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ABSTRACT The prevalence of antibiotic resistance genes (ARGs) can be driven by
direct selection from antibiotic use and indirect selection from substances such as
heavy metals (HMs). While significant progress has been made to characterize the
influence of HMs on the enrichment and dissemination of ARGs in the environment,
there is still much we do not know. To fill this knowledge gap, we present a com-
prehensive analysis of gut bacteria associated with wild cotton mice (Peromyscus
gossypinus) trapped from several areas affected by legacies of HM and radionuclide
contamination. We explore how these contaminants affect gut microbial community
(GMC) composition and diversity and the enrichment of antibiotic, biocide, and
metal resistance genes. Although we were able to identify that a myriad of co-occur-
ring antimicrobial and HM resistance genes appear in mice from all areas, including
those without a history of contamination, the proportions of co-occurring ARGs and
metal resistance genes (MRGs) are higher in sites with radionuclide contamination.
These results support those from several previous studies and enhance our under-
standing of the coselection process, while providing new insights into the ubiquity
of antimicrobial resistance in the resistome of wild animals.

IMPORTANCE Antimicrobial resistance is a serious global public health concern
because of its prevalence and ubiquitous distribution. The rapid dissemination of an-
tibiotic resistance genes is thought to be the result of the massive overuse of antibi-
otics in agriculture and therapeutics. However, previous studies have demonstrated
that the spread of antibiotic resistance genes can also be influenced by heavy metal
contamination. This coselection phenomenon, whereby different resistance determi-
nants are genetically linked on the same genetic element (coresistance) or a single
genetic element provides resistance to multiple antimicrobial agents (cross-resist-
ance), has profound clinical and environmental implications. In contrast to antibiot-
ics, heavy metals can persist in the environment as a selection pressure for long
periods of time. Thus, it is important to understand how antibiotic resistance genes
are distributed in the environment and to what extent heavy metal contaminants
may be driving their selection, which we have done in one environmental setting.
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Wildlife can act as ecological reservoirs for a variety of emerging and reemerging infec-
tious diseases, many of which are zoonoses, a collection of diseases and infections

naturally transmitted from vertebrate animals to humans (1). More than 1,500 pathogens,
viral and bacterial, are known to infect humans and cause disease (2). According to the
Centers for Disease Control and Prevention, more than 60% of these infectious diseases can
be spread from animals to humans, and 75% of new or emerging infectious diseases in
humans originate from animals (2, 3). Zoonotic bacterial diseases, in particular, can be trans-
mitted from animals to humans through various modes of transmission: animal bites and
scratches, direct fecal-oral route, and improper food handling, in addition to contaminated
animal food products, soil, and water (2). Enteropathogenic bacteria such as Brucella,
Campylobacter, Clostridium, Escherichia, Listeria, Salmonella, and Shigella species are among
the most commonly reported bacterial pathogens transmitted by wild animals to humans,
domestic stock, and pets (3, 4). Previous studies have identified the presence of these
organisms in the gastrointestinal tracts and feces of a variety of wild animals (4–8). In addi-
tion, wild animals, including those that appear otherwise healthy, are frequently infested by
a variety of blood-feeding arthropods (e.g., ticks, mites, etc.) that can transmit pathogenic
or opportunistic species in the genera Borrelia, Francisella, Rickettsia, Treponema, and
Yersinia (9).

Increasingly, considerable concern exists that wildlife can also act as reservoirs for
antimicrobial-resistant (AMR) bacterial strains. Several reports describe clinically rele-
vant bacterial strains detected in animal hosts (e.g., cattle, swine, rodents, bats, birds,
etc.) harboring AMR genes associated with resistance to drugs commonly used for
therapeutic purposes, such as b-lactams, aminoglycosides, quinolones, macrolides-lin-
cosamides-streptogramin B (MLS), tetracyclines, and even last resort broad-spectrum
antibiotics, such as carbapenems and vancomycin (4–8, 10–12). While antimicrobial re-
sistance is a naturally occurring phenomenon in environments containing antibiotic-
producing microorganisms (e.g., bacteria and fungi), current evidence suggests human
activities have accelerated this process (13). For example, antimicrobial drugs originat-
ing from hospital and agricultural settings can contaminate terrestrial and aquatic hab-
itats, where they can persist and select resistance in both host-associated and environ-
mental bacterial strains (14, 15). This selective pressure can enrich antimicrobial
resistance genes (ARGs), which can be rapidly disseminated and exchanged between
bacteria via horizontal gene transfer of mobile genetic elements (MGEs) or through de
novo mutations that are positively selected (16–18). In the intestinal tract of humans
and animals, there is evidence that antibiotic use can enrich multiple ARGs in not only
gut pathogens, but also commensals (4, 19–22).

In addition to antibiotics, there is evidence that the presence of heavy metals (HMs)
in the environment can facilitate antibiotic resistance via coselection of ARGs and
metal resistance genes (MRGs) (23–31). More recently, studies have begun to unravel
the factors that influence the co-occurrence of ARGs and MRGs in complex microbial
communities (32–34). While much of the existing literature describes the proliferation
of antimicrobial resistance in natural and contaminated ecosystems, there are still large
gaps in our understanding of the factors that influence the emergence, maintenance,
and dissemination of ARGs and MRGs in wild animals. In this context, antimicrobial re-
sistance is a global health problem, inasmuch as it is an ecological one. Furthermore,
given the numerous interactions between humans and the environment, wildlife rep-
resent an important but often overlooked reservoir of multidrug-resistant bacteria (4,
8, 11, 35).

Previously, we used 16S rRNA gene amplicon sequencing and a shotgun metage-
nomic approach to investigate the soil microbiome in several areas at the Department
of Energy’s Savannah River Site (SRS) affected by legacies of heavy metal (e.g., As, Cd,
Cs, Co, Cr, Cu, Fe, Hg, Ni, Zn, U, etc.) and radionuclide (137Cs, 60Co, 3H, 129,131I, 32P,
238,239,240Pu, 89,90Sr, etc.) contamination (34, 36–38). We explored how these contami-
nants affect bacterial community composition and diversity and the enrichment of an-
tibiotic, biocide, and metal resistance genes. Our investigations revealed these
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contaminants not only can have a profound impact on soil microbiome composition
but also can affect how it functions. Here, we extend our analyses to include gut sam-
ples from wild Peromyscus gossypinus, the cotton mouse, which has an extensive range
in the southeastern United States (39). These mice were trapped near the same GPS
coordinates and time period as described in the aforementioned study (34, 40). We
hypothesized that the gut microbial communities (GMCs) and associated antimicrobial
and metal resistance determinants (i.e., the “resistome”) would differ in P. gossypinus
mice from areas with different contaminant (i.e., metal and radionuclide) histories.
Understanding the role of environmental contaminants in the coselection of ARG and
MRGs in wild animal GMCs will aid in illuminating potential transmission of AMR from
animals to humans.

