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A B S T R A C T   

Objective: To study the spreading nature of Delta variant (B.1.617.2) dominated COVID-19 in Nepal to help the 
policymakers assess and manage health care facilities and vaccination programs. 
Methods: Deterministic mathematical models in the form of systems of ordinary differential equations were 
developed to describe the COVID-19 transmission in the high- and the low-risk regions of Nepal. The models 
were validated using the multiple data sets containing daily new cases in the whole country, the high-risk region, 
the low-risk region, and cases needing medical care, ICU, and ventilator. 
Results: We found the reproduction number of Rt = 4.2 at the beginning of the second wave, larger than the 
first wave (~1.8 estimated previously), indicating that the transmissibility of Delta variant is higher than the 
wild-type circulated during the first wave. Model predicts that ~5% of the COVID-19 cases were reported in 
Nepal, estimating the seroprevalence of ~63.9% as of July 2021, consistent with the survey conducted by the 
Government of Nepal. The seroprevalence was expected to reach 94.46% by April 2022, among which ~46% 
would have both infection and vaccination. The expected cases from September 2021 to April 2022 is 111,300, 
among which 11,890 people might need medical care, 3590 need ICU, and 953 need ventilators. The COVID-19 
cases and medical care needs could be significantly reduced with proper implementation of vaccination and 
social distancing. 
Conclusions: The data-driven mathematical models are useful to assess control programs in resource-limited 
countries. The appropriate combination of vaccination and social distancing are necessary to keep the 
pandemic under-control and manage the medical care facilities in Nepal.   

1. Introduction 

The COVID-19 pandemic caused by the novel coronavirus (SARS- 
CoV-2) continues with multiple waves worldwide. The pandemic has 
already generated more than 587 million cases and 6.43 million deaths 
worldwide as of August 6, 2022 (Worldometer, 2022). Among the 
several waves of COVID-19 caused by the different variants of the virus, 
the Delta variant (B.1.617.2) was the dominating strain during the 
second wave (June 2021 to December 2021 (GISAID, 2022)) until it was 
suppressed by new Omicron variant. The World Health Organization 

(WHO) classified the Delta variant as a global concern on May 10, 2021, 
when it had already spread to more than 30 countries (Nebehay and 
Farge, 2021). Notably, the Delta variant circulating during the second 
wave was more infectious (Bolze et al., 2021b; Callaway, 2021; Camp-
bell and Archer, 2021; Jassat et al., 2021; WHO, 2021b) than the wild 
type, and caused the highest number of cases and deaths compared to 
other waves in Nepal (MoHP, 2021). 

The crisis of Delta variant COVID-19 surge was catastrophic in Nepal, 
significantly ruining the fragile health care system after the second week 
of March 2021 (Weissenbach, 2021). With the country’s population of 
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only 30 million, infections during the second wave soared to over 9000 
new cases per day recorded in the first week of May 2020 (MoHP, 2021; 
Poudel, 2021). As of September 1, 2021, the total COVID-19 related 
death in Nepal is 10,770, among which more than 7770 were during the 
second wave (MoHP, 2021). In May 2021, the whole-genome 
sequencing tests of 35 swab samples confirmed 34 of them as Delta 
variants (97%) (Poudel, 2021). Note that Alpha variant (B1.1.7) and 
K417N (AY.1.), a sub-lineage of B.1.617.2, have also been identified in 
Nepal (MoHP, 2020b). 

