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Background: The tumour microenvironment (TME) has occupied a potent position in the tumorigenesis 
and tumor progression of hepatocellular carcinoma (HCC). Radiogenomics is an emerging field that 
integrates imaging and genetic information, thus offering a novel class of non-invasive biomarkers 
with diagnostic, prognostic, and treatment response. However, optimal evaluation methodologies for 
radiogenomics in patients with HCC have not been well established. Therefore, this study aims to develop 
a radiogenomics models, associating contrast-enhanced computed tomography (CECT) based radiomics 
features and transcriptomics data with TME, to increase predictive precision for overall survival (OS) in 
patients with HCC.
Methods: Transcriptome profiles of 365 patients with HCC from The Cancer Genome Atlas (TCGA)-HCC 
cohort were used to obtain TME-related genes by differential expression analysis. TME-related radiomics 
features of 53 patients with HCC from The Cancer Imaging Archive (TCIA)-HCC cohort matched with 
the TCGA-HCC cohort were screened via correlation analysis. Furthermore, a radiogenomics score-based 
prognostic model was constructed using the least absolute shrinkage and selection operator (LASSO) Cox 
regression analysis in the TCIA-HCC cohort. Finally, the ability to predict prognosis and the value of the 
model in identifying the abundance of immune cell infiltration were investigated.
Results: A radiogenomics prognostic model was developed, which incorporated 1 radiomics feature 
[original_gray-level co-occurrence matrix (glcm)_inverse difference normalized (Idn)] and 3 genes [spen 
paralogue and orthologue C‑terminal domain containing 1 (SPOCD1); killer cell lectin like receptor B1 
(KLRB1); G protein-coupled receptor 182 (GPR182)]. The model performed satisfactorily in the training 
and test sets [1-year, 2-year, 3-year area under the curve (AUC) of 0.81, 0.85 and 0.87 in the training set, 
respectively; and 0.73, 0.83, and 0.84 in the test set, respectively]. Moreover, the model showed that higher 
radiogenomics scores were associated with worse OS and lower levels of immune infiltration.
Conclusions: The novel CECT-based radiogenomics model may provide valuable insights for prognostic 
stratification and TME assessment of patients with HCC.
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Introduction

Hepatocellular carcinoma (HCC), mainly a histological 
subtype of liver cancer, is currently the seventh most 
common malignancy and the second leading cause of cancer-
related death worldwide (1). The long-term prognosis 
of patients with HCC still remains dismal (2). Molecular 
marker-based classification schemes for HCC have not been 
routinely applied, which greatly limits accurate treatment 
and prognosis prediction (3,4). Hence, it is essential 
to integrate multiomics factors for valuable biomarker 
acquisition, as this can provide a multidimensional basis for 
the selection of therapeutic options.

Accumulating research has highlighted the essential role 
of the tumor microenvironment (TME) in the progression 
of HCC (5-7). The TME is mainly composed of recruited 
immune cells and stromal cells that interact with cancer 
cells to promote the process of proliferation by resisting 
cell apoptosis and evading immune surveillance, ultimately 
affecting tumor metastasis, treatment effectiveness, and 
survival (6-8). In addition, the development of high-
throughput genome sequencing technology in combination 
with genomics methods has clarified the characterization of 
the TME (6,9). Moreover, studies are gradually starting to 
focus on the novel field of radiogenomics, using genome-
wide molecular data with high-throughput quantitative 
radiomics features to reveal the potential links with the 
genetic heterogeneity of tumors (10-12). 

Thus far, only a limited number of studies have 
investigated the intratumoral heterogeneity distinction 
of clinical outcome in HCC (13-16), and a mature 
prognostic model based on radiogenomics method is 
lacking. Therefore, in this study, we aimed to develop a 
TME-related radiogenomics model derived from contrast-
enhanced computed tomography (CECT) images for 
predicting prognosis and indicating the heterogeneity of 
TME in patients with HCC. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-22-840/rc).

