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Recently, deep convolutional neural networks (DCNNs) have attained human-level

performances on challenging object recognition tasks owing to their complex internal

representation. However, it remains unclear how objects are represented in DCNNs with

an overwhelming number of features and non-linear operations. In parallel, the same

question has been extensively studied in primates’ brain, and three types of coding

schemes have been found: one object is coded by the entire neuronal population

(distributed coding), or by one single neuron (local coding), or by a subset of neuronal

population (sparse coding). Here we asked whether DCNNs adopted any of these coding

schemes to represent objects. Specifically, we used the population sparseness index,

which is widely-used in neurophysiological studies on primates’ brain, to characterize

the degree of sparseness at each layer in representative DCNNs pretrained for object

categorization. We found that the sparse coding scheme was adopted at all layers of

the DCNNs, and the degree of sparseness increased along the hierarchy. That is, the

coding scheme shifted from distributed-like coding at lower layers to local-like coding at

higher layers. Further, the degree of sparseness was positively correlated with DCNNs’

performance in object categorization, suggesting that the coding scheme was related

to behavioral performance. Finally, with the lesion approach, we demonstrated that both

external learning experiences and built-in gating operations were necessary to construct

such a hierarchical coding scheme. In sum, our study provides direct evidence that

DCNNs adopted a hierarchically-evolved sparse coding scheme as the biological brain

does, suggesting the possibility of an implementation-independent principle underling

object recognition.

Keywords: deep convolutional neural network, sparse coding, coding scheme, object recognition, object

representation, hierarchy

INTRODUCTION

One spectacular achievement of human vision is that we can accurately recognize objects at a
fraction of a second in the complex visual world (Thorpe et al., 1996). In recent years, deep
convolutional neural networks (DCNNs) have achieved human-level performances in object
recognition tasks (He et al., 2015; Simonyan and Zisserman, 2015; Szegedy et al., 2015). The success
is primarily credited to the architecture that generic DCNNs compose of a stack of convolutional
layers and fully-connected layers, each of which has multiple units with different filters (i.e.,
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“neurons” in DCNNs), similar to the hierarchical organization
of primates’ ventral visual stream. With such hierarchical
architecture and supervised learning on a large number of
object exemplars, DCNNs are thought to construct complex
internal representations for external objects. However,
little is known about how exactly objects are represented
in DCNNs.

This question has already puzzled neuroscientists for a long
time. To understand how primates’ visual system encodes the
external world, three types of coding schemes are proposed
to describe how neurons are integrated together to represent
an object. At one extreme is distributed coding, by which the
whole neuronal population is involved, whereas at the other
extreme is local coding, by which one neuron is designated
to represent one object. The distributed coding scheme is
superior in large coding capacity, easy generalization, and high
robustness, while the local coding scheme is good at information
compression, energy conservation and better interpretability.
In between lies the sparse coding that different subsets of
neurons in the population participate in coding different
objects. As a trade-off, sparse coding possesses advantages
of both local coding and distrusted coding (Barlow, 1972;
Thorpe, 1989; Berkes et al., 2009; Rolls, 2017; Thomas and
French, 2017; Beyeler et al., 2019). Neurophysiological studies
have revealed that the sparse coding scheme is adopted
in some areas in primate visual cortex for object recognition
(Olshausen and Field, 1996; Lehky et al., 2011; Barth and Poulet,
2012; Rolls, 2017).

Following the studies on biological intelligent systems, several
pioneer studies started to characterize DCNNs’ representation
with coding scheme (Szegedy et al., 2013; Agrawal et al., 2014;
Li et al., 2016; Wang et al., 2016; Morcos et al., 2018; Casper
et al., 2019; Parde et al., 2020). Studies using the ablation
approach show that the processing of objects usually requires
the participation of multiple units, but only 10–15% of units in
a layer are actually needed to achieve 90% of the full performance
(Agrawal et al., 2014). Even when half of the units in all layers
are ablated, the performance does not decrease significantly with
the accuracy above 90% of the full performance (Morcos et al.,
2018). Further studies quantify the number of non-zero units in
response to objects and report a trend of decrease in the number
of non-zero units along the hierarchy of DCNNs (Agrawal
et al., 2014). These preliminary results suggest that DCNNs
may adopt the sparse coding scheme, which likely evolves
along hierarchy.