In response to the second wave of COVID-19, the Government of 
Nepal implemented the lockdown on April 29, 2021, beginning from 
Kathmandu, the capital city, and later extending to all parts of the 
country (ALJAZEERA, 2021). Despite the lockdown for about four 
months and implemented vaccination, the transmission of the disease 
was still significantly high (2052 new cases and 20 deaths on September 
1, 2021 (MoHP, 2021)). The potential devastation of this pandemic is 
highly unpredictable, primarily due to significant asymptomatic and 
undiagnosed cases (Baggett et al., 2020; Li et al., 2020; MoHP, 2020a; 
Reis et al., 2020). Moreover, the transmission dynamics of the second 
wave of COVID-19 was quite different from the first wave because of the 
availability of COVID-19 vaccination, improved treatment strategies, 
and a higher infectivity of the Delta variant (Hafeez et al., 2021; Ito 
et al., 2021). During the second wave, a higher reproduction number has 
been reported (EPH, 2021; WHO, 2021b), and also infected individuals 
experienced more severe infection resulting in a higher rate of hospi-
talization (Bager et al., 2021; Funk et al., 2021; Gupta et al., 2021; 
Sheikh et al., 2021). Different vaccines are found to have varying effects 
in the community across different regions of the world depending on the 
variants (Abu-Raddad et al., 2021; Bernal et al., 2021). Therefore, it is 
critical to gain insight into the unique transmission pattern and potential 
burden of COVID-19 in Nepal to design policies for the proper man-
agement of health care facilities and vaccination. 

In this study, we implemented a data-driven modeling approach to 
study the COVID-19 transmission dynamics focused on two separate 
regions (high-risk and low-risk). Considering two different regions is 
essential in the context of Nepal because of the Nepal-India open border 
and largely populated cities in some regions, making them higher than 
others. Especially all the districts of the Terai region connected to India 
and populated cities such as Kathmandu, Surkhet, Pokhara, Lalitpur, 
Bhaktapur, and Chitwan are taken as a high-risk region. We validated 
our model by fitting it to the multiple real-time data sets containing new 
recorded cases from the high- and low-risk regions as well as the hos-
pitalized, Intensive Care Unit (ICU), and Ventilator cases, and estimating 
key parameters of the model in a realistic range. We estimated the 
effective reproduction number and predicted the hospital beds, ICU, and 
Ventilators that would be needed in Nepal until April 2022. Moreover, 
we extended our model to explore how various vaccination programs 
would reduce the epidemic burden in Nepal. 

2. Methods 

2.1. Data 

The data used in this study is obtained from the Ministry of Health 
and Population, Government of Nepal (MoHP, 2021). We used the data 
from 14 March to 15 September 2021 to fit the model. The six different 
data sets, the daily new cases of the whole country, the high-risk and 
low-risk regions, and number of patients in medical care, ICU, and 
ventilators were used in our model fitting and simulation. 

2.2. Transmission dynamics model 

In our transmission dynamics model based on the SEIR framework, 
we incorporated the medical care, ICU, and Ventilator compartments for 
both high- and low-risk regions to study the second wave of COVID-19 in 
Nepal. Schematic diagram and short description of the model are 

provided in Fig. 1, and the detailed description along with model 
equations is provided in the GitHub public repository (Adhikari, 2021). 

2.3. Parameter estimation and model fitting to data 

Since the new cases began to increase from March 14, 2021, we took 
March 14, 2021, as the initial time (t = 0) to initiate the second wave. 
The total population of Nepal in the census year 2011 was 26,494,504, 
and it is projected to be 29,996,478 at the end of 2020 (CBS, 2011). 
About 3.5 million Nepalese live in India as migrant workers (Kuwar, 
2015; Prasain, 2021), so we did not include this population in our study. 
Using 14.4% [95% CI: 11.8–17.0] seroprevalence found in the October 
2020 (MoHP, 2020a), our previous model (Adhikari et al., 2021) 
allowed us to estimate the seroprevalence on March 14, 2021, to be 
24%. We deducted both seroprevalence and migrant population from 
the total population and took the initial susceptible population of 19.29 
million for this study. Out of these susceptible populations, high and 
low-risk regions constitute 65% and 35%, respectively (CBS, 2011). The 
baseline values of all state variables are provided in the GitHub public 
repository (Adhikari, 2021). 