Methods

Patients

Clinical information and RNA-sequencing (RNA-seq) data 
of patients with HCC were downloaded from The Cancer 
Genome Atlas (TCGA; https://tcga-data.nci.nih.gov/tcga/). 
CT images of patients with HCC with matched RNA-
seq data of TCGA-HCC cohort were obtained from The 
Cancer Imaging Archive (TCIA) (https://tcia.at/home/) 
and were randomly assigned to the training and test sets in 
a ratio of 1:1. All enrolled patients needed to be selected 
according to the exclusion criteria shown in Figure 1. These 
abovementioned data platforms are public and free of 
charge for scholars without ethical issues. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013). 

Evaluation of TME with patients with HCC and 
acquisition of TME-related genes

The RNA-seq data of TCGA-HCC patients were used to 
score the abundance of ImmuneScore (Immune Component 
Ratio) and StromalScore (Matrix Component Ratio) with 
“ESTIMATE” package in R software 3.6.2 (https://www.
r-project.org/). Co-up- and co-downregulated differentially 
expressed genes as TME-related genes were then obtained 
via differential expression analysis of the ImmuneSore and 
StromalScore groups with a threshold of |log2-fold change 
(FC)| >1 and an adjusted P value <0.05 based on the median 
of ImmuneScore and StromalScore.

Extraction and selection of CT radiomics features

Since arterial-phase hypervascularity can better reflect the 
intratumoral heterogeneity, only the arterial phase of CECT 
images of the TCIA-HCC cohort with the standard scan 
parameters (tube voltage 120 KV, tube current 250 mA; 
matrix 512×512; thickness 1.5–3 mm; the arterial phase 
started 30–35 s after the injection, the venous phase started 
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after 55–60 s and the delayed phase started after 90–120 s) 
were imported into the open-source software 3D Slicer 
4.10.2 (https://www.slicer.org/) for region of interest 
(ROI) acquisition. According to the standard of the Liver 
Reporting & Data System (LI-RADS) 2018 (17), a clearer 
tumor boundary on the portal venous phase images was 
defined as the delineation range, and two radiologists with 
at least 5 years of experience manually outlined the ROI of 
the entire tumor lesion on each slice. For cases of multiple 
lesions, the ROI was only delineated on the largest one. 
Two radiologists independently delineated all samples 
blindly without patient clinical information, then one of 
them repeated the ROI segmentation step. Prior to feature 
extraction, the image normalization process was performed 
by using the following specific parameter settings: a window 
level/width of 350/50 and a resampled pixel spacing of  
1 mm × 1 mm × 3 mm. The image normalization and feature 
extraction steps were completed using the PyRadiomics 
package in Python 3.6 (https://python.org/). In total, 1,347 
normalized radiomics features could be calculated according 
to following seven types of feature classes, including shape 
descriptors, first order, gray-level co-occurrence matrix 
(GLCM), gray-level run length matrix (GLRLM), gray-
level size zone matrix (GLSZM), neighboring gray-tone 
difference matrix (NGTDM), and gray-level dependence 
matrix (GLDM), which were based on the original and 
eight filtered images types [Wavelet, Laplacian of Gaussian 
(LoG), Square, SquareRoot, Logarithm, Exponential, 
Gradient, and LocalBinaryPattern 2D/3D]. Subsequently, 
intra- and interclass correlation coefficient (ICC) analysis 
was used to select the stable and reproducible radiomics 
features (with Pearson correlation coefficient ICC ≥0.75 
and P<0.05 being considered a strong correlation), which 
were further screened via Spearman correlation analysis 

using ImmuneScore and StromalScore.

Radiogenomics risk factor selection and prognostic model 
construction

First,  in order to screen out prognosis-associated 
radiogenomics risk factors for model construction, 
univariate Cox regression analysis was performed for TME-
related radiomics features and genes with survival data 
in TCGA-HCC and TCIA-HCC cohorts, respectively. 
Second, in the training set, a least absolute shrinkage and 
selection operator (LASSO) Cox regression analysis, a 
common machine learning method for feature selection, 
in combination with 10-fold cross-validation, was applied 
to select the most predictive features from outcomes 
of univariate Cox regression analysis. Subsequently, 
the radiogenomics score was calculated based on the 
following formula: β1 × F1 + β2 × F2 + β3 × F3 +… (β is the 
LASSO Cox regression coefficient, and F is the value 
of the radiogenomics factors). This was taken as the 
radiogenomics prognostic prediction model. Additionally, 
we further verified the prognostic relevance of the genes in 
the radiogenomics score by multiple external independent 
cohorts (ICGC-HCC cohort: n=231; GSE10141 cohort: 
n=80; GSE54236 cohort: n=161; https://www.ncbi.
nlm.nih.gov/geo/). Moreover, the relationship between 
radiogenomics score and clinical characteristics was 
analyzed. 