RESULTS
Mouse trapping and sample collection. The population of wild P. gossypinus mice

examined in this study was previously collected by Tannenbaum and Beasley (40).
Briefly, we used 86 wild mice (34 females, 52 males) captured from March to mid-May
2014 from four sampling sites at the SRS, SC, USA, characterized by differences in their
contaminant profiles: uncontaminated (Upper Three Runs [UR]; n=22), heavy metals
(Ash Basins [AB]; n=22), radionuclides (Pond B [PB]; n=18), and both heavy metals
and radionuclides (Tim’s Branch [TB]; n= 24) (Fig. 1; see Table S1a and b in the supple-
mental material) (40). Following dissection, intestinal samples (n = 171: small intestine,
n = 86; large intestine, n = 85) were used for DNA extraction and 16S rRNA gene ampli-
con and shotgun metagenomic sequencing.

Gut microbial composition and diversity based on 16S rRNA gene amplicon
sequencing. A data set of 7,712,212 high-quality 16S rRNA gene paired-end sequences
from the 86 mice were generated with an average read length (6 standard deviation

FIG 1 Relative abundance at the level of phylum and corresponding families representing the nine most abundant bacterial/archaeal OTUs (clustered at
97% similarity) in all P. gossypinus intestinal samples (small and large) from the four sampling sites. Bacterial phyla are further expanded into respective
families.
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[SD]) of 412.7 6 29.2 bp. All subsequent analyses were performed on rarefied data
using an even sampling depth of 15,000 reads per intestinal sample (n=171) (Table
S1a). A total of 90,862 operational taxonomic units (OTUs) (3,827 6 2,035 OTUs/sam-
ple) were observed, spanning several bacterial phyla. Analysis of the core microbiome
indicated there were 5 bacterial phyla (i.e., Firmicutes, Proteobacteria, Actinobacteria,
Bacteroidetes, and TM7) shared between all the samples analyzed (Fig. 1).

Comparisons between the four sampling locations indicated significant differences
(P, 0.05 is the significance threshold for all following tests) in Bacteroidetes (P = 5.81e29),
Proteobacteria (P = 2.80e24), TM7 (P = 1.20e25), Verrucomicrobia (P = 1.19e24), and sev-
eral others (see Table S2 in the supplemental material). While samples from AB had the
highest mean (6 SD) relative abundances of Firmicutes (46.00% 6 0.50%), Proteobacteria
(26.85% 6 0.30%), and Actinobacteria (10.60% 6 0.20%) overall, pairwise group compari-
sons revealed AB samples had significantly lower abundance of Bacteroidetes compared to
mice collected from PB and UR. Mice from TB had a significantly lower abundance of TM7
(Saccharibacteria), Chlamydiae, and Cyanobacteria than those from PB and UR (see Table
S3 in the supplemental material). Relative abundances at the family level indicated there
were several dominant bacterial families, including Lactobacillaceae (Firmicutes) (32.00% 6

8.49%), Desulfovibrionaceae (Deltaproteobacteria) (10.57% 6 1.95%), Coriobacteriaceae
(Actinobacteria) (8.34% 6 1.51%), Pseudomonadaceae (Gammaproteobacteria) (6.25% 6

6.80%), Ruminococaceae (Firmicutes) (5.57% 6 1.17%), F16 (TM7) (5.45% 6 2.36%), S24-7
(Bacteroidetes) (4.90% 6 2.24%), and Lachnospiraceae (Firmicutes) (3.77% 6 1.30%). At the
genus level, Lactobacillus and Desulfovibrio were the predominant genera across all intesti-
nal samples. However, we observed that samples from AB and TB had significantly higher
relative abundances of Pseudomonas and lower abundances of genera in the S24-7 family
(Bacteroidetes), compared to either UR or PB (see Table S4 in the supplemental material).
Regardless of sampling location, we also detected several potentially disease-causing in-
fectious agents in addition to Pseudomonas in the gut tissues of these mice, including
Acinetobacter, Bartonella, Flexispira, Helicobacter, Klebsiella, and Yersinia (Table S4).

Analysis of microbial diversity indicated there was significantly reduced species, or
OTU richness, in all samples from sites with elevated HMs compared to UR (Fig. 2; see
Table S5 in the supplemental material). Pairwise group comparisons using Chao1 and
Faith’s phylogenetic diversity also indicated that there were differences between sites,
including between the contaminated sites. Notably, samples from PB had higher num-
bers of unique species than those from AB, with TB samples having the lowest diversity
overall (Table S5).

Unconstrained nonmetric multidimensional scaling (NMDS) plots based on a Bray-
Curtis dissimilarity matrix were overlaid with similarity profile routine (SIMPROF)-based
cluster analysis data to examine overall similarity between sites in a multidimensional
space (Fig. 3A). Overall, the NMDS plots indicated the GMCs displayed between 20 and
40% similarity; however, the similarities within groups showed a high degree of variabili-
ty (Fig. 3B). To unravel patterns in multidimensional space that might be masked by high
variability and high correlation structure among unrelated variables, we also applied ca-
nonical analysis of principal coordinates (CAP). The results of the CAP-constrained ordi-
nation demonstrated that both the first squared canonical correlation (s 1