Here, we adopted a prevalent metric in neurophysiological
studies on primates’ brain, population sparseness index
(PSI, Rolls and Tovee, 1995; Vinje and Gallant, 2000), to
quantify the population sparseness along the hierarchy of
two representative DCNNs, AlexNet (Krizhevsky, 2014)
and VGG11 (Simonyan and Zisserman, 2015). Specifically,
we first systematically evaluated the layer-wise sparseness
in representing objects. Then, we characterized the
functionality of sparseness by examining the relationship
between sparseness and behavioral performance in each
layer. Finally, we explored factors that may influence the
coding scheme.

MATERIALS AND METHODS

Visual Images Datasets
ImageNet Dataset
The dataset from ImageNet Large Scale Visual Recognition
Challenge 2012 (ILSVRC2012) (Russakovsky et al., 2015)
contains 1,000 categories that are organized according to the
hierarchy of WordNet (Miller, 1995). The 1,000 object categories
consist of both internal nodes and leaf nodes of WordNet, but
do not overlap with each other. The dataset contains 1.2 million
images for model training, 50,000 images for model validation
and 100,000 images for model test. In the present study, only the
validation dataset (i.e., 1,000 categories× 50 images) was used to
evaluate the coding scheme of DCNNs.

Caltech256 Dataset
The Caltech256 dataset consists of 30,607 images from 256 object
categories with a minimum number of 80 images per category
(Griffin et al., 2007). In the present study, 80 images per category
were randomly chosen from the original dataset.

DCNNs and Activation Extraction
The well-known AlexNet and VGG11 that are pretrained for
object classification were selected to explore the coding scheme
of DCNNs. Besides the two pretrained models, corresponding
weight-permuted models and ReLU-deactivated models were
also examined to investigate the factors that may influence the
coding scheme observed in the pretrained models.

Pretrained Models
AlexNet and VGG11 are pretrained on ILSVRC2012 dataset
and were downloaded from PyTorch model Zoo1. Both DCNNs
are purely feedforward: the input to each layer consists solely
of the output from the previous layer. The AlexNet consists
of 5 convolutional layers (Conv1 through Conv5) that contain
a set of feature maps with linear spatial filters, and 3 fully-
connected layers (FC1 through FC3). In between, a max (x, 0)
rectifying non-linear unit (ReLU) is applied to all units after each
convolutional and FC layer. In some convolutional layers, ReLU
is followed by anothermax-pooling sublayer. VGG11 is similar to
AlexNet in architecture except for two primary differences. First,
VGG11 uses smaller receptive fields (3× 3 with a stride of 1) than
AlexNet (11 × 11 with a stride of 4). Second, VGG11 has more
layers (8 convolutional layers) than AlexNet. When we refer to
Conv#, we mean the outputs from the ReLU sublayer in the #th
convolutional layer. Similarly, FC# means the outputs from the
#th FC layer after ReLU. The DNNBrain toolbox2 was used to
extract the DCNN activation (Chen et al., 2020). For each unit (or
channel), the activation map was averaged to produce a unit-wise
(or channel-wise) activation for each exemplar, and the activation
of the unit to an object category was then derived by averaging the
unit-wise responses from all exemplars of the category.

1https://pytorch.org/
2https://github.com/BNUCNL/dnnbrain/
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Weight-Permuted Models and Bias-Permuted Models
The weight-permutedmodels were derived by permuting weights
of the pretrained models within each layer. That is, the structures
of the original networks and the weight distribution of each layer
were preserved while the exact feature filters obtained from the
learning of the supervised task were disrupted.Weights in a given
layer can be decomposed as channel x kernel, in which kernels are
3-D tensors (i.e., input channel x height x width). Three kinds
of permutation strategies with various scales were performed:
weights were permutated across all channels and kernels, across
channels with all kernels intact, and across kernels with channel
orders unaltered. The bias-permuted models were obtained by
permuting biases in each layer with all weights and the network
structure remaining unchanged.