The lockdown in Kathmandu valley was started on March 29, 2021, 
and gradually extended to almost all parts of the country (ALJAZEERA, 
2021). To model this scenario, we defined the transmission rate β2(t)
and β3(t) as follows: 

β2(t) =
{

βH , if t ≤ 47,
βH ((1 − cb)exp(− rH(t − 47)) + cb ), if t > 47,

}

β3(t) =
{

βL, if t ≤ 47,
βL ((1 − cb)exp(− rL(t − 47)) + cb ), if t > 47,

}

where βH and βL represent the transmission rates before lockdown on the 
high-risk region and the low-risk region, respectively. Following the 
lockdown (at day 47), the transmission rates of high-risk and low-risk 
regions decay at the rates rH and rL, respectively. We further esti-
mate the different values of rH and rL for different time periods ac-
cording to the different levels of lockdown. We took cb= 0.3 assuming 
up to 70% reduction on contacts during the prolonged lockdown period 
(Coburn et al., 2009). Note that the transmission of diseases by the 
recorded infectious remains the same regardless of the lockdown 
situation. 

Since the inter-region mobility is quite different during the lockdown 
period from the pre-lockdown period, we considered two different 
mobility rates, γ(t) = γ1, and γ2, for the period of pre-lockdown and 
lockdown, respectively. The remaining parameters were estimated from 
data fitting by using the least square method. The details of data fitting 
are explained in the GitHub public repository (Adhikari, 2021). 

2.4. Calculation of the reproduction number 

The reproduction number (Rt) is an average number of secondary 
infections generated by a single infectious individual (You et al., 2020), 
which captures the increasing (Rt > 1) and decreasing (Rt<1) trend of 
the infection. We calculated the reproduction number by using our 
dynamical system model and also using the Maximum Likelihood 
Method (MLM) from the daily reported incidence using the EpiStem 
package of R-program (Thompson et al., 2019) (see the GitHub public 
repository (Adhikari, 2021) for the reproduction number formulation). 

2.5. Modeling vaccination program 

We assumed the vaccination for individuals in all compartments, 
except the recorded infectious, medical care, ICU, and ventilator com-
partments, because the individuals were not vaccinated while they are 
infected or in medical care. To incorporate the vaccination program into 
the model, we further divide each vaccination-eligible compartment 
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into vaccinated and unvaccinated sub-compartments and transfer in-
dividuals from unvaccinated to vaccinated compartment upon receiving 
vaccinations. We assumed that the vaccinated individuals are less sus-
ceptible to infection, less vulnerable for medical care, and immune 
during the study period. The extended model diagram with the vacci-
nation program is presented in the GitHub public repository (Adhikari, 
2021). 

3. Results 

3.1. Pattern of the second wave of COVID-19 in Nepal and model 
validation 

We used the extended model to fit the data and future predictions. 
The model was fitted to the multiple data sets consisting altogether 1116 
data points simultaneously (186 data points of each of the daily recorded 
new cases in the whole country, the high-risk region, and the low-risk 
region, and cases in medical care, ICU, and ventilator) (Fig. 2). The 
large number of 6 different kinds of data points allowed us to estimate 
the unique parameters. In the beginning, the vaccination level in Nepal 
was negligible, but from middle of July 2021, the vaccination rate was 
significantly increased. So, we also incorporated the realistic 

vaccination program in our basic model fitting. The model is in excellent 
agreement with each data set, asserting the validation of our model. 

The second wave increased rapidly until the 1st week of May 2021, 
hitting the highest new cases of 9070 on May 6, 2021. The imple-
mentation of lockdown reduces the new cases in both the high- and low- 
risk regions, but the effect observed in the low-risk region was one 
month delayed compared to the high-risk region. After the relaxation in 
lockdown in some places of the high- and low-risk regions, the COVID- 
19 cases resurged from mid-July of 2021, forcing these places to impose 
the second lockdown (For example, Jhapa district imposed the second 
lockdown from the last week of July 2021 and then relaxed from the 
second week of August 2021 (The Himalayan, 2021)). As revealed in 
Fig. 2, during the first peak of the second wave, the hospital beds, ICUs, 
and ventilators needed were below the capacity allocated by the gov-
ernment. The estimated parameters are given in Table 1. 