Validation of the performance of the radiogenomics 
prognostic model

The area under the curve (AUC) of the time-dependent 
receiver operating characteristic (ROC) analyses was used 

RNA-seq expression profile data of patients from 
TCGA-HCC (n=424)

Excluded criteria:
(I)	 Non-tumor samples (n=50)
(II)	 Without survival date (n=9)

TCGA-HCC cohort (n=365)

CT image data of patients from TCIA-HCC (n=75)

Excluded criteria:
(I)	 Without complete radiographic date 

(n=13)
(II)	 Without survival date (n=9)

TCIA-HCC cohort (n=53)

Figure 1 Flowchart of enrolled patients. RNA-seq, RNA sequencing; TCGA, The Cancer Genome Atlas; HCC, hepatocellular carcinoma; 
TCIA, The Cancer Imaging Archive.
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to evaluate the predictive performance of the model with 1-, 
2-, and 3-year overall survival (OS) in each of the training 
and test sets. Meanwhile, to maximize the clinical utility 
of the model, a quantifiable survival prediction probability 
nomogram was constructed based on the radiogenomics 
score in the training set. Calibration curves were plotted 
to obtain two sets of goodness of fit. The Kaplan-Meier 
(K-M) survival method was performed with log-rank test 
to determine whether there was a statistical difference in 
survival status between the high-risk and low-risk groups 
separated by the median radiogenomics score of each 
predictor in the TCIA-HCC cohort. Additionally, using 
single-sample gene set enrichment analysis (ssGSEA) 
method via the “GSVA” package in R, we calculated the 
abundance of immune cell infiltration, and the correlation 
with radiogenomics score was further confirmed by 
Spearman correlation analysis. 

Statistical analysis

All statistical analysis, including differences analysis, ICC 
analysis, correlation analysis, survival analysis, regression 
analysis, and plots of Veen, volcano, time-dependent ROC 
curve, nomogram, and calibration curve were performed 

and graphed using R software, with significance defined as 
P<0.05.

Results

Patient clinical characteristics

The overall technical workflow is illustrated in Figure 2. 
There were a total of 365 patients with HCC from the 
TCGA datasets, and 53 patients with HCC with CECT 
images from the TCIA datasets. Enrolled patients from 
the TCIA-HCC cohort were randomly divided into a 
training set (n=27) and test set (n=26). The detailed clinical 
information of patients is presented in Table 1 [pathological 
grading and clinical staging were determined according 
to the World Health Organization (WHO) classification 
system].

Identification of TME-related radiomics features and 
genes associated with prognosis

The result of the differential gene expression analysis in 
TCGA-HCC cohort was illustrated with volcano and 
Venn plots, with a total of 1,077 co-upregulated genes 
and 62 co-downregulated genes in the ImmuneScore and 
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StromalScore groups (|log2(FC)| >1 and adjusted P value 
<0.05) (Figure 3A,3B). 

Meanwhile, for each patient in the TCIA-HCC 
cohort, 880 stable and reproducible radiomics features 
with ICCs >0.75 (P<0.05) were ultimately selected. After 
Spearman correlation analysis of each radiomics feature 
with ImmuneScore and StromalScore, 100 TME-related 
radiomics features were further screened (P<0.05; Figure S1).

Following the initial screening analysis described 
above, all the resulting TME-related radiomics features 
and differential genes were then used for univariate Cox 
regression analysis. Ultimately, 3 radiomics features and 
20 genes (P<0.05) associated with prognosis remained, as 
demonstrated in the forest plot (Figure 3C).