ReLU-Deactivated Models
The ReLU-deactivated model was the same as the pretrained
models with only ReLU being silenced in all layers by replacing
it with an identity mapping. The ReLU-deactivated model
disabled the non-linear operation after the feature extraction but
still retained the same network architectures and the learned
feature filters.

Population Sparseness Index
The PSI was calculated for each layer of DCNNs to quantify the
peakedness of the distribution of population responses elicited by
an object category, which is equivalent to the fraction of the units
in the population that participated in coding objects in the case
of binary responses (Vinje and Gallant, 2000).

PSI =
1− a

1− 1
Nu

, where a =

( (
∑

ru ) / Nu )
2

∑
(ru2 / Nu)

,

where ru is the unit-wise activation of a unit u from a target
layer in response to an object category, and Nu is the number of
units in that layer. The unit-wise activation was z-scored across
all categories for each unit, and then normalized across all units
into a range from 0 to 1 to rescale the negative values to non-
negative as required by the definition of PSI. Values of PSI near 0
indicate low sparseness that all units respond equally to the object
category, and values near 1 indicate high sparseness that only a
few units respond to the category.

Relationship Between Population
Sparseness and Classification
Performance
The relationship between sparseness and classification
performance was first explored using correlation analyses.
The Caltech256 classification task was used to estimate the
classification performance of AlexNet and VGG11 on each
category. Specifically, a logistic regression model was constructed
using activation patterns from FC2 as features to perform
a 256-class object classification. A 2-fold cross-validation
procedure was used to evaluate the classification performance.
Then, Pearson correlation coefficients between the PSI and the
classification performance were calculated across all categories
for each layer, respectively. Finally, to reveal how the sparse

coding from different layers contribute to the classification
performance, a stepwise multiple regression was conducted with
the classification performance of each category as dependent
variables and the PSI of the corresponding category from all
layers as independent variables. The regressions were conducted
for Conv layers and FC layers separately.

RESULTS

The coding scheme for object categorization in DCNN was
characterized layer by layer in the pretrained AlexNet and
VGG11 using PSI. The PSI was first evaluated on the ImageNet
validation dataset, with the same categories on which these
two DCNNs were trained. Similar findings were revealed in
the two DCNNs. First, the values of the PSI were low for all
object categories in all layers in general (median <0.4), with the
maximum values no larger than 0.6 (Figure 1), suggesting that
the sparse coding scheme was broadly adopted in all layers of
the DCNNs to represent objects. Second, in each layer, the PSI
of all categories exhibited a broad distribution (ranges >0.2),
indicating great individual differences in sparseness among
object categories. However, despite the large amount of inter-
category differences, the median PSI of each layer showed
a trend of increase along the hierarchy in both Conv and
FC layers, respectively (AlexNet: Kendall’s tau = 0.40, p <

0.001; VGG11: Kendall’s tau = 0.36, p < 0.001). A similar
result was found with the absolute value of activation before
computing the PSI (AlexNet: Kendall’s tau = −0.44, p < 0.001.;
VGG11: Kendall’s tau = −0.52, p < 0.001). Corroborative
results were also observed by fitting the activation distribution
of the neuron population with Norm distribution and Weibull
functions (Supplementary Figure 1). Note that the increase in
sparseness was not strictly monotonic, as the PSI of the first layer
was slightly higher than the adjacent ones. More interestingly,
although AlexNet and VGG11 have different numbers of Conv
layers, the major increase occurred at the last Conv layer. Similar
results have also been found in DCNNs (i.e., ResNet152 and
GoogLeNet) whose architectures are significantly different from
AlexNet and VGG11, suggesting that the hierarchical sparse
coding scheme may be a general coding strategy in DCNNs
(Supplementary Figure 2).

We replicated this finding with a new dataset, Caltech256, that
is dissimilar to the ImageNet in object categories and is thus
not in the training dataset. We found a similar pattern of the
increase in sparseness along the hierarchy (AlexNet: Kendall’s
tau = 0.35, p < 0.001; VGG11: Kendall’s tau = 0.25, p <

0.001; Supplementary Figure 3), suggesting that the increase in
sparseness did not result from image dataset. Taken together,
the hierarchically-increased sparseness suggested that there was
a systematic shift from the distributed-like coding scheme in low
layers to the local-like coding scheme in high layers.