3.2. Forecasting of the second wave of COVID-19 in Nepal 

The long-term prediction of the disease dynamics using the dynam-
ical system model is widely accepted. There are many mathematical 
models (Chowdhury et al., 2020; Goscé et al., 2020; Hachtel et al., 2022; 
Putra et al., 2020; Shankar et al., 2021; Tuite et al., 2020), which have 

Fig. 1. Compartmental diagram of the Model. The red box denotes the high-risk region and blue the low-risk region. Here we divided the population into sixteen 
distinct compartments: SH, SL (susceptible), EH, EL (exposed), IRH , IRL (recorded infectious), INH, INL, (non-recorded infectious), MH , ML (Medical care), ICH , ICL 

(ICU), VH , VL (Ventilator) and RH , RL (recovered), where the suffixes H and L are used to indicate the high- and low-risk regions, respectively. ᴧH and ᴧL represent the 
recruitment rates due to birth and λ(t) is the rate of entry of the immigrants from abroad to the high-risk region. Among the immigrants, a portion ϕ is tested by 
the antigen, and the rest (1 − ϕ) entered the community without the antigen test. The ρ portion of immigrants with a positive test enter IRH class and the remaining 
with a negative test enters SH class. The immigrants without antigen test are entered to SH and INH with the same portion 1 − ρ and ρ, respectively. There is no 
recruitment from immigration in the low-risk region as it does not have a border with India. γ is the mobility rate between two regions. The transmission rate from 
the recorded infectious classes are β1 for both regions, and that from non-recorded infectious classes in high- and low-risk regions are β2 and β3, respectively. The 
incubation period is represented by 1δ. θ is the rate of being recorded, among which a portion ω enter MH and ML, and a portion (1-ω) enter IRH, and IRL, respectively.
From MH and ML classes, the severe patients enter high medical care at the rate υ among them (1-ψ) portion enter ICH, ICL, and ψ portion enter VH , and VL at the rate 
ν. The recovery rate of IRH, INH , IRL, and INL classes is η and that of (MH , ML), (ICH , ICL), and (VH, VL) are αm, αc, and αv, respectively. The natural death rate of 
all the classes is μ and the disease-induced death rate for recorded and non-recorded infectious individuals are k and k’, respectively, and that of individuals in 
medical care, ICU, and ventilator are k1, k2 and k3, respectively. A detailed description of the model and system of differential equations are provided in the GitHub 
public repository (Adhikari, 2021). 
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been used to predict the long-term behavior of pandemic in different 
places of the world. Here, we used our extended model to predict the 
long-term trend of the epidemic from 16 September 2021 to the end of 
April 2022 with the scenario of gradual relaxation of lockdown to reach 
the pre-lockdown phase. We would like to mention our long-term pre-
diction includes short-term predictions as in some previous studies 
(Dahal et al., 2021; IHME, 2021). We also used our model to evaluate the 
various vaccination programs that the Nepal Government could imple-
ment. The trend of the epidemic with the level of vaccination imple-
mented by the government (Fig. 3) shows a steady decrease to an almost 
extinct level with no cases of hospitalization at the end of April 2022. 
However, we note that our prediction was for the scenario in which no 
novel strain of SARS-CoV-2 would dominate the transmission. As per 
model estimations, 111,300 new cases would be reported, with 11,890 
people needing medical care, 3590 needing ICU, and 950 needing 
ventilators, from September 16, 2021, to April 30, 2022. 

3.3. Estimation of reproduction number in Nepal 

We first estimated the reproduction number (Rt) from the data using 
the Maximum Likelihood Method (MLM). As mentioned earlier, the 
April 14 was the starting date of the second wave of COVID-19 in Nepal. 
Taking the 7 day-window for the calculation of Rt (see method section), 
we estimated the reproduction number from 21 April 2021–15 
September 2021 (the last data considered). We observed that before the 
lockdown, Rt reached up to 2 in both the high- and low-risk regions as 
well as in the whole country (around the 3rd week of April), indicating 
that the significant community transmission of the disease had already 

occurred before the lockdown. 
While Rt estimated from the data provides valuable information 

regarding the disease trend, it lacks the asymptomatic cases, which may 
be the dominating spreader of the disease. To overcome this limitation, 
we also estimated the time-dependent reproduction number (Rt) by 
using our model. As expected, the model predicted a higher value of the 
reproduction number of 4.2 due to the asymptomatic cases. Rt decreases 
rapidly after the implementation of the lockdown (Fig. 4). Around the 
1st week of June, it fell below 1 and again raised following the partial 
relaxation of lockdown. This trend of Rt well-describes the trends of new 
cases in both high-and low-risk regions. 