Construction and validation of radiogenomics prognostic 
prediction model 

In the LASSO Cox regression analysis, the radiogenomics 
prognostic prediction model was built in the training set 
using the 23 risk factors (3 radiomics features and 20 genes) 
obtained in the abovementioned analysis, and the optimal 
λ was chosen using internal 10-fold cross-validation, with 4 
radiogenomics predictors with nonzero coefficients being 
identified (Figure 3D). Hence, a radiogenomics score-based 
OS prediction model calculated by a formula (radiogenomics 
score = 0.565 × original_glcm_Idn + 0.101 × SPOCD1 – 
0.083 × KLRB1 – 1.221 × GPR182) was established (glcm, 
gray-level co-occurrence matrix; Idn, inverse difference 
normalized; SPOCD1, spen paralogue and orthologue 
C‑terminal domain containing 1; KLRB1, killer cell lectin 
like receptor B1; GPR182, G protein-coupled receptor 182).  
Based on the TCIA-HCC cohort, higher OS-related 
radiogenomics scores were found for T3 than for T1 
(P=0.017), and the same significant difference was observed 
between stage III and stage I (P=0.002), grade 3 and grade 1 
(P=0.008), while no difference was observed for age, gender, 
or and N/M staging (Figure S2). In addition, multivariate 
logistic regression analysis demonstrated that TNM staging 
was an independent risk factor (Figure S3).

After construction of the prognostic model based on 
the training set, the AUCs of radiogenomics model were 
assessed at 1 year (AUC =0.81, cutoff =–0.13), 2 years (AUC 
=0.85, cutoff =–0.95), and 3 years (AUC =0.87, cutoff =–1.13) 
in the training set, and 1 year (AUC =0.73), 2 years (AUC 
=0.83), and 3 years (AUC =0.84) in the test set, suggesting 
a good predictive ability of the model (Figure 4A).  
The radiogenomics model had a superior AUC to the 
model using only TNM staging (Figure S3). To present 
the predictive model, a nomogram was constructed to 
facilitate its widespread use by researchers (Figure 4B). 
Furthermore, all patients in the TCIA-HCC cohort were 
classified the high- or low-score group according to the 
median radiogenomics score of the training set (–0.378), 
and the K-M survival curve was plotted to demonstrate 
the significant difference in OS between two groups 
[hazard ratio (HR) =3.631, 95% CI =1.437–9.177; log-
rank test P=0.0036] (Figure 4C). The K-M survival 
curve and OS status distribution intuitively revealed a 
worse OS in patients with higher radiogenomics scores  
(Figure 4D). Moreover, K-M survival analysis was performed 
for four predictors as well (Figure S4). Additionally, 
validation of three external independent cohorts further 

Table 1 Clinical characteristics of patients with HCC in TCIA and 
TCGA cohort

Clinical factors

TCIA cohort (n=53)
TCGA cohort 

(n=365) Training set 

(n=27)

Test set 

(n=26)

Age (years)

