, where the shape of
the electrode and protective layer can be seen. Figure 3a shows the effect of the second layer of PI
covered by the whole device, while Figure 3b shows the Cu layer that was patterned as serpentine
structures. Due to the maximum stress of the connecting part, the shape was used to ensure that the
interconnection was not broken while stretching. We can see from Figure 3c that the SiO2 hard mask
after photolithography was a little wider than the copper layer. The purpose of this step was to allow
the PI layer to wrap the copper layer well for the future. Figure 3d–f shows the encapsulation process
of the device. Figure 3d shows that the flexible interconnection was retrieved by water-soluble tape.
This is a very simple method to transfer flexible interconnection. Figure 3e shows the interconnection
being transferred on another new PDMS layer. We combined the flexible interconnection with PZT
array using low-temperature solder paste, as shown in Figure 3f.
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Figure 3. Effects of flexible interconnection in different steps. (a) The second layer of polyimide (PI) for
the protective layer. (b) The Cu layer was patterned as serpentine structures. (c) The SiO2 hard mask
after photolithography. (d) The flexible interconnection was retrieved by water-soluble tape. (e) The
flexible interconnection was transferred on a new PDMS layer. (f) The flexible interconnection and the
lead zirconate titanate (PZT) array were combined.
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3. Results and Discussion

3.1. Simulation of the FPMUT

3.1.1. Mechanical Tensile Properties of the Flexible Interconnection

Figure 4 shows the tensile property of the curved part in the flexible interconnection, while Table 1
gives parameters of the material that was used in the simulation. The copper layer was too thin to
account for the overall structure. Figure 4a shows that the maximum stress was linear with tensile
displacement. As can be seen in Figure 4b–c, the change in the shape of the flexible interconnection
and the distribution of strain were distinctively reflected. In the simulation, one end of the flexible
electrode was fixed, and the other end was displaced. The total width of the flexible electrode between
the two piezoelectric ceramics was 3.25 mm, and the maximum displacement set in the simulation was
2 mm. Therefore, the tensile strain could reach 61.5%, which is much higher than the maximum tensile
strain of human skin (20%). In this case, the largest strength of the flexible interconnection was up to
49 MPa, and the maximum tensile strength of PI was 150 MPa. These results show that the tensile
property is adequate to fit the whole device for contact with skin surfaces.
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Table 1. Parameters used in simulation.

Material Young’s Modulus Poisson’s Ratio

PI 3.1 GPa 0.37

Density (kg/m3) Thickness (µm) Displacement (mm)

1300 4.8 2

3.1.2. Resonant Frequency of the Piezoelectric Element

To study the transmission sensitivity, a finite element model (FEM) of a single piezoelectric ceramic
block based on the variation principle and subdivision interpolation was built, where the analysis of
piezoelectric effects with structural mechanics models was employed. To solve piezoelectric elastic
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vibration problems, we used the Hamilton variation principle. Here, the structural vibration analysis
of the entire continuum is divided into finite elements. These units are continuous at the boundary, and
the parameters at the boundary nodes are regarded as unknown quantities. The method of constructing
interpolation function can be given an unknown node relationship value and unit of arbitrary values
so as to establish equations that satisfy the continuum approximation. Piezoelectric ceramics are
anisotropic materials. The mechanical boundary and the electrical boundary condition determine
their four piezoelectric equations, and the direction of polarization determines the transformation
of their characteristic parameter matrix. For the structure of the piezoelectric transducer, the e type
piezoelectric equation with a mechanical short circuit can be expressed as follows:{

T = cES− etE
D = eS + εsE

}
(1)

where T is the stress vector, D is the electric displacement vector, cE is the elastic coefficient matrix,
S is the strain vector, E is the electric field vector, e is piezoelectric stress constant matrix, et is the
transposed matrix of e, and εs is the dielectric constant matrix.

After the hybrid meshes and the variational processing method, the following equation can
be obtained: (

K −ω2M
)
U = PV (2)

PtU + C0V = Q (3)

where K is the total stiffness matrix, P is the total electromechanical coupling vector, Pt is the transposed
matrix of P, M is the total mass matrix, U is the displacement vector of the piezoelectric node, ω is
the angular frequency of simple harmonic vibration, C0 is the clamping capacitance, V is the voltage
between electrodes, and Q is the amount of charge on the electric pole. The characteristic parameters
of the piezoelectric model can be calculated using Equations (2) and (3).

While the PMDS layer and the flexible interconnection is not taken into consideration, the 100 µm
low-temperature solder paste layer is defined, so it is consistent with the actual situation. According
to the structure of the device, the whole model should be fixed to the bottom surface. The single
piezoelectric ceramic block is defined as a piezoelectric material in the modeling. No initial stress
is considered in the model; hence, the simulated results are taken as the ideal values. Piezoelectric
ceramic blocks with different thicknesses have a certain resonance frequency, which can be seen in
Figure 5a. Considering the convenience of processing and procurement, the size of the piezoelectric
ceramic selected in this design was 5 mm × 5 mm × 1 mm. Figure 5b shows the deflection amplitude
of the average displacement of the plane against frequency. At 10 V voltage, the simulated resonance
of the single element was 363.95 KHz, and the average surface displacement was about 1.915 µm. The
small picture in the upper left corner is the vibration mode of the device at the resonant frequency.
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3.1.3. Sound Field Distribution in Water

The sound intensity of a single piezoelectric ceramic block can be calculated by Equations (4)
and (5).