Under the complete national-level lockdown, it took one month 
longer in the low-risk region to bring Rt below 1 compared to the high- 
risk region. Our model also allowed us to predict a long-term Rt up until 
30 April 2022. According to our model prediction, Rt remained less than 
the threshold value 1, indicating the decreasing trends of new cases in 
both regions (Fig. 4) throughout the pandemic until April 2022. 

3.4. Estimates of seroprevalence 

The antibody of COVID-19 forms in the body due to the viral infec-
tion and/or vaccination. Estimating the seroprevalence is practically 
essential for COVID-19, mainly because of a large portion of unreported 
infected individuals. We assumed that recovered and/or vaccinated 
people remain immune during the simulation period. We estimated 
63.9% seroprevalence (Fig. 5) as of the end of July. We also used our 
model to predict the expected seroprevalence during the pandemic until 
April 2022 (Fig. 5). As predicted by our model, the seroprevalence 

Fig. 2. Model Fitting to Multiple Data Sets. Daily reported cases of the whole country Nepal (a), the high-risk region (b), and the low-risk region (c), and cases in 
medical care (d), ICU (e), and ventilator (f). Solid lines represent the model prediction, and the circles represent the data. We take different decay rates rH and rL of 
transmission to address the different level of lockdown in different parts as follows: rH = 0 (0 ≤ t 47, Pre lockdown time), 0.082 (47 ≤ t 95, Lockdown to all regions), 
− 0.05 (95 ≤ t 193 186, Partial relockdown in some parts), and rL = 0 (0 ≤ t < 47, Pre lockdown time), 0.033 (47 ≤ t < 105, Lockdown starts and extend to other 
parts), − 0.038 (105 ≤ t < 135, Relaxation of lockdown), 0.038 (135 ≤ t < 185 Partial relockdown in some places). 

K. Adhikari et al.                                                                                                                                                                                                                               



Epidemics 41 (2022) 100642

5

reached ~89% in December 2021 and ~95% in April 2022. 
Moreover, our model allows us to identify whether the seropreva-

lence achieved is due to vaccination, actual infection, or both. Among 
the ~89% seroprevalence achieved by December 31, 2021, ~7% are 
from vaccination, ~52% are from infection, and ~30% are from both 
vaccination and infection. Similarly, ~7%, ~42%, and ~46% are ex-
pected contributions from vaccination, infection, and both, respectively, 
towards the total seroprevalence of ~95% by April 30, 2022. 

3.5. Role of vaccination in the mitigation of COVID-19 in Nepal 

Here, we considered different vaccination scenarios under the com-
plete relaxation of non-pharmaceutical interventions and used the 
model to predict the outcome of the pandemic under these vaccination 
programs. Based on the literature, we modeled the effectiveness of 
vaccination using a 50% reduction in infection and a 90% reduction in 
hospitalization for vaccinated people. While we used this level of 
effectiveness for demonstration purposes, the simulations with other 
values produce a similar qualitative behavior with a slight quantitative 
difference. 

The Government of Nepal had set the target to vaccinate 71.6% of 
the people from the eligible age groups (MoHP, 2021). Therefore, we 
focus on vaccination programs targeting 71.6% of the eligible popula-
tion by a specific timeframe. The vaccination rate (ζ), in our model with 
the target to cover 71.6% eligible population by vaccination timeframe, 

T, can be calculated using ζ = − ln(1− 71.6
100)

T (Pantha et al., 2021a). For 
varying vaccination timeframes from October 31, 2021, to April 30, 

2022, and the varying level of lockdown from 0% to 80%, we simulated 
our model to predict maximum daily cases, the total cases, the total 
deaths, the total medical cares, the total ICUs, and the total ventilators, 
during the pandemic until April 2022 (Fig. 6). 