2 = 0.9218) and
second squared canonical correlation (s 1

2 = 0.8906) were large, indicating the signifi-
cance of the CAP model. Both canonical axes showed distinct separation of the samples
based primarily on the sampling origin of the mice but also according to the intestinal
tissue type (small versus large) (Fig. 3C). In addition, multivariate analyses based on the
Bray-Curtis distances between 16S rRNA profiles revealed that the type of intestinal tis-
sue had a significant effect on the observed OTUs between samples (permutational anal-
ysis of variance [PERMANOVA], pseudo-F=2.6363, P = 0.001). Similarly, the site of origin
for the mice had a significant effect on the observed OTUs regardless of the type of in-
testinal tissue (PERMANOVA, pseudo-F=9.3664, P = 0.001) (see Table S6 in the supple-
mental material). Our results also revealed that the sex of the mice had no significant
effect on the clustering of samples (PERMANOVA, pseudo-F=1.1628, P = 0.208).
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Predicting antibiotic and metal resistance genes from 16S rRNA data using
PICRUSt. For the 171 intestinal samples, the weighted mean of the nearest sequenced
taxon index (NSTI), which measures the prediction accuracy of PICRUSt, was 0.15 6

0.07, which is similar to a previous study on soils (41). When examining the proportion
of sequences belonging to signaling pathways that confer resistance to HM contami-
nation, we found significant differences in the pathway categories “Xenobiotics
Biodegradation and Metabolism” (P = 3.82e25, false-discovery rate [FDR] corrected)
and “Membrane Transport” (P = 1.04e24) (Table S6). We also examined the relative
abundance of several KEGG orthologs (KOs) that correspond to antibiotic resistance
genes (ARGs) or metal resistance genes (MRGs) to examine differences between sam-
pling sites (see Table S8 in the supplemental material). Several of these KOs, such as
TC.HME (K07239; heavy metal exporter), mdtB (K07788; multidrug pump), chrA
(K07240; chromate transporter), and copper resistance genes cusS (K07644) and cusA
(K07787), among others, were significantly enriched (P , 0.01, FDR corrected) in mice
from the contaminated sites compared to the reference (see Tables S9 and S10 in the
supplemental material). Based on the 16S rRNA data, the PICRUSt script metagenome_
contributions.py revealed that taxa such as Pseudomonas spp., Epulopiscium spp.,

FIG 2 Alpha diversity measures for bacterial taxa in all Peromyscus gossypinus intestinal samples (small and large) at the four sites (defined either by the
number of bacterial/archaeal OTUs observed or by Chao1, ACE, Shannon, inverse Simpson, and Fisher diversity measures).
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Adlercreutzia spp., Ruminococcus spp., Desulfovibrio spp., and Treponema spp. contrib-
uted the greatest number of matched reads for several predicted ARG- and MRG-like
genes (see Table S11 in the supplemental material).

Metagenome sequencing and assembly summary. For the 24 samples from the
four sites, we obtained 2.94� 108 high-quality reads from the mouse gut shotgun
libraries, which were assembled into 1.14� 108 contigs with an average contig length
of 332 bp (see Tables S12 and S13 in the supplemental material). The assemblies con-
tained 4.00� 105 open reading frames (ORFs) with an average length of 139.66 bp
(Table S13). We identified 7.96� 103 antibiotic resistance gene (ARG)-like ORFs using
the SARGfam v.2.0 database and 4.55� 103 antimicrobial/biocide efflux and metal re-
sistance gene (AB-MRG)-like ORFs using the BacMet v.2.0 database (Table S13).

Differences in gut antibiotic resistance gene abundance between sites. In total,
we detected an average of 0.13 antibiotic resistance gene (ARG) per 16S rRNA copy, with
the predominant ARG types consisting of multidrug resistance genes (37%), bacitracin
resistance (24%), vancomycin resistance genes (17%), and unclassified (12%) (Fig. 4; see
Table S14 in the supplemental material). The mean abundance of ARG types was lowest
(mean 6 SD ARGs per 16S rRNA copy) at UR (0.106 0.06 ARGs), whereas ARGs were
highest at TB (0.196 0.19), followed by PB (0.176 0.16) and AB (0.106 0.6) (see Table
S15 in the supplemental material). We did not detect statistically significant differences
in the abundance of ARG types between sites or the particular class of antimicrobials.

We also looked at ARG subtypes, or the genes belonging to a class of ARGs, to deter-
mine which specific ARG subtypes were present in the mouse gut samples. The majority

FIG 3 Structure of intestinal microbial communities in Peromyscus gossypinus mice trapped at the Savannah River Site. (A) Nonmetric multidimensional
scaling plot of bacterial/archaeal OTU frequency after log transformation, which reduces the influence of the most abundant OTUs. Dashed lines represent
percentage of similarity of clusters using SIMPROF: green lines, 20%; dashed blue lines, 40%; dashed cyan lines, 60%; and dashed red lines, 80%. (B)
Canonical analysis of principal coordinates based on a Bray-Curtis dissimilarity matrix of log-transformed bacterial/archaeal OTU frequencies. (C) Distance-
based redundancy analysis (dBRDA) representing raw Pearson correlations for habitat variables and bacterial/archaeal OTUs. Vectors are overlaid to
represent the different HMs and factors most important to the modeling approach. The length and direction of vectors indicate the strength and direction
of the relationship. Fitted variation refers to variance within the linear model created during the DistLM analysis. The total variation refers to the variance
within the original data. Blue triangles represent samples from Ash Basins (AB), red upside-down triangles represent samples from Pond B (PB), green
squares represent samples from Tim’s Branch (TB), and pink diamonds represent samples from the Upper Three Runs (UR).
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of detected ARG subtypes included those that belong to two-component and multidrug
transporters. The bacitracin resistance gene bacA, vancomycin resistance gene vanR, and
the multidrug resistance gene mexT were among the top three most abundant subtypes.
Other ARGs detected in the top 20 ARG subtypes included several multidrug resistance
genes from the resistance-nodulation-division (RND) family of transporters, such as mexF,
mexT,mdtB,mdtC, and oprN, among others. We also detected ARG subtypes, including lsa,
an ATP-binding cassette (ABC) transporter gene that confers resistance to macrolide-linco-
samide-streptogramin B (MLS) compounds. Also, we detected the arnA gene, which allows
Gram-negative bacteria to resist cationic antimicrobial peptides such as polymyxin, and
several vancomycin resistance genes in the van cluster of genes (vanG, vanS, vanX, and
vanY). Shannon indices between gut samples with at least two ARG types indicated ranges
between 1.32 and 3.07, with TB and AB samples displaying higher indices on average than
the reference site (Fig. 5; see Table S16 in the supplemental material).

