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MOTOR CONTROL

Sensory feedback can give 
rise to neural rotations
Investigating how an artificial network of neurons controls a simulated 
arm suggests that rotational patterns of activity in the motor cortex 
may rely on sensory feedback from the moving limb.

OMID G SANI AND MARYAM M SHANECHI

Each time you move your arm, populations 
of neurons in the motor cortex perform an 
intricate and coordinated dance that leads 

to the generation of movement. A large portion 
of this coordinated activity can be described as 
having a ‘rotational pattern’ over time, which 
is often not directly visible in the neural activity 
and is uncovered using dimensionality reduction 
methods such as principal component analysis 
(Figure 1A; Churchland et al., 2012). Such rota-
tional dynamics have been observed in the motor 
cortex in many studies involving arm reaching or 
reach and grasp movements (see, for example 
Kao et  al., 2015; Pandarinath et  al., 2015; 
Suresh et al., 2020; Susilaradeya et al., 2019; 
Abbaspourazad et al., 2021; Sani et al., 2021), 
but were absent in the supplementary motor area 
(Lara et al., 2018).

Several studies have investigated the math-
ematics behind how these rotational patterns 
arise from the activity of individual neurons (e.g., 
Michaels et al., 2016; Elsayed and Cunningham, 
2017). Some of these reports (Sussillo et  al., 
2015; Michaels et  al., 2016) rely on artifi-
cial neural networks: simplified computational 

representations of interconnected neurons, or 
groups of neurons, that allow researchers to 
study how patterns of activity in the brain may 
emerge. These networks make it possible to 
explore how the nervous system might perform 
certain tasks without using real brains, which are 
harder to observe and difficult or impractical to 
manipulate.

One question that remains a topic of lively 
investigation is whether rotational patterns of 
activity are generated autonomously within 
the motor cortex itself or whether they reflect 
ongoing inputs from other regions of the brain 
(Vyas et  al., 2020). It is known that networks 
with recurrent connections – this is, networks with 
‘memory’, in which the output can be affected by 
previous inputs – can generate patterns auton-
omously. Indeed, a group of researchers discov-
ered that when they trained a recurrent artificial 
network to generate the motor activities needed 
for movement, the patterns resembled the rota-
tional activity seen in the motor cortex (Sussillo 
et  al., 2015). Now, in eLife, Hari Teja Kalidindi 
(Scuola Superiore Sant'Anna), Kevin P Cross 
(Queen's University) and colleagues report that 
it is also possible to train a neural network to 
control an artificial arm without using any recur-
rent connections inside the network (Kalidindi 
et al., 2021).

The team (who are based in Italy, Canada, 
the United Kingdom and the United States) 
constructed an artificial neural network that can 
activate muscles on a simulated arm which then 
sends sensory information, such as its position 
and muscle activations, back into the network 
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(Figure  1B). The artificial neural network was 
trained to perform reaching movements or to 
counter disturbances from the environment, such 
as forces that suddenly pushed the arm aside. 
This approach replicated key findings from non- 
human primate experiments in that the activity of 
neurons in the brain showed rotational patterns, 
whereas muscle activations in the arm did not. 
Intriguingly, Kalidindi et al. also found that 
when they stripped recurrent connections from 
the neural network, it could still learn to move 
the artificial arm, and still generated rotational 
patterns in its activity.

So how can a network with absolutely no recur-
rent connections produce rotational patterns 
similar to those observed in the motor cortex? 
Since non- recurrent networks always return the 
same output when they receive a specific input, 
the only way they can produce patterns that 
vary over time is if the input to the network also 
changes over time. Indeed, Kalidindi et al. found 
that the sensory feedback signals from the arm, 
which act as the input to the neural network, also 
show rotational patterns. Thus, feedback from the 
arm’s position and from muscle activations is suffi-
cient to generate rotational patterns of activity 
in the brain. When Kalidindi et al. repeated the 
experiment with monkeys performing the same 

tasks, they observed rotational patterns not only 
in the motor cortex, but also in the somatosen-
sory cortex, the region of the brain that receives 
and processes sensory information from the 
environment. This suggests that sensory feed-
back to the real brain may also contain rotational 
dynamics, as was the case in the artificial network 
simulations.

Another important consideration is the struc-
ture of the behavioral task. Usually, the tasks used 
to study the activity of the motor cortex involve 
the arm being stationary at an initial position and 
ending up stationary in another. So, could the 
rotational patterns observed in these tasks be 
due to the movement starting and ending at the 
same zero- velocity state? To investigate, Kalidindi 
et al. trained neural networks to perform a new 
task in which the arm continuously tracks a target 
moving at a constant velocity. Both recurrent and 
non- recurrent networks performed well, but this 
experiment led to substantially less rotational 
dynamics than the previous tasks, suggesting 
that the design of the behavioral task can play 
a critical role in the prominence of rotational 
patterns in neural activity.

The work of Kalidindi et al. cleverly uses artifi-
cial neural networks and real- world data to high-
light the importance of studying the motor cortex 

Figure 1. Using an artificial network to investigate how rotational patterns are generated in the motor cortex. 
(A) The brain and the arm together can be viewed as a closed- loop feedback control system. When the brain 
receives instructions for a task, neurons in the motor cortex (red inset) send a command to the arm, which moves 
and returns sensory information back to the cortex. During arm movements, the activity of neurons in the motor 
cortex exhibits rotational patterns, which may not be visible directly, but usually emerge after neural activity (red 
graph) has been subjected to dimensionality reduction methods and averaged across several repetitions of the 
same movement (different movements are shown with different colors). (B) A similar closed- loop system can be 
constructed in simulations with an artificial neural network (magenta, left) replacing the brain and a musculoskeletal 
model (right) replacing the arm. Kalidindi et al. show that such a system generates rotational patterns in the 
artificial neural network that resemble those observed in the motor cortex, regardless of the presence or absence 
of recurrent connections (purple).
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in the context of the entire closed feedback loop 
between the brain and the body, and the need to 
study this system using different types of tasks. 
Critically, the experiments suggest that rota-
tional patterns observed in the motor cortex can 
be influenced not only by internal autonomous 
dynamics, but also by external inputs such as 
sensory feedback. An important future research 
direction is to tease apart the extent to which 
these two contributing factors influence neural 
activity in the motor cortex.
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