With the level of vaccination implemented and complete relaxation 
of the lockdown, the peak value of new cases is 2232 per day. However, 
the peak could be reduced to ~ 1726, 1966, 2070 and 2134 per day, 
respectively, when the vaccination timeframe is set to the end of October 
2021, December 2021, February 2022, and April 2022. Our model 
simulations show that the total number of cases by the end of April 2022 
could be reduced from 154,000 to 62,000, 94,000, 119,000, and 
132,000 by setting the vaccination timeframe at the end of October 
2021, December 2021, February 2022, and April 2022, respectively. 
With these vaccination programs, i.e., the time frame of the end of 
October 2021, December 2021, February 2022, and April 2022, the 
number of recorded deaths could be reduced from 1509 to 686, 1017, 
1196, and 1316, respectively. Similarly, these vaccination timeframes 
could reduce the total medical patients from 16,610 to 5885, 9965, 
12,150, and 14,080, respectively. In this case, the total ICU patients 
could be reduced from 4941 to 1964, 3147, 3790, and 4220, respec-
tively, and ventilator patients could be reduced from 1305 to 522, 836, 
1007, and 1122, respectively (Fig. 6). 

4. Discussion 

The timely characterization of the COVID-19 wave is essential for 
policy intervention to overcome the devastating impacts of the 
pandemic. Here, we developed a data-driven mathematical model to 
describe Nepal’s unique delta variant-dominated second wave of 
COVID-19. Using multiple data sets simultaneously and considering two 
distinct high- and low-risk regions are unique features with more prac-
tical applications in our model. Our results provide a great insight into 
some relevant scenarios of COVID-19 in Nepal and predict the impact of 
potential vaccination programs on mitigating the burden of the 
pandemic, helping policymakers design proper health care facilities and 
vaccination strategies. 

We identified the distinct pattern of the Delta wave in high- and low- 
risk regions regarding its magnitude and time period. As expected, most 
of the cases (>80%) were recorded in high-risk region and it peaked 
about one month earlier than low-risk region. Such spatial disparity on 
the pandemic trend was also found in the previous study (Pantha et al., 
2021b), which performed the province-wise analysis of the first wave of 
COVID-19 in Nepal. The increasing trend of the epidemics remained for 
the period of April-May 2021 in high-risk region and for the period of 
May-June 2021 in low-risk region. 

The delta variant was the dominant variant during the second wave 
of COVID-19 in Nepal. As per our model estimates, the reproduction 
number of Rt = 4.2 at the beginning of the Delta variant dominated 
second wave is higher than the first wave (~1.8) (Adhikari et al., 2021), 
indicating a significantly higher virus transmission during the second 
wave than the first wave. The maximum likelihood method gives a 
relatively low effective reproduction number (~2) at the peak time of 
epidemic that is similar to the other study (Dahal et al., 2021). The 
higher transmissibility of the Delta variant observed in our study is 
supported by the previous studies in different parts of the world 
(Campbell and Archer, 2021; Funk et al., 2021; Saito et al., 2021; Bolze 
et al., 2022; Li et al., 2021) and higher reproduction numbers in many 
other reports and studies (Campbell and Archer, 2021; Ito et al., 2021; 
WHO, 2021b). While the national implementation of lockdown caused 
the reproduction number to decrease to below the threshold value 1, the 
effect seen in the low-risk region was about a month delayed compared 
to the high-risk region. Such inter-regional disparity highlights that 
regional level policy, and thus regional level modeling, is needed for 
more effective control of the local-level outbreak. The inter-region 
discrepancy overserved in our estimated Rt is consistent with the 
inter-provincial disparity identified in Pantha et al. (Pantha et al., 

Table 1 
Parameters of the model.  