Differences in gut antimicrobial/biocide efflux and metal resistance gene
abundance between sites. To assess the presence and diversity of genes associated
with antibiotic, biocide, and metal resistance (AB-MRGs), we used the BacMet v2.0
database (see Table S17 in the supplemental material). Our results indicated that the
predominant resistance type included several resistance genes in the antimicrobial/

FIG 4 Bar plots showing the relative abundance of BLAST hits for the most abundant ARG types observed in all samples.
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biocide efflux category (34%), such as fabl, phoB, emrB, and baeR (Fig. 6; see Table S18
in the supplemental material). The relative abundance of antimicrobial/biocide efflux
genes varied per sample, but the number of resistance genes was significantly higher
(average 6 SD ARGs/biocides per 16S rRNA copy) in samples from PB (9.106 19.02)
and TB (19.066 41.40) compared to UR (0.266 0.10) and AB (0.216 0.11) (see Table
S19 in the supplemental material). Shannon indices also showed that ARG subtype di-
versity, which ranged from 3.10 to 4.35, was significantly higher among mouse gut
samples from PB and TB than those from the UR reference site and AB (Fig. 7; see Table
S20 in the supplemental material).

We observed that the predominant metal resistance gene (MRG) subtypes were
among several classes of membrane transporters, including ABCs and P-type ATPases
(Table S17). Several of the top 50 subtypes confer resistance to one or multiple HMs
and included those that confer resistance to Ni (nrsR, dmeR, and nikD), Fe (furA, ideR,
and bfrA), Cu (copR, ricR, and cusR/ylcA), Cr-Te (ruvB and recG), Cd (actR), and Co-Ni
(fecE) (Table S16). The nrsR gene was the most abundant MRG subtype overall between
all samples (average of 0.34 MRG gene per 16S rRNA copy) and encodes a protein that
is part of a two-component signal transduction system involved in Ni21 sensing. In

FIG 5 Alpha diversity measures of detected ARGs (based on SARGfam) in all Peromyscus gossypinus intestinal samples (small and large) at the four sites
(defined either by the number of bacterial/archaeal OTUs observed or by Chao1, ACE, Shannon, inverse Simpson, and Fisher diversity measures).

Thomas et al.

Volume 9 Issue 1 e00097-21 MicrobiolSpectrum.asm.org 8

https://www.MicrobiolSpectrum.asm.org


addition, we found significant differences in the abundance of several MRG types,
including Cu, As, Ni, Fe, Co-Ni, and Cr, among others (Table S19). Pairwise comparisons
revealed that many of these MRG types (e.g., Co, Ni, and Cd-Zn-Ni) were significantly
greater (mean 6 SD MRGs/biocides per 16S rRNA copy) in abundance in samples from
PB (0.336 31.97) and TB (0.676 69.34) compared to either AB (0.016 0.24) or UR
(0.016 0.22) (Table S18). Shannon indices based on the MRG subtypes ranged from
3.56 and 4.56, and we observed significantly higher diversity of MRGs in samples from
PB and TB than in those from either AB or UR (Fig. 8; see Table S21 in the supplemental
material).

Peromyscus gossypinus as host of antibiotics, biocides, and metal resistance
genes. From the assembled metagenomes, we detected numerous open reading frames
(ORFs) harbored by a diverse collection of taxa; however, we focused on the top six bacterial
families as they represented 83% of antibiotic resistance gene (ARG)-like ORFs (SARGfam
v.2.0) (Fig. 9A). These bacterial hosts included Lactobacillaceae, Desulfovibrionaceae,
Eggerthellaceae, Lachnospiraceae, Pseudomonadaceae, and Clostridiaceae. Lactobacillaceae,
the largest ARG-like ORF-containing family, possessed resistance genes for the following
types of resistance: multidrug (31%), macrolides-lincosamides-streptogramin B (MLS)
(26%), vancomycin (16%), bacitracin (8%), tetracycline (7%), and several others (12%).
Desulfovibrionaceae, the second largest bacterial host possessed several ARG-like ORFs,

FIG 6 Bar plots showing the relative abundance of BLAST hits for the most abundant AB-MRG types observed in all samples.
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including those associated with multidrug resistance (29%) and resistance to vancomy-
cin (20%), MLS (18%), bacitracin (9%), and tetracycline (9%). Taxa in the Eggerthellaceae
family had a predominance of ARG-like ORFs associated with vancomycin (39%), multi-
drug (23%), MLS (19%), and tetracycline (6%) resistance, while those in the
Pseudomonadaceae family had a predominance of ARG-like ORFs associated with multi-
drug (33%), vancomycin (32%), MLS (16%), and tetracycline (6%) resistance.

We observed similar patterns between taxa with respect to antimicrobial/biocide
and metal resistance genes (AB-MRGs). Approximately 65% of AB-MRG-like ORFs (BacMet
v.2.0) were detected in the top six bacterial taxa and included Desulfovibrionaceae,
Lactobacillaceae, Eggerthellaceae, Pseudomonadaceae, Lachnospiracae, and unclassified
Firmicutes (Fig. 9B). Desulfovibrionaceae possessed resistance genes associated with anti-
microbial/biocide efflux (46%) and resistance to Zn (12%), Cu (8%), Fe (7%), As (6%), Ni
(4%), and several others. Taxa in the family Lactobacillaceae possessed resistance genes
for antimicrobial/biocide efflux (43%) and resistance to As (12%), Fe (8%), Ni (7%), and Zn
(5%). Eggerthellaceae possessed resistance genes for antimicrobial/biocide efflux (48%) and
resistance to Fe (9%), Cu (7%), As (7%), Mo (6%), and Ni (4%). Finally, Pseudomonadacae

FIG 7 Alpha diversity measures of detected ARGs/biocides (based on BacMet v.2.0) in all Peromyscus gossypinus intestinal samples (small and large) at the
four sites (defined either by the number of bacterial/archaeal OTUs observed or by Chao1, ACE, Shannon, inverse Simpson, and Fisher diversity measures).
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possessed resistance genes associated with antimicrobial/biocide efflux (51%), followed by
resistance to Fe (13%), Cu (7%), Ni (6%), and As (5%), among several others.