Next, we examined the functionality of the sparse coding
scheme observed in the DCNNs. To address this question,
we tested the association between the population sparseness
and the behavioral performance by performing correlation
analyses within each layer of the DCNNs. In AlexNet, significant
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FIGURE 1 | Hierarchically sparse coding for object categories in DCNNs. (A) Layer-wise PSI distribution for object categories in DCNNs. The sparseness was

evaluated using the PSI for each object category from the ImageNet dataset (1,000 categories) in each layer separately. The distribution of PSI right-shifted along

hierarchy in general. X axis: the degree of sparseness, with higher PSI indicating a higher degree of sparseness; Y axis: the proportion of categories with a

corresponding PSI value. (B) Median of PSI for each layer. In general, the median of PSI increased along hierarchy in Conv and FC layers, respectively. X axis: the

name of layers along hierarchy; Y axis: the median of PSI.

correlations were found starting from Conv4 and beyond [rs
(254) > 0.19, ps < 0.001, Bonferroni corrected; Figure 2A].
This result suggested that the degree of sparseness in coding
object categories was predictive of performance accuracy. That
is, the sparser an object category was represented, the better
it was recognized and classified. Importantly, the correlation
coefficients also increased along hierarchy (Kendall’s tau = 0.90,
p = 0.003), with the highest correlation coefficient observed
at Conv5 (0.43) and FC2 (0.69), respectively (Figure 2A). This
trend suggests a closer relationship between the population
sparseness and the behavioral performance in higher layers.
Indeed, with a stepwise multiple regression analysis in which PSI
of all Conv/FC layers of certain categories were the independent
variables and classification performance was the dependent
variable, we confirmed that population sparseness was predictive
of behavioral performance [Conv layers: F(3, 252) = 22.54, p
< 0.001, adjusted R2 = 0.2; FC layers: F(2, 253) = 136.60, p

< 0.001, adjusted R2 = 0.52]. Meanwhile, only PSI in higher
layers starting from Conv3 remained in the regression models,
further confirming that the coding scheme as a characteristic
of representation became more essential with the increasing
hierarchical level. Similar results were also found in VGG11
(Figure 2B), suggesting that the association between sparseness
and performance may be universal in DCNNs.

Finally, we explored the factors that may affect the formation
of such a hierarchical coding scheme in the DCNNs. The
DCNNs consist of two subprocesses at the core of each layer
(Figure 3A): one is the feature extraction process whose weights
and biases are dynamically adjusted during learning, and the
other is a gating process with a fixed non-linear function (i.e.,
ReLU) that silences units with negative activities. To examine
whether the hierarchically-increased sparseness was constructed
through learning, we measured the population sparseness of
DCNNs with either the learned weights or biases randomly
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FIGURE 2 | Correlation between coding sparseness and behavioral performance. Layer-wise scatter plots of DCNNs’ classification performance vs. PSI values from

(A) AlexNet and (B) VGG11 for object categories from Caltech256. X axis: PSI value, the larger the value the sparser the coding; Y axis: DCNNs’ classification

performance for each object category. Each dot represents one category. *denotes p < 0.05, **denotes p < 0.01 and ***denotes p < 0.001. Categories with the best

or the worst classification performances were listed in Supplementary Figure 4.

permuted. In the weight-permuted models where the weights
were layer-wise permuted across all channels and kernels of the
pretrained networks, we found that the degree of sparseness
instead decreased along hierarchy (AlexNet: Kendall’s tau =

−0.53, p < 0.001; VGG11: Kendall’s tau = −0.82, p < 0.001;
Figure 3B), which was contradictory to the finding of the
undisrupted one (Figure 1). This result was replicated when the

weight permutation was performed across channels or kernels
separately (AlexNet and VGG11: Kendall’s taus <-0.53, ps
< 0.001). Meanwhile, the population sparseness of the bias-
permuted models in which all weights remained intact were also
evaluated. We found that there was no increase in sparseness
along hierarchy (AlexNet: Kendall’s tau= 0.10, p= 0.22; VGG11:
Kendall’s tau = −0.15, p = 0.03; Figure 3D). In addition, when
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FIGURE 3 | Both the learning process and the gating process play an important role in the formation of the hierarchically-evolved coding scheme in the DCNNs. (A) A

