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Abstract

Modern neuroscience is progressively elucidating that the classic view positing distinct brain regions responsible for
survival, emotion, and cognitive functions is outdated. The hypothalamus demonstrates the interdependence of these
roles, as it is traditionally known for fundamental survival functions like energy and electrolyte balance, but is now
recognized to also play a crucial role in emotional and cognitive processes. This review focuses on lateral hypothalamic
melanin-concentrating hormone (MCH) neurons, producing the neuropeptide MCH—a relatively understudied neuronal
population with integrative functions related to homeostatic regulation and motivated behaviors, with widespread inputs
and outputs throughout the entire central nervous system. Here, we review early findings and recent literature outlining
their role in the regulation of energy balance, sleep, learning, and memory processes.
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Cognition, Emotion, and Survival The above quote expresses the sense of awe in trying

to conceptually reconcile basic physiological functions fun-

“Those who study the hypothalamus have a somewhat larger com- damental for the survival of the organism and its species,

mission than dealing with its role in maintaining the physical and seemingly more complex, “higher-order” cognitive, and

functions of the body. Man possesses a complexity of charac- social activities in which humans engage, such as math,

teristics and behavior that is of an order quite different from politics, and the construction of complex technologies and
contraction, secretion, digestion, metabolism, reproduction and adapta- societies.

tion, though related to all of these. That relationship is the mystery.”*
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Figure 1. Conceptual representation of the nervous system as the central regu-
lator of internal and external inputs and outputs (reproduced with permission
from Brooks?). The hypothalamus is a structure uniquely positioned to fulfil this
role.

An influential theory of the past, which has attempted to
do so has been the “triune brain” theory, developed by Paul
McLean and posing that the brain is composed by three dis-
tinct structures, which evolved separately and function inde-
pendently. The oldest partis the “reptilian brain,” which consists
of the ventral-most brain structures such as the basal ganglia
and the brainstem, and is responsible for the basic, instinctual,
and stereotyped behaviors and functions essential for survival.
The second structure is the limbic system, involved in emotional
responses and representing an evolutionary progress from rep-
tiles to mammals. The third, most recent structure and promi-
nent in humans is the cortex, involved in more sophisticated
functions such as cognition, reasoning, planning, and rational
decision-making.2™*

Today, this theory is outdated,® as we now know that the
brain did not evolve in stages, but rather that all brain structures
are shared among vertebrates with differences in proportion.
Additionally, brain structures do not function independently,
and neither are survival, emotion, and cognition separable brain
functions. Finally, the brain does not function solely by react-
ing to stimuli, instead, it continuously predicts and adjusts to
the ever-changing internal and external factors, optimizing its
responses to the environment both inside and outside the body.?

One anatomically defined region of the brain, the hypothala-
mus, exemplifies how survival, emotion, and cognition are inter-
dependent in the brain. It has been known for a long time to
underlie fundamental homeostatic functions, essential for the
survival of the individual and the species, like energy balance,
electrolyte balance, endocrine function, and reproduction. Over
time, it has become increasingly clearer that it is essential also
for emotional and cognitive functions (Figure 1).

This review focuses on how a genetically defined neuronal
population in the hypothalamus, named melanin-concentrating
hormone (MCH) neurons, in addition to energy homeostasis and
sleep, controls cognitive and emotional processes.

The Hypothalamus

“This bit of brain, 4 grams in weight, integrates almost all higher physi-
ological functions.”
Fred Plum and Robert Van Uitert, 1978
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Figure 2. Simplified representation along the antero-posterior and medio-lateral
axes of the organization and functions of hypothalamic nuclei, including home-
ostatic functions and motivated behaviors (reproduced with permission from
Sternson”®).

The hypothalamus is a heterogeneous region located at the
base of the brain, which controls a variety of physiological pro-
cesses essential for survival, such as feeding and energy home-
ostasis, thirst and osmotic homeostasis, hormone release, body
temperature, sleep, locomotion, and basic social behaviors like
sexual and reproductive behavior, escape and aggression.

It is an ancient and conserved structure of the forebrain,®”’
made up of several nuclei and neuronal populations, which
act as internal sensors (interoceptors) of homeostatic states
and orchestrate the essential behaviors aimed at counteract-
ing needs,” such as foraging and consuming food when in a
state of energy deprivation (Figure 2). Neurons in the hypothala-
mus sense and respond to internal signals (hormones, nutrients,
and other molecules) and initiate complex, motivated behav-
iors when stimulated exogenously, as shown in classical stud-
ies.> More recently, it has been shown that hypothalamic neu-
rons not only respond to internal stimuli on a slow timescale
(minutes, hours), but are also responsive to external stimuli
on a faster timescale (seconds).2 The latter are environmental
cues used to predict future homeostatic needs and to orches-
trate complex behaviors flexibly and depending on environ-
mental context—as opposed to the generation of stereotyped
behaviors.®1°

The hypothalamus controls the autonomic nervous system
by innervating autonomic preganglionic neurons and various
nuclei in the brainstem that control autonomic reflexes.'® It
controls the endocrine system directly through groups of neu-
rons that connect to the anterior and posterior pituitary gland
and indirectly through autonomic innervation of endocrine
glands.’®