Co-occurrence of antimicrobial/biocide efflux and metal resistance genes in P.
gossypinus. We focused primarily on the predominant (antibiotic resistance gene)
ARG-like and (metal resistance gene) MRG-like ORF-containing taxa (n=25) observed
in the mouse gut samples to determine patterns of co-occurrence. The resulting net-
work contained 84 nodes and 1,168 edges, which resolved into four modules based on
the shared connections within the network (Fig. 10A and B). The largest module (mod-
ule I) contained 33 subtypes, the majority consisting of ARGs conferring resistance to
bacitracin (bacA), kasugamycin (ksgA), quinolones (penA and b-lactamase), vancomycin
(vanH and vanR), macrolides (macB), and tetracycline (tetM) connected to MRGs confer-
ring resistance to As (arsT), Ni (nikB), Tu/Mo (wtpC), and Pb (pstB). This module
appeared to be supported by ksgA acting as the hub (i.e., a node with large number of
connections). Module II, in which baeS was the hub, consisted of 25 subtypes, includ-
ing genes conferring multidrug resistance (mepA) or resistance to vancomycin (vanS),
biocides (marR), Fe (ybtQ and ybtP), Ni (nrsS), and several others. Module III, in which
vanH was the hub, contained 13 subtypes, including several ARGs (tetR, vanA,

FIG 8 Alpha diversity measures of detected MRGs (based on BacMet v.2.0) in all Peromyscus gossypinus intestinal samples (small and large) at the four sites
(defined either by the number of bacterial/archaeal OTUs observed or by Chao1, ACE, Shannon, inverse Simpson, and Fisher diversity measures).
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EmrB_QacA transporter, vatB, vatE, and catB), biocides (fabK), and Ni (nikE) among
others. Module IV, in which mdtK was the hub, contained 11 subtypes, including sev-
eral ARGs (sul1, PBP_1B, vanG, mexE, mexF, mdtB, and mdtC) and resistance genes for
Cu (copA) and Zn (zraR/hydH). Analysis of the positive correlations in the co-occurrence
network revealed that many ARGs, MRGs, and biocides tended to co-occur more than
would be expected by chance when considering resistance gene type/category and
random associations. We measured the co-occurrence of these genes using the ratio of
the percentage of observed incidences to percentage of random incidences (O/R ratio)
(Table S21). For instance, our analysis showed that bacitracin and multidrug ARGs
tended to co-occur more than would be expected by chance with each other (O/
R = 2.49), as well as with several genes conferring resistance to Mo/Tu and kasugamy-
cin (O/R = 2.98), As (O/R= 1.99), and Co/Ni (O/R= 1.99) (see Table S22 in the supple-
mental material).

DISCUSSION

While the processes that shape the gut microbial communities in wildlife species
are still poorly understood, recent studies using high-throughput DNA sequencing
have begun to illuminate the influence of various factors, such as evolution, seasonal-
ity, diet, gut physiology, host sex, environmental differences, and even contamination,
on GMCs (42). We present the first analysis that investigates the potential effects of
environmental HMs and radionuclide contamination on the GMCs of wild P. gossypinus
and provide new data exploring the co-occurrence of antibiotic, biocide, and heavy
metal resistance genes associated with the microbiome. Although all P. gossypinus
mice captured shared a core microbiome, we found in agreement with our hypothesis,
that mice inhabiting historically contaminated areas possessed GMCs with significantly
lower diversity than mice from the uncontaminated reference site. We provide evi-
dence that the gut resistome of P. gossypinus is more closely linked to variation in HMs
and radionuclide contamination than would be expected by chance.

FIG 9 Circos plots displaying percentages of the top ARG-like and MRG-like carrying bacterial hosts. Bars surrounding plot represent the percentage of a
particular ARG- or MRG-like gene that was observed in the bacterial hosts. Plots are based on the TPM data of reads mapped to the (A) SARGfam and (B)
BacMet v.2.0 databases. Abbreviations are as follows: Act_b, Actinobacteria; Act_m, Actinomadura; Mycobact, Mycobacterium; Solirubro, Solirubrobacterales;
MDR, multidrug resistance; TET, tetracycline; AAC, aminoglycoside; MLS, macrolide-lincosamide-streptogramin B; Beta, b-lactam; BAC, bacitracin; CPL,
chloramphenicol; FOM, fosfomycin; FOS, fosmidomycin; KSG, kasugamycin; POL, polymyxin; QLN, quinolone; RIF, rifamycin; SUL, sulfonamide; TMP,
tetracenomycin; VAN, vancomycin; Ant_Biocides, antimicrobial efflux/biocides; Verru, Verrucomicrobia.
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In the wild, the staple diet of Peromyscus spp. encompasses a variety of foods, includ-
ing insects, roots, nuts, wild seeds, and grains (39, 43). Similar to other small rodents, spe-
cies of Peromyscus possess a rapid metabolism, requiring them to use an optimal foraging
strategy to meet their high energy demands (39, 43). This diet is reflected in the gut of
wild P. gossypinus, which harbors diverse microbiota that can exploit a variety of dietary
substrates. We observed a core microbiome consisting of high abundances of Firmicutes,
Proteobacteria, Actinobacteria, Bacteroidetes, and TM7 across all study sites. These results
are largely consistent with other observations on the GMCs in other wild mammals, par-
ticularly other rodents (6, 44–51). However, within this group, we noted the percentage
of Proteobacteria was particularly high (26.85%6 0.30%), and there were noticeably lower
number of reads assigned to Bacteroidetes (6.41% 6 0.03%). Notably, our study contrasts
with several previous studies on the GMCs of captive laboratory house mouse strains and
wild house mice (e.g., Mus musculus and Mus domesticus, respectively), which have fre-
quently reported a microbiome codominated by the phyla Firmicutes and Bacteroidetes
(6, 45, 52–54). There are fewer studies on the GMCs of Peromyscus, a distant relative to
mice in the Mus genus, but previous work has indicated largely similar patterns at the
phylum level (49, 55). Our analyses were most similar to a recent study on wild deer mice
(Peromyscus maniculatus), where Firmicutes were the dominant phylum, followed by
Bacteroidetes and then Proteobacteria (44). From that study, it was also shown that deer
mice raised in captivity have GMCs with a Firmicute-Bacteroidetes dominant enterotype
and significantly less Proteobacteria compared to wild mice (44, 56, 57). Nonetheless,
differences between the GMCs observed in the P. gossypinus mice described here and in
other studies are likely driven by the microbial metacommunities specific to the SRS envi-
ronment (i.e., acquired from complex diets, habitats, seasonality, range, etc.) and social
interactions within the population (44).