≤65 15 13 228

>65 12 13 137

Gender

Male 19 10 119

Female 8 16 246

Grade

1 5 1 55

2 10 15 175

3 12 10 118

4 0 0 12

Unknown 0 0 5

Stage

I 14 10 170

II 6 5 84 

III 7 9 83

IV 0 2 4

Unknown 0 0 24

OS (days), median 667 475 596

HCC, hepatocellular carcinoma; TCIA, The Cancer Imaging 
Archive; TCGA, The Cancer Genome Atlas; OS, overall survival.
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Figure 3 TME-related radiogenomics risk factor selection for prognostic model construction. (A) Volcano plots for the differential express genes of 
ImmuneScore (left) and StromalScore (right) determined by threshold of |log2(FC)| >1 with an adjusted P value <0.05 in the TCGA-HCC cohort. 
The red dots indicate upregulated genes with an adjusted P value <0.05. The green dots indicate downregulated genes with an adjusted P value 
<0.05. The black dots indicate genes with no significant differential expression (adjusted P value >0.05). (B) Venn plots showing co-upregulated (left) 
and co-downregulated (right) genes of ImmuneScore and StromalScore. (C) Forest plots for the univariate Cox regression analysis with TME-
related differential genes (left) and radiomics features (right) in TCGA and TCIA cohorts, with the significant factors with P<0.05 being listed. 
(D) Optimal λ selection according to 10-fold cross-validation (left) and LASSO coefficient profiles of all radiogenomics risk factors (right) in the 
training set. FDR, false discovery rate; Diff., difference; Exp, expression; FC, fold change; TME, tumor microenvironment; TCGA, The Cancer 
Genome Atlas; HCC, hepatocellular carcinoma; TCIA, The Cancer Imaging Archive; LASSO, least absolute shrinkage and selection operator.
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confirmed the prognostic relevance of the three genes in 
the radiogenomics score (Figure S5). Finally, the reliability 
of the model for prediction at different time points was 
observed via calibration curves, which showed that the 
longer the survival time was, the better the calibration of 
the model (Figure S6). Comparing the prognosis prediction 
performance of the 3-gene classifier and the radiomics 
feature in the model, we found that the value of gene-
based prognosis prediction mainly reflected the short-term 
prognosis, while radiomics features showed significant 
advantages in long-term outcomes (Figure S7).

Correlation of radiogenomics score with TME 

As all patients in the TCGA-HCC cohort with 29 tumor-
infiltrating immune cell enrichment scores were quantified 
via the ssGSEA method (Figure S8), we analyzed the 
association between the radiogenomics score and abundance 
of immune cells infiltration in TCIA-HCC cohort. Our 
results showed that the infiltration abundance of 22 kinds of 
immune cells was significantly different between the high 
and low radiogenomics score groups (P<0.05) (Figure 5), of 
which 21 were negatively correlated with the score (P<0.05) 
(Figure S9).

Discussion

In our study, we investigated the correlation between the 
heterogeneity of TME and prognosis in patients with 
HCC and whether it could be used as a biomarker based on 
radiogenomics analysis to develop an effective quantitative 
model for predicting prognosis. For this purpose, we 
identified four predictors (original_glcm_Idn, SPOCD1, 
KLRB1, and GPR182) and established a quantitative 
prediction model that performed satisfactorily in the 
training and testing sets. Moreover, the radiogenomics 
score based on the above four prognostic predictors could 
well reflect the heterogeneity of the TME in patients with 
HCC, especially the infiltration abundance of immune cells. 

Thus far, a number of staging systems have been used 
to evaluate the prognosis of patients with HCC and to 
guide the choice of treatment, such as Barcelona clinic 
liver cancer (BCLC) staging, The Hong Kong liver cancer 
(HKLC) staging, Cancer of the Liver Italian Program 
(CLIP) grading, and the eight edition TNM stage system, 
but these have shown limited effectiveness in reflecting the 
internal heterogeneity and molecular characteristics of the 
tumor at a macroscopic scale (18). Through the fusion of 

the noninvasive and repeatable high-dimensional imaging 
information and the gene sequencing data, radiogenomics 
has been considered as a potential biological marker 
for revealing the molecular function of whole tumor 
morphology and has proven capable in the evaluation of 
tumor efficacy, prognosis, and expanding the understanding 
of tumor biological mechanism.

A series of previous studies has examined the application 
of radiogenomics in a variety of tumors, but this is rare 
in HCC (12,19-21). Segal et al. (22), first reported a 
combination of various quantitative radiomics features 
extracted from three phase enhanced CT images of patients 
with HCC, which allowed the reconstruction of 80% 
of the global gene expression profile, demonstrating a 
correlation with cell proliferation, liver synthesis function, 
and prognosis relevance. Subsequently, most studies 
have focused on the relationship between radiomics and 
clinical features or tumor heterogeneity, few of which have 
developed stable predictive models (23-26). A CECT-based 
radiomics model achieved a satisfactory prediction result in 
predicting microvascular infiltration of HCC (AUC =0.72 
in test set) and provided a new approach for TME and 
tumor heterogeneity (26). In addition, a radiomics model 
for recurrence risk prediction was developed from a multi-
institutional study, which exhibited better prognostic power 
than did other staging systems (test set AUC: 0.84–0.88 vs. 
0.58–0.60) and successfully divided patients with HCC into 
three recurrence risk subgroups (23). Moreover, in order to 
find an effective method to identify patients with HCC who 
might respond to immunotherapy, Liao et al. (27) constructed 
a radiomics model based on CECT to predict the immune 
infiltration of CD8+ T cells in HCC (AUC =0.705 in test 
set). Another clinical-radiomics model was established using 
CECT images which demonstrated superior performance 
in predicting the response to first transcatheter arterial 
chemoembolization (TACE) treatment in patients with 
intermediate-stage HCC (28).