schematic diagram of the weight-permuted models. (B) Box plots of median PSI for objects across layers in the weight-permuted models, which represent the

minimum, maximum, median, first quartile and third quartile of the distribution of the median PSI values. The PSI was measured in 10 permuted models using the

same procedure as the intact one. (C) A schematic diagram of the bias-permuted models. (D) Box plots of median PSI for objects across layers in the bias-permuted

models. (E) A schematic diagram of the ReLU-deactivated models. (F) Median PSI for objects across layers in the ReLU-deactivated models. X axis: the name of

layers along hierarchy; Y axis: the median of PSI.

the ReLU sublayers were deactivated with the feature extraction
sublayers intact (Figure 3E), we also observed a decreasing
tendency of sparseness along the hierarchy (AlexNet: Kendall’s
tau = −0.21, p < 0.001; VGG11: Kendall’s tau = −0.32, p
< 0.001, Figure 3F), again in contrast to the AlexNet with
functioning ReLU (Figure 1). Similar results were also found in
VGG11, suggesting a general effect of learning and gating on the
formation of the hierarchically-evolved coding scheme inDCNN.

DISCUSSION

In the present study, we systematically characterized the coding
scheme in representing object categories at each layer of
two typical DCNNs, AlexNet, and VGG11. We found that
objects were in general sparsely encoded in the DCNNs,
and the degree of sparseness increased along the hierarchy.
Importantly, the hierarchically-evolved sparseness was able to

predict the classification performance of the DCNNs, revealing
the functionality of the sparse coding. Finally, lesion analyses of
the weight-permuted models, the bias-permuted models, and the
ReLU-deactivated models suggest that the learning experience
and the built-in gating operation account for the hierarchically
sparse coding scheme in the DCNNs. In short, our study
provided one of the empirical evidence illustrating how object
categories were represented in DCNNs for object recognition.

The finding that the degree of sparseness increased along
the hierarchy in DCNNs is consistent with previous studies
on DCNNs (Szegedy et al., 2013; Agrawal et al., 2014; Tripp,
2016; Wang et al., 2016; Morcos et al., 2018; Casper et al.,
2019; Parde et al., 2020). Our study further extended these
previous studies by conducting a layer-wise analysis throughout
all hierarchical levels and calculating the degree of sparseness
based on responses of the entire population of units (“neurons”
in DCNN). Besides, our study tested two datasets of more than
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1,000 object categories, and thus provided more comprehensive
coverage of the object space. Finally, we also examined the
functionality of sparse coding by showing that the sparser an
object category was encoded, the higher accuracy of the object
category was correctly recognized.

The fact that the hierarchically-increased coding sparseness
coincides with a hierarchically-higher behavioral relevance in
DCNNs suggests it as an organizing principle of representing a
myriad of objects efficiently. That is, at the lower level of vision,
representations recruit a larger number of generic neurons
to process myriad natural objects with high fidelity. At the
higher level, objects are decomposed into abstract features in
the object space; therefore, only a smaller but highly-specialized
group of neurons are recruited to construct the representation.
Critically, a higher degree of sparseness makes representations
more interpretable, because only at higher layers the degree
of sparseness was able to read out for behavioral performance.
One possibility is that distributed coding adopts more neuronal
crosstalk that is difficult for readout, whereas sparser coding
contains fewer higher-order relations and hence require less
amount of computation for object recognition and memory
storage/retrieval (Field, 1994; Froudarakis et al., 2014; Beyeler
et al., 2019). That is, distributed coding is better at adapting
and generalizing the variance across stimulus exemplars;
sparse coding serves to explicit interpretation for goal-directed
invariance (Földiák, 2009; Babadi and Sompolinsky, 2014; King
et al., 2019). Taken together, the evolution of sparseness along the
hierarchy likely mirrored the stages of objects being processed
and the transformation of representation from stimulus-fidelity
to goal-fidelity.