FIG 10 Network analysis showing the co-occurrence patterns of antibiotic, biocide, and metal resistance genes detected in the top 25 taxa. (A) The nodes
with different colors represent antibiotic (orange), biocide (green), and metal resistance (light purple) genes. The intensity of edges corresponds to the
degree of the positive correlations ranging from 0.61 (light orange) to 0.91 (dark red). (B) The nodes with different colors represent the six modularity
classes, with the colors of edges corresponding to their respective class: module I, orange; module II, pink; module III, green; module IV, dark red; module
V, cyan; and module VI, light brown. A connection represents a strong Spearman correlation (P . 0.6) and significant (P , 0.05) correlation (FDR). The size
of each node is proportional to the number of connections.
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Within each of the dominant phyla, we detected several bacterial families in the GMCs
of P. gossypinus. The lactic-acid-producing families Lactobacillaceae, Ruminococcace, and
Lachnospiraceae are among the most commonly reported members in the phylum
Firmicutes in humans and wild animals (6, 45, 52–54). These organisms are important in
host physiology and are involved in hydrolyzing starch and sugars to produce butyrate and
other short-chain fatty acids (58, 59). Proteobacteria is the largest and most diverse bacterial
phylum, but its role in host GMCs is still poorly understood. In contrast to the strict anae-
robes dominating the GMCs, the majority of Proteobacteria consist of facultative or obligate
aerobes (60). It has been hypothesized this group plays a key role in successive colonization
by the strict anaerobes in the neonatal gut, particularly following postpartum, when there
is an abundance of oxygen (60). Proteobacteria have previously been shown to contribute
the most functional variation in the human GMCs, possessing the capacity to metabolize a
range of organic compounds, including proteins, carbohydrates, and lipids (60, 61). In
humans and murine models, high abundances of Proteobacteria have been associated with
dysbiosis in hosts with metabolic or inflammatory disorders (62–64). However, considering
data from a previous study on P. gossypinus, there is little evidence that suggests overt
health abnormalities in the trapped mice or abnormal mouse mortality or morbidity in the
greater mouse population at the SRS, even in mice from historically contaminated areas
(35). Instead, our analyses provide additional evidence that Proteobacteria are a common
feature of wild mice with highly diverse GMCs (52, 54, 65). The families Desulfovibrionaceae,
Pseudomonadaceae, and Helicobacteraceae were dominant Proteobacteria in wild cotton
mice. Desulfovibrionaceae, a family of sulfate-reducing bacteria (SRB), have been previously
observed in mice fed with high-fat diets (66, 67). Interestingly, there is evidence that SRB
members in the Desulfovibrionaceae family can tolerate high radiation levels and possibly
have utility in the bioremediation of HMs and radionuclides, which suggests a potential
detoxifying role in the wild cotton mouse (50, 51). Similarly, Pseudomonadaceae contains
several members with the capacity for HM and radionuclide bioremediation due to their
ability to form biofilms (57, 58). In addition, although Helicobacteraceae contains several
opportunistic pathogens, the literature suggests it is a common feature of wild murine
GMCs (44, 49, 68, 69). The presence of Helicobacter strains reinforces the idea that
wild murine populations can potentially act as reservoirs of pathogenetic and zoonotic
hosts. Indeed, our analyses identified several other known or opportunistic pathogens in
relatively low abundance, all within the Proteobacteria phylum, including Pseudomonas,
Acinetobacter, Bartonella, and Klebsiella. Finally, we observed that families in lower abun-
dance (#5%) included Coriobacteriaceae (Actinobacteria), S24-7 (Bacteroidetes), and F16
(TM7). Coriobacteriaceae are important in the conversion of bile salts and steroids, and
S24-7 have demonstrated the capacity to degrade complex carbohydrates (70–72).
Unfortunately, information on the functional contributions of F16 in the murine gut is cur-
rently lacking.

There are limited reports on the impact of radionuclide or heavy metal (HM) expo-
sure on the composition and diversity of gut microbial communities in animals; how-
ever, not all studies are in agreement. A study on fecal gut microbiota from wild bank
voles (Myodes glareolus) in the Chernobyl Exclusion Zone indicated a shift from
Bacteroidetes to a more diverse Firmicutes-dominated GMC in radionuclide-contami-
nated areas compared to reference sites (51). A similar study on wild bank voles
reported no significant effects of radionuclide exposure on the microbial diversity of
GMCs from cecum samples (73). Studies that have looked specifically at HM exposure,
appear to overwhelmingly suggest that HMs can alter GMC composition and may
reduce overall diversity (45, 55, 74, 75). For example, Richardson et al. (2018) observed
that exposure to specific HMs caused perturbations in GMCs, with a noticeable
decrease in S24-7 (Bacteroidetes) and marked increases in Proteobacteria, while Li et al.
(2017) reported significantly reduced diversity in mouse GMCs following exposure to
cadmium (Cd) in drinking water (75, 76). The difficulty with elucidating the role of ra-
dionuclides and HMs on GMCs is that they cannot always be assessed purely by exami-
nation of compositional changes. Discrepancies between studies, especially those
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concerned with wild animals, are highlighted by numerous potential confounding fac-
tors, including the intrinsic host GMCs, host diet, duration of exposure, route of expo-
sure (e.g., oral or skin), environmental microbiota, sample type, sample processing, and
numerous others (76).

Our metagenomic analyses provided an unparalleled look into the Peromyscus gossypi-
nus resistome that could not have been achieved with traditional PCR screening of anti-
microbial resistance (AMR) genes. This was particularly important given that prior studies
have demonstrated that rodents, both urban and wild, are involved in carriage of many
AMR bacteria (6). Using the SARGfam v.2.0 database, we showed that genes that confer
multidrug resistance (37%), bacitracin resistance (24%), and vancomycin resistance (17%)
genes were most abundant. The relatively high abundance of multidrug resistance genes
was expected, as several studies, including our previous work on Savannah River Site
(SRS) soils, have confirmed their ubiquity (34, 77–80). Chromosomally encoded multidrug
efflux pumps can extrude a number of substates (e.g., antibiotics, biocides, and HMs) and
are conserved across many bacterial species (81, 82). Bacitracin interferes with peptidogly-
can synthesis by inhibiting the dephosphorylation of lipid carriers. A previous study
showed that bacitracin, a common in-feed antimicrobial, was abundantly present in bo-
vine GMCs (83). In addition, our results indicated genes associated with resistance to van-
comycin, a “last resort” broad-spectrum antibiotic, was the third most detected antibiotic
resistance gene (ARG) type. We previously showed that vancomycin resistance genes
were abundantly present in SRS soils, and this might explain, even partially, the source of
vancomycin resistance genes in P. gossypinus GMCs (34, 84). In fact, while GMCs are dis-
tinctive from those detected in the SRS soils, albeit less diverse taxonomically, both share
many overlapping ARGs, and our data support the hypothesis that mobile genetic ele-
ments (MGEs) may be horizontally exchanged from environmental reservoirs of resistant
bacteria to animals and even humans (84–86).