I =
ρcω2

0A2

2
(4)

ω0 = 2π f (5)

where I is the sound intensity, ρ is the medium density, c is the speed of sound propagation in the
medium, A is the amplitude, ω0 is the angular velocity, and f is the frequency. The sound intensity
obtained was 4201.25 W/m2, and the acoustical power can be calculated by Equation (6):

W = I ∗ S (6)

where W is the acoustical power, and S is the area perpendicular to the direction of propagation. Finally,
we could calculate the acoustical power as about 0.105 W.

In order to study the acoustic energy distribution of the device in water, acoustic methods to
simulate the sound field in water were used. A water tank model with a size of 1 m × 1 m × 2 m
was set up to simulate the environment for actual testing in the future. We treated each piezoelectric
element as a point source, and the value of each point source was 0.105 W, as calculated by Equation (6).
Figure 6a shows a subdivision of the sound field obtained from the simulation. Figure 6b corresponds
to the value of the SPL in the Y direction with the center of the array as the origin. As can be seen
from the diagram, the SPL attenuated as the distance increased from 0 to 2000 mm. With the distance
increasing, the attenuation gradually diminished from 191.35 to 163.57 dB. We also did a simulation
of ultrasound penetration through the skin tissue. The size of the model was 45 mm × 45 mm × 50
mm, and the tissue width was 3 mm. As can be seen in Figure 6d, the SPL decreased as the distance
increased. Due to the differences in acoustic parameters, such as density and sound velocity, the value
of SPL changed dramatically at the point of contact between different substances.
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3.1.4. Ultrasonic Penetration of the Human Tissue

Figure 7a show the simulation of ultrasonic penetration through the human tissue. According to
anatomical characteristics, the upper arm is equivalent to a four-layer concentric cylinder composed of
bone, muscle, fat, and skin. The thickness of each part is shown in Table 2. The length of the established
cylinder was 150 mm, and the 4 × 4 PZT array was attached to the surface of the skin tissue. In order
to simplify the simulation model, we omitted the PDMS layer. Figure 7b shows the change in SPL with
increasing distance. As the ultrasound reached the bone, the SPL attenuated from 185.6 to 184.3 dB.
When the PZT array was attached to the curved surface, it still worked effectively. However, there
was a mutation with the increase of distance in the different medium interface (Figure 7b), which
might be attributed to the different density of the medium and different sound speed in the different
medium interface.
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Table 2. Density and thickness of different tissues.

Tissue Density (g/cm3) Thickness (mm)

Skin 1.109 0.75
Fat 0.911 3

Muscle 1.09 22
Bone 0.44 8

3.2. Experimental Results

3.2.1. Measurement of the Resonant Frequency

The resonant frequency of the PZT elements in the array was measured and is shown in Figure 8a,b.
It can be seen that the resonant frequency of PZT elements in the array was approximately 355 KHz
within 20 KH, which is similar to the simulation results shown in Figure 5. In Figure 8c, both standard
capacitive values and tested values after bonding of each PZT in the array are presented. The tested
value was generally less than the standard, but the deviation was very small at only 0.181 nF. This
indicates that the PZT units were fully bonded with the flexible electrode, and the device could conduct
electricity normally. Figure 8d shows the resonant frequency and the anti resonant frequency of the
device tested in water. The resonant frequency measured by an impedance analyzer was 321.15 KHz,
and it was different from the data measured in air.
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3.2.2. Flexibility Test of the Device

In order to verify that the device has excellent flexibility and can fit the skin surface, we carried
out a tensile test. As shown in Figure 9a,b, we stretched the device along the x and y axes. We used
a handheld microscope to take pictures of the serpentine electrode in its initial and stretched states.
Figure 9c shows the diagram of the electrode in its initial state, and Figure 9d shows the stretched
electrode. Comparing the two electrode diagrams, it can be seen that the internal structure of the
electrode was not damaged when the device was stretched by 25%, which is greater than the maximum
stretch of the skin.
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3.2.3. Ultrasonic Emission Experiment in Water