Symbol Description Value References 

β1 transmission rate of 
recorded infectious people 
of high and low risk region 

0.005 Data fitting 

βH transmission rate of non- 
recorded infectious people 
of high region 

0.525 Data fitting 

βL transmission rate of non- 
recorded infectious people 
of low-risk region 

0.235 Data fitting 

θ detection rate 0.05 Data fitting 
ϕ border screening rate 0.1 Data fitting 
ρ positivity rate of migrant 

workers at border 
0.1 (MoHP, 

2021) 
k disease induced death rate of 

reported non- hospitalized 
infected 

0.0002 Data fitting 

k′ disease induced death rate of 
non-reported non- 
hospitalized infected 

0.00002 Data fitting 

k1,k2,k3 disease induced death rate in 
medical care, ICU, and 
ventilator 

0.001,0.041,0.071 Data fitting 

γ1, γ2 mobility rate between high 
and low risk regions before 
and after lockdown 

0.015, 0.0001 Data fitting 

ω proportion of infected who 
need medical care 

0.1125 Data fitting 

τ rate of admission on ICU 
from medical care 

0.1 Data fitting 

ν rate of admission on high 
medical care (ventilator and 
ICU) 

0.05 Data fitting 

Ψ proportion of infected who 
need ventilator 

0.21 Data fitting 

αm, αc, αv recovery rate from medical 
care, ICU, and ventilator 

0.092,0.1,0.0625 Data fitting 

η recovery rate of infectious 
without medical care 

0.0588 (WHO, 
2021a) 

δ incubation period 0.1923 (Linton 
et al., 2020)  
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2021b) during the first wave of COVID-19 in Nepal. 
The potential transmission from the undiagnosed cases is one of the 

most contributing factors to the uncertainty of the COVID-19 pandemic, 
causing extreme difficulty for its control. Estimating this critical trans-
mission rate from undiagnosed cases requires a large-scale seropreva-
lence survey, which is often limited by resources in developing countries 
like Nepal. We implemented our data-driven dynamical system-based 
model to estimate this transmission rate. We found a significantly high 
transmission rate from undiagnosed cases (~95%), consistent with the 
seroprevalence survey of the Government of Nepal (MoHP). Our model 
predicts ~63% seroprevalence in Nepal at the end of July 2021, 
consistent with the result (~68.6%) from the Nepal Government’s sur-
vey (MoHP). With the level of vaccination implemented, the model 
predicts that ~95% of people were immune to the circulating strains of 
COVID-19 by the end of April 2022. Among these immune people, about 
46% had experienced both vaccination and actual infection. 

For developing countries like Nepal, timely assessment of expected 
burden is critical to avoid an overwhelming situation in hospitals and 
medical facilities. Our simulation results identified the duration of 
hospitalization of the COVID-19 patients in Nepal (7 days in normal 
medical care, 7.2 days in ICU, and 7.5 days in ventilators) shorter than 
that noted in other studies (Ben, 2021; Li et al., 2020; Twohig et al., 
2022; Gupta et al., 2021). As in many other studies (Saito et al., 2021; 
Twohig et al., 2022; Verity et al., 2020; Jassat et al., 2021), Nepal faced a 
significant increase in the hospitalization burden due to the 
delta-variant compared to the wild-type. Based on our model analysis, 
we found the hospitalization of ~11.25% of recorded cases in Nepal, 
similar to the rates identified in other countries (~9.2%− 25%) (Bager 
et al., 2021; Gupta et al., 2021). Among the hospitalized patients, ~35% 
of them needed extensive medical care, such as ICU and ventilator. 
According to the report on May 2020 (MoHP, 2020b), Nepal had 26,930 

hospital beds, 1595 ICU beds, and 840 ventilators, including the gov-
ernment and private sectors. The Government of Nepal planned to 
allocate one-third of these facilities for COVID-19 patients. Later, the 
Government of Nepal extended its capacity to 10,116 hospital beds, 
1648 ICUs, and 1088 ventilators for COVID-19 patients (MoHP, 2021). 
Interestingly, these data show that the predicted total hospitalization 
burden remains below the total capacity of Nepal even though the 
country is expected to have limited medical resources and prevention 
programs. However, we note that during the peak time (last of May 
2021), many national and international media (Ben, 2021; Bhandari and 
Hannah Peterse, 2021; Prasain, 2021; ReliefWeb, 2021) covered the 
news about a shortage of hospital beds, ICU, ventilators, and oxygen 
cylinders. This discrepancy may be attributed to mismanagement of the 
hospital infrastructure and/or underreporting of patients. We also note 
that the low hospital rate may partially be attributable to the hospital-
ization of only complicated cases or scarcity of the hospital beds at the 
time of peak (Ben, 2021; Prasain, 2021; ReliefWeb, 2021). 