In examining metal resistance genes (MRG) types, we found that mouse GMCs
across all study sites contained a diverse collection of genes associated with heavy
metals (HMs), such as Cu (23%), As (9%), Fe (9%), and Ni (9%), among others. The nickel
resistance gene nrsR was the most abundant MRG subtype, followed by furA (Fe) and
copR and ricR (Cu). A number of MRG subtypes, such as ruvB (Cr-Te-Se) and dmeR
(Co-Ni), were also detected that confer cross-resistance to multiple HMs. Several of
these resistance genes have been reported in prior studies as having direct correlations
with b-lactamases, sulfonamides, macrolide-lincosamide-streptogramin B (MLS), and
tetracycline resistance genes (87). For example, Fe and Ni resistance genes have also
been shown to be significantly associated with antibiotic resistance genes (ARGs), such
as genes associated with multidrug efflux, b-lactamases, sulfonamides, macrolide-lin-
cosamide-streptogamin (MLS), tetracycline, aminoglycosides, and vancomycin (74, 80).
Indeed, our analyses of co-occurring ARGs/biocide genes suggested many positive cor-
relations with MRGs than would be expected by chance and provide additional
insights into the coselection phenomenon in areas with anthropogenic disturbances.
Furthermore, in contrast to our analysis of ARGs, the relative abundance and diversity
of MRGs were higher in mice gut samples from radionuclide-contaminated sites such
as PB and TB than samples from either AB or UR. Interestingly, with respect to TB, our
results are consistent with our previous observations of soil metagenomes, in which
MRGs in TB soils were significantly elevated (34). It is likely the higher abundance and
diversity of MRGs in mouse GMCs are a consequence of environment-specific selection
pressures (i.e., background levels of HMs and radionuclides) at TB than any intrinsic dif-
ferences between mice captured in this study (88). In fact, this pattern seems to sug-
gest the presence of radionuclide contamination has a more important role in the
selection of MRGs than HMs alone. One notable and unexpected result was the lack of
MRG types in AB mice. We suggest that because of the sporadic dispersion of coal fly
ash at AB, the mice we collected may not have had significant HM exposure, to a level
that would enable enrichment of their resistome, even if certain soils’ HMs were signifi-
cantly higher than the reference.
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The emergence, dissemination, and maintenance of antibiotic resistance are a
major global health threat. Understanding the intersection between the external envi-
ronment, human activities, and role of animals in driving resistance is thus crucial in
identifying appropriate mitigation strategies. Extending work from our previous study
on the Savannah River Site, we sought to elucidate the potential coselection of antimi-
crobial resistance (AMR) in an antibiotic-naive population of wild P. gossypinus (84).
Our work supports other studies indicating wild mice are reservoirs for several human
pathogens with clinical significance and provides new data on the types of co-occur-
ring antibiotic, heavy metal, and biocide resistance genes associated with wild P. gossy-
pinus gut microbial communities (GMCs). Importantly, our work illustrates the necessity
of AMR surveillance of GMCs in wild populations, especially in areas with a history of
contamination and/or proximity to humans. The available literature suggests many
antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) originate from
environmental reservoirs, but can be further enriched by anthropogenic pollution (84).
Mobile genetic elements can facilitate the spread of these environmentally derived
resistance genes to animals, which in turn, may harbor emerging and/or zoonotic bac-
terial pathogens of human concern.

There are several limitations to this study. Use of 16S rRNA amplicons for micro-
biome analysis is widely known to introduce PCR primer biases and possesses limited
resolution beyond the genus level. While shotgun metagenomics does not suffer from
these limitations, genomic DNA extraction, library preparation methods, and even
sequencing methodology may preferentially select certain taxa over others. The anno-
tation of metagenomes is largely dependent on the reference database used, often
heavily biased toward readily cultivable model organisms, and hence may not capture
the total diversity of ARGs or MRGs in a particular environment. Finally, for certain
genes or partial matches, their role in antimicrobial and/or metal resistance remains
largely speculative due to fewer experimental studies. Therefore, caution must be
taken in interpretation of their functional roles.

MATERIALS ANDMETHODS
Mouse trapping and sample collection. Mice were previously captured from March to mid-May at

the SRS, SC, USA, using Sherman live traps (H. B. Sherman Traps, Inc., Tallahassee, FL) baited with black
oil sunflower seeds (40). All trapping, handling, and euthanasia practices were approved by the U.S.
Army Public Health Command’s Institutional Animal Care and Use Committee. Following dissection,
mouse intestinal samples were used for DNA extraction, 16S rRNA gene amplicon, and shotgun metage-
nomic sequencing. Mouse kidney and livers were also analyzed for presence of heavy metals using U.S.
EPA microwave-assisted digestion method 3052, but were below the minimum detection limit (MDL) for
all metals (Cr, 0.30; Co, 0.05; Ni, 0.07; Zn, 0.45; As-2, 1.65; Sr, 0.15; Pb, 0.03; U, 0.06). Background HMs in
the mouse environments (soil) during the time of sampling are as follows: strontium (Ash Basins, up to
176.27mg kg21 [40.436 49.24mg kg21]; Tim’s Branch, up to 37.90mg kg21 [25.056 13.10mg kg21])
and cobalt (Ash Basins, up to 18.17mg kg21 [4.536 5.10mg kg21]; Tim’s Branch, up to 12.99mg kg21