Interestingly, the sparseness was not accumulated gradually
layer by layer. Instead, the sparseness was the highest at the
last convolutional layer (i.e., Conv5 in AlexNet and Conv8
in VGG11) and fully-connected layer (i.e., FC2 in AlexNet
and VGG11), much higher than that of their preceding ones
regardless of the total number of layers in the DCNNs. This
observation suggests a mechanism that the degree of sparseness
dramatically increases at transitional layers either to the next
processing stage (from Conv layers to FC layers) or to the
generation of behavioral performance (from FC layers to
the output layer). Further studies are needed to explore the
functionality of the dramatic increase in sparseness. Note that
the finding that the increase of sparseness was observed in
two structurally-similar DCNNs (i.e., AlexNet and VGG11), and
therefore it may not be applicable to other DCNNs.

As an intelligent system, DCNNs are products of the
predesigned architecture by nature and learned features by
nurture. Our lesion study revealed that both architecture and
learning were critical for the formation of the hierarchically
sparse coding scheme. As for the innate architecture, a critical
built-in function is the non-linear gating sublayer, ReLU, that
silences neurons with negative activity (Glorot et al., 2011;
LeCun et al., 2015). Obviously, the gating function is bound to
increase the sparseness of coding because it removes weak or
irrelevant activations and thus leads objects to be represented by
a smaller number of units. Our study confirmed this intuition
by showing the disruption of hierarchically-increased sparseness
when the gating function being disabled. Besides the commonly

used gating operation ReLU, recently more approaches have been
developed to directly serve the same purpose of sparsification
(Liu et al., 2015; Kepner et al., 2018). On the other hand, the
gating function was not sufficient for a proper sparse coding
scheme, because after randomly permuting the weights of the
learned filters in the feature sublayers, the sparseness was no
longer properly constructed either. Further, the dependence
of both external learning experiences and built-in non-linear
operations implies that the sparse coding scheme may be also
adopted in biological brains, because the gating function is the
fundamental function of neurons (Lucas, 1909; Adrian, 1914)
and the deprivation of visual experiences leads to deficits in
a variety of visual functions (Wiesel and Hubel, 1963; Fine
et al., 2003; Duffy and Livingstone, 2005). In short, the current
study provides direct empirical evidence on the functionality and
formation of hierarchy-dependent coding sparseness in DCNNs;
However, the exact computational mechanisms underlying the
evolution of sparse coding along hierarchy are needed for future
work to unravel it.

Our findings with biologically-inspired DCNNs also lend
insight into coding schemes in biological systems. Because the
number of object categories, neurons, and sampling sites are
largely limited by neurophysiological techniques, availability of
subjects and ethical issues, it is difficult to characterize population
sparseness along the visual pathway (Baddeley et al., 1997; Vinje
and Gallant, 2000; Tolhurst et al., 2009). Several studies measured
the population sparseness on certain single regions in mouse,
ferret or macaque brain (Berkes et al., 2009; Froudarakis et al.,
2014; Tang et al., 2018), but with diverse experimental setups,
the evolution of population sparseness across brain regions
is unclear. Lenky et al. did record both a group of V1 and
the Inferotemporal neurons and found that the population
sparseness increased from the V1 to Inferotemporal cortex
(Lehky et al., 2005, 2011). In contrast, DCNNs can be used to
examine not only coding schemes of a large number of objects
(>1,000 object categories in our study) but also the degree of the
sparseness of all units in all layers; therefore, DCNNs may serve
as a quick-and-dirty model to pry open how visual information is
represented in biological systems.

In sum, our study on the coding scheme of object categories
in DCNNs invites future studies to understand how in
DCNN objects are recognized accurately in particular, and
how intelligence emerges under the interaction of internal
architecture and external learning experiences in general. On
one hand, approaches and findings from neurophysiological and
fMRI studies help to transpire the black-box of DCNNs and
enlighten the design of more effective DCNNs. For example,
our study suggests new algorithms for better performance by
increasing sparseness effectively possibly through learning or
gating function built in the network. On the other hand, in
contrast to the fact that neurophysiological studies on non-
human primates and fMRI studies on human are limited
either by the coverage of brain areas or by the spatial
resolution, both architecture and units’ activation in DCNNs are
transparent. Therefore, DCNNs likely provides a perfect model
to pry open mechanisms of object recognition at both micro-
and macro-levels, which helps to understand how biological
intelligent systems work.
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