In contrast, radiogenomics analysis of HCC has thus 
far been limited. Among the single literature reports that 
we are aware of, some researchers observed that multiple 
conventional imaging traits were correlated with the key 
genes related to the HCC phenotype (11,12). In another 
recent paper, a model based on the radiomic signature 
extracted from volume of interest covering 10 mm from the 
tumor margin (VOI10mm) in the arterial phase demonstrated 
the highest AUC (0.733), compared to the VOI5mm (AUC 
=0.679) and VOI20mm (AUC =0.719), for characterizing 
alterations of PI3K signaling in HCC (19). Drawing on 

https://cdn.amegroups.cn/static/public/QIMS-22-840-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-840-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-840-Supplementary.pdf
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the research experience of previous studies in the field of 
radiogenomics, we combined RNA-seq data with radiomics 
parameters of HCC to develop 4 prognostic predictors 
reflecting intratumoral heterogeneity. The inverse 

difference normalized (IDN) of GLCM was characterized 
as a measure of a local homogeneity of the images, with 
higher values being associated with more homogeneous 
different regions of image texture, which has been reported 
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in other studies to reflect the heterogeneity of the tumor 
(29,30). In this study, original_glcm_Idn was negatively 
correlated with ImmuneScore and StromalScore. This 
may imply that higher image heterogeneity is associated 
with lower level immune infiltration, both of which may 
collectively indicated poor prognosis. In a recent study, 
the CD8+ T cells characterized by high expression of 
KLRB1 in early-relapse HCC showed lower cytotoxicity 
and immunosuppression in contrast to the depleted state 
found in primary HCC (6). Furthermore, a study identified 
that GPR182 was a negative regulator of intestinal mitogen-
activated protein kinase (MAPK) signal-induced proliferation, 
which might lead to further emergence adenoma and reduced 
survival (31). Other studies have found that SPOCD1 could 
promote the proliferation and metastasis of tumor cells and 
was correlated with poor prognosis (32,33). It should be 
further mentioned that the differential expression of the 
three prognosis-related genes mentioned above resulted in 
significant differences in patient prognosis of between 0 and 
2.5 years but with poor ability to stratify patient prognosis 
in the long-term. However, the radiomics feature can better 
reflect the difference in the long-term prognosis. Because 
of the spatial heterogeneity of tumors stemming from the 
heterogeneity of TME and the random nature of gene 

mutations, only a subset of pathological features can be 
understood based on individual biopsies, making it difficult 
for these genes to reflect the overall distribution of immune 
infiltration that has hindered the assessment of patient 
prognosis (34,35). However, radiomics features we extracted 
based on the entire lesion range, which may better reflect 
spatial heterogeneity and provide more comprehensive 
tumor molecular and pathological information and could 
be used as an imaging biomarker with additional prognostic 
predictive value for patients.

Some limitations to this study should be mentioned. 
First, the sample size was small, especially for patients 
available for radiological follow-up, while the number of 
external multicenter cohorts was insufficient for verifying 
the reliability of the predictive factors. Second, the 
abundance of immune cells in tumor tissue remains to be 
experimentally addressed. Third, the perinodular region 
of lesions was not included in the ROIs, so the potentially 
valuable radiographic information with intratumor 
heterogeneity of this region should be further investigated.

Conclusions

We developed a new prognostic model containing four 
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radiogenomics predictors associated with TME that showed 
good performance in determining the prognosis of patients 
with HCC and different immune infiltrates. Findings from 
this study can be expected to provide a reliable reference for 
decision-making in clinical practice.
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