[5.716 3.38mg kg21]) (Table S1).
Microbiome DNA sequencing, bioinformatics, and data analyses. From the 86 mice, DNA was

extracted from 0.5 g of gut tissue using a MoBio PowerSoil DNA isolation kit (MoBio, Carlsbad, CA, USA)
and purified by a magnetic-based size selection method using SeraPure Speedbeads (Thermo-Fisher
Scientific, Asheville, NC, USA) according to the manufacturer’s protocol. Dual-indexed PCR libraries for
bacterial 16S rRNA gene analyses were generated using the TaggiMatrix protocol as described in our
previous study (34, 89, 90). Metagenomic libraries for 24 intestinal samples (six from each location) were
prepared using NEB Ultra II FS kits (New England Biolabs, Ipswich, MA, USA) following the manufacturer’s
protocol at half-volume reactions with two modifications: 5mM iTru y-yolk adaptors during ligation and
5 mM iTru indexed primers during PCR for 9 cycles (84, 85). Both 16S rRNA amplicon and shotgun meta-
genome libraries were sequenced on an Illumina sequencing platform with MiSeq (PE300) and NovaSeq
(PE150), respectively, at the Georgia Genomics and Bioinformatics Core (GGBC, University of Georgia). All
subsequent bioinformatic and statistical analysis were conducted using the same software packages,
scripts, and workflows described in our previous study (34).

Briefly, paired-end sequencing reads were merged using the FLASH v.1.2.9 plugin, and Mr_Demuxy
v.1.2.0 (https://pypi.python.org/pypi/Mr_Demuxy/1.2.0) was used to demultiplex merged reads into indi-
vidually tagged fastq files based on their internal barcode (91). High-quality reads ($Q20) were filtered
by size ($400 bp) and used for all subsequent amplicon-based analyses. The software package
MacQiime v.1.91 (http://www.wernerlab.org/software/macqiime) was used to identify operational taxo-
nomic units (OTUs), taxonomic classification, and diversity analyses against the Greengenes v.13_8 16S
rRNA database and the VSEARCH OTU picking algorithm (92–94). Within-sample (alpha) diversity indices
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were computed using MacQiime v.1.91 and further visualized using Phyloseq v.3.10 (95). Beta diversity
was assessed using a nonparametric Kruskal-Wallis test with the false-discovery rate (FDR) correction for
multiple comparisons and the Monte Carlo simulated nonparametric t test for pairwise comparisons
(96–98). Bray-Curtis distances between sampling locations were computed and visualized using Primer
7.0 software with the PERMANOVA1 add-on (Primer-E, United Kingdom) (99). The software PICRUSt
v.1.1 was used to make gene content predictions based on 16S rRNA gene sequences, and selected sam-
ples were further examined using shotgun metagenomic sequencing (41). The abundances of ARGs
were determined using the ARGs-OAP v.2.0 pipeline, which identifies ARGs against the SARGfam v.2.0
database and performs copy number estimation against essential single-copy marker genes, in addition
to the 16S rRNA gene (100). The abundance of AB-MRGs was determined by a hybrid approach, using
UBLAST to identify candidate sequences against the BacMet v.2.0 735 experimentally confirmed data-
base (March 2018) (101). The software package Diamond v.0.9.30 (https://github.com/bbuchfink/
diamond) was used to perform a BLASTX search on candidate sequences against the BacMet v.2.0 data-
base (102, 103). Spades v.3.13 was used to de novo assemble reads using the default k-mer size (104). All
ORFs were screened using HMMSCAN (https://www.ebi.ac.uk/Tools/hmmer/search/hmmscan) against
the SARGfam database (https://github.com/xiaole99/SARGfam) and validated HMM profiles of ARGs
(100). The ARG-like ORFs from the HMM results were extracted from the original protein sequences of
ORFs predicted in the contigs using Seqkit v.0.12.0 (https://bioinf.shenwei.me/seqkit/usage/). PROKKA
v.1.14 was also used to count and functionally annotate the predicted ORFs, using the SARGfam HMM
profile as input (105). Similarly, the MRG-like ORFs were first annotated using BLASTP against the BacMet
v.2.0 database and then annotated using PROKKA against the BacMet v.2.0 database. Bowtie2 v.2.3.5.1
was used to map all sequencing reads to the extracted ARG-like or MRG-like ORF nucleotide sequences
of each respective sample group. SAMtools (http://samtools.sourceforge.net/) was used to convert the
SAM files to BAM format and to sort by alignment coordinate. Reads that mapped to the assembly were
counted using the prokkagff2gtf and htseq-count scripts (106). Abundance values for genes were nor-
malized to predicted transcripts per million (TPM) using tpm_tably.py, which calculates the TPM based
on average read length and length of gene. Diamond v.0.9.30 was used to annotate the ORFs, by con-
ducting a BLASTP search against the NCBI NR database (downloaded on 29 May 2019) at an E value of
#102 5 (102, 103). The diamond BLASTP results were “meganized” and annotated using MEGAN
(MEtaGenome ANalyzer, v.6.16.4) taxonomic assignment, using default parameters (voting score
of#50%) (107). Major bacterial hosts of ARGs and MRGs shared between sites were visualized using
Circos Table Viewer v.0.63-9 (http://mkweb.bcgsc.ca/tableviewer/) (108). Network analyses were con-
ducted by generating a sparse matrix based on combined TPM data from the SARGfam and BacMet
databases, filtered by the top 25 most abundant taxa. A co-occurrence network was generated using
custom scripts (https://github.com/RichieJu520/Co-occurrence_Network_Analysis) (109). The resulting
network was visualized in Gephi v.0.9.3 (110). The R package v.3.6.3 was used to conduct one-way analy-
sis of variance (ANOVA) or Kruskal–Wallis one-way analysis of variance, depending on pass or failure of a
Shapiro-Wilk test of normality, to compare differences in relative abundance of ARG or MRG number per
16S rRNA copy, in addition to assessing differences in Shannon index. For network analyses, the ratios of
the percentage of observed to percentage of random incidences (O/R ratios) of co-occurrence patterns
between antibiotics, biocides, and metals were determined using methods previously described (107,
109, 110). Additional scripts are provided in the supplemental material.

Data availability. Copies of high-resolution figures (600 dpi) are available at: https://figshare.com/
articles/figure/Figures_for_Wild_Peromyscus_gossypinus_SRS_study/14175554. All 16S rRNA gene and
raw metagenomic sequences are available through NCBI under BioProject accession no. PRJNA707221.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, XLSX file, 11.8 MB.
SUPPLEMENTAL FILE 2, DOCX file, 1.5 MB.
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