The significant impact of the vaccination, including against the new 
variants, has been reported (Abu-Raddad et al., 2021; Bernal et al., 
2021). Both vaccination programs and the relaxation of lockdown were 
ongoing in Nepal after the September 2021. We implemented our model 
to predict the potential epidemic trends and medical care needed (hos-
pital bed, ICU, ventilator) for various coverage rates of vaccination 
programs and levels of lockdown during the pandemic until April 2022 
(Fig. 6). Our model predictions of 111,300 cases, 11,890 hospitaliza-
tions, 3590 ICUs, and 950 ventilators by the end of April 2022 is also 
compatible with the prediction of IHME model (IHME, 2021). The re-
sults on vaccination and lockdown provide information on suitable 
strategies for Nepal to manage medical care and the pandemic burden. 

We acknowledge some limitations of our study. Daily new cases may 
be affected by the number of tests and the positivity rate, which were not 

Fig. 3. Long term Prediction of the Model. Prediction of daily reported cases of the whole country Nepal (a), the high-risk region (b), and the low-risk region (c), 
and cases in medical care (d), ICU (e), and ventilator (f), predicted by the model until April 30, 2022. 
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considered into our model. The inherent complexities of an unfolding 
epidemic, human behavior, implementation timing, and governmental 
policy change may have some impact on our predictions. We ignored the 
spatial heterogeneity in the dynamics within each region, the high- and 

low-risk regions. Furthermore, the inhomogeneity of the age structures 
of the study population was ignored. These questions can be addressed 
by heterogeneous and/or age-structured models, but more granular data 
is required. We considered high- and low-risk districts based on in-
terconnections with India, a highly affected country by Delta variant, 
population density, and mobility pattern. The lack of data and infor-
mation might have caused some uncertainty in categorizing districts 
into high- or low-risk regions. For example, our model classified the 
Makawanpur district, which is connected to high-risk districts (Chitwan, 
Lalitpur, and three Tarai districts), as low-risk due to its low density, low 
mobility pattern (a hilly district), and low infected cases. Moreover, 
because of the lockdown implemented during the second wave, there 
was less mobility across the districts, making Makawanpur a low-risk 
district despite its high-risk neighboring districts. Our long-term pre-
dictions were under the assumption that a novel strain would not appear 
for the study period. Therefore, the results need to be interpreted when 
the viral evolution and emergence of more severe strains are absent. 

In summary, our data-driven model reveals some essential and 
insightful facts regarding the Delta-dominated second wave of COVID- 
19 in Nepal. In-depth exploration of the potential discrepancy be-
tween the actual epidemic burden and the recorded data suggests the 
policymakers revisit the gaps between the plan and practice of man-
agement of the pandemic. Estimated seroprevalence, new COVID-19 
cases, and the hospitalization burdens under vaccination can provide 
helpful information for designing plans to control the pandemic in 
Nepal. 

Fig. 4. Reproduction number. Time-dependent reproduction number of COVID-19 estimated from the recorded data for the whole country Nepal (a), the high-risk 
region (b), and the low-risk region (c). Time-dependent reproduction number of COVID-19 estimated from the model for the whole country Nepal (d), the high-risk 
region (e), and the low-risk region (f). Note that the higher reproduction number estimated from the model is presumably due to the unreported cases. The horizontal 
lines indicate the threshold value, Rt = 1, above (below) which shows an increasing (decreasing) trend of the disease spread. The model allowed us to predict Rt for 
the longer time up until April 2022. 

Fig. 5. Estimation of seroprevalence. The predicted seroprevalence achieved 
due to actual infection only, vaccination only, and both. The first bar represents 
the survey data by the Government of Nepal. 
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