A schematic diagram of the ultrasonic emission experiment is shown in Figure 10. Firstly, an
antijamming cable was connected to the electrode of the device, and the connecting component was
protected for waterproof treatment. Next, the device was fixed on a flat plate to make it convenient
to carry out quantitative experimental analysis in the water tank. The other end of the cable was
connected to the signal generator and the power amplifier. The hydrophone (TC4035, Teledyne RESON)
was connected to the oscilloscope to accept the signal, and it was fixed in the water tank. The signal
generator produced a sinusoidal signal with a voltage of 10 V, and the frequency was 321.15 KHz
(measured by impedance analyzer), which was driven by a power amplifier. Figure 11a shows the
results when the distance between the device and the hydrophone was 5 cm. It can be seen that the
hydrophone received the signals from the FPMUT. The black line indicates the emission wave, and the
blue line indicates the received wave.
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With a constant change of excitation frequency, the maximum value of the received ultrasonic
signal was found to be 350 KHz, as shown in Figure 11b. The strength of the ultrasound signal, which
changed with the distance between the device and the hydrophone at the two different frequencies,
can be seen in Figure 11c. A sinusoidal excitation signal with a frequency of 350 KHz allowed the
ultrasonic power generated by the flexible piezoelectric ultrasonic transducer to be larger. Therefore,
the frequency of 350 KHz was used in the following tests. When the distance between the device and
the hydrophone was changed, the hydrophone was used to record the intensity of the signal received.
The sound pressure level measured by the hydrophone can be obtained by the following equation:

20 log
(

Vp
√

2

)
−A (7)

where Vp is the measured peak-to-peak value of signal voltage, A is the sensitivity standard value of
hydrophone. The standard sensitivity of this type of hydrophone is 213.057 dB. The SPL tested at
different distances is shown in Figure 11d.
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The SPL was also tested at different voltage amplitudes. As shown in Figure 12a, the sinusoidal
excitation signal frequency was 350 KHz when the distance between the device and the hydrophone
was limited to 5 cm. In order to more intuitively demonstrate the sound intensity of the ultrasonic
waves generated by the FPMUT, the measured sound pressure level data was converted into sound
intensity using Equations (8) and (9), as shown in Figure 12b. The two figures show that, when the
frequency of the sinusoidal excitation signal was 350 KHz and the amplitude reached 100 V, the signal
measured by the hydrophone at a distance of 5 cm from the flexible piezoelectric ultrasonic transducer
had a sound intensity of 5.533 mW/cm2. Various studies have indicated that LIPU with frequency less
than 10 MHz and intensity less than 30 mW/cm2 can shorten the healing period of bone injury. Because
the minimum distance controlled by this experiment was 5 cm, which is bigger than the thickness of
human tissue, the sound intensity measured from the tests was small. However, it can be seen from
the current experimental data that the low-intensity ultrasound generated by the flexible piezoelectric
ultrasonic transducer has the potential to assist in the treatment of fracture healing, and its safety
performance depends on the magnitude of the excitation voltage and the length of the irradiation time.

SPL = 20 log
(

Pe

Pre f

)
(8)

I =
P2

e
ρc

(9)
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3.2.4. Tissue Penetration Experiment

Ultrasound transmission to the skeletal tissue requires penetration through the skin, fat, and
muscle tissues. The detailed tissue thickness of a human upper arm is given in Table 2. To help heal
bone injury, the ultrasound must penetrate through 25.75 mm of tissue. In order to test the penetration
performance of the ultrasound that was produced by the FPMUT, the distance between the device and
the hydrophone was limited to 5 cm. The test device is shown in Figure 13. Different pork tissues
were placed between the FPMUT, and the corresponding changes in the received ultrasonic signals are
shown in Table 3. The data measured in the experiment were smaller than the data obtained in the
simulation. On the one hand, the water in the water tank in the experiment was not pure water, and
there were many impurities that would weaken the propagation of ultrasound. On the other hand,
the test environment was far more complicated than the simulation. In the simulation, only the ideal
situation was considered.
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3.2.5. Comparison with Some Previous Works

We compared our device with some previous works, and the results are given in Table 4. Our
device operates mainly at low frequencies compared with other devices, and its tensile property is much
better than those of other devices. In terms of application, it is mainly used as an adjuvant treatment for
bone injury, which is very different from other processes. The proposed device is a great development
in the application of flexible electronic devices with piezoelectric ultrasonic energy exchange.

Table 4. Comparison of this work with previous works.

Devices Resonant Frequency Tensile Ratio Application

Mastronardi et al. [29]
F0-1 = 587.81 KHz
F0–2 = 1.038 MHz
F0–3 = 1.413 MHz

Not mentioned Endoscopic analysis

Lee et al. [30]

F700 µm = 694.4 KHz
F800 µm = 565.4 KHz
F900 µm = 430.8 KHz
F1200 µm = 289.3 KHz

Only bending
deformation, little

stretchability
Deep brain stimulation

Yang et al. [31] 2.016 MHz 9% Ultrasound imaging

Wang et al. [32] 2 MHz 22.5% Heart imaging

This work 350 KHz 25% Healing of bone injury

4. Conclusions

In this work, a FPMUT array was developed. With the combination of flexible interconnection, a
flexible substrate, and piezoelectric ceramics, the device is flexible for good attachment to the skin.
The measured resonant frequency of the single element was about 356.6 KHz. Ultrasonic emission
experiments in water was carried out to study the ultrasonic output of the FPMUT. The ultrasonic
wave produced by this device worked well for the penetration performance of different pork tissues.
All of these results demonstrate that this device has great potential for medical applications, such as
the adjuvant treatment of bone injury. We will do more experiments and research on it in the future.
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