The Lateral Hypothalamic Area (LH or LHA)

Many structural and functional studies support a role of the
LH in the control of feeding behavior,!* arousal,'>** and rein-
forcement processes—early lesion studies showed that the LH is
necessary for feeding behavior, while electrical self-stimulation
revealed the LH as one of the brain areas supporting the
strongest self-stimulation.’* % The LH has extensive connec-
tions with the brainstem and hypothalamic areas that process
homeostatic signals from the body, and with forebrain cogni-
tive and hedonic systems and areas mediating stress, anxiety,
arousal, and sleep.”
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The LH has two main non-overlapping neuronal popula-
tions, unique to the LH and defined by their neuropeptides:
orexin/hypocretin (ORX) neurons and MCH neurons. Other, less
well-characterized cell types are also present in the LH, such
as GAD65 neurons,'® Trh-expressing, and Sst-expressing neu-
rons.’ Additionally, other neurotransmitter markers (glutamate
and glutamate transporters, gamma-aminobutyric acid (GABA)
transporters),? neuropeptides [cocaine- and amphetamine-
regulated transcript (CART), dynorphin, nesfatin], and receptors
(leptin receptor) are expressed and/or co-released by LH neurons
to various degrees.'®:2!

ORX and MCH neurons are thought to have opposing roles
on arousal and feeding, as they show reciprocal activity pro-
files? and are differently modulated by glucose.?>?* However,
they show similarities in that both neuronal types have brain-
wide inputs and outputs, not only to regions regulating feeding
and arousal, but also locomotion, cognition, and reward.??-2>2

ORX neurons are identified by the expression of the neu-
ropeptide orexin, which has an excitatory action on postsynap-
tic neurons.?’-?° Additionally, they express and release gluta-
mate.” They are known to promote stable wakefulness,?3! as
their loss results in narcolepsy, a sleep disorder.3*3* They also
mediate feeding,?® and control behavior under situations of high
motivational relevance.®® More recently, they have also been
found to be involved in locomotion® and cognition.3®

GADG65 neurons are inhibited by glucose!® and are active dur-
ing sleep.® Locally, they synapse onto neighboring MCH neu-
rons*® and are activated by ORX neurons.*! They likely partici-
pate in GABAergic LH projections to more distant brain regions,
such as the ventral tegmental area (VTA).*?

MCH neurons are the focus of this review and are covered
more extensively below.

The MCH System
Early Findings

The MCH peptide was first isolated from the pituitary of teleost
fish, where it is secreted in circulation and causes the con-
centration of melanin granules in the scales, thus determining
color change in response to the environment.** Subsequently,
it was found in the hypothalamus* of rodents and humans*
(and in some peripheral tissues,* see the section “Functions—
Overview”). The mammalian MCH peptide (Figure 3) consists
of 19 amino acids, encoded by the Pmch gene, which gives
rise to a longer precursor peptide (165 amino acids), prepro-
MCH. The Pmch gene is highly conserved between teleost fish
and mammals and the MCH peptide is identical in all mam-
mals analyzed so far.#’-#® In contrast to fish, MCH in the mam-
malian brain is found in the LH and zona incerta (or incerto-
hypothalamic area).?® In spite of slight differences in localiza-
tion, in all vertebrates analyzed, MCH has been found exclu-
sively in the hypothalamus or homologous structures.?’ Alterna-
tive processing of the prepro-MCH precursor generates 2 other
peptides, NGE and NEL* the function of which is not well
known.?

Functions—Overview

The MCH system is implicated in a variety of processes within
the central nervous system (CNS). This ubiquitous peptide acts
as an important neuromodulator for the organism’s homeo-
static balance, acting over a large spectrum of integrative func-
tions, especially those related to homeostatic regulation and
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Figure 3. Amino-acid sequence and structure of the mammalian MCH peptide
after precursor processing.

motivated behaviors. Early evidence implicated the MCH pep-
tide in the regulation of feeding behavior, finding its expression
increased after fasting®®>! and intracerebroventricular (ICV)
injection of MCH increased food consumption.”® Later, MCH
peptide has also been found to be implicated in sleep®? and,
more recently, learning and plasticity processes, emotion,>3>°
and reproduction.”®*” The MCH system has also been found
to have a role in the periphery: in the gut,>>® in pancreatic
islet function,® in brown adipose tissue (BAT),*%:®! and in the
immune system,%2-%3 and to exert neuroendocrine actions® in
addition to non-neuroendocrine roles. MCH neurons project
widely throughout the brain®%¢ and receive inputs from several
brain regions.??

Transmitters and Receptors Involved in the MCH
System

The MCH peptide has 2 known G-protein coupled receptors:
MCHR1,%-71 found in all vertebrates, and MCHR2, found in pri-
mates and carnivores but not in rodents.”>”® The two recep-
tors are highly homologous*® and both are found predomi-
nantly expressed in the brain compared to other tissues.”>””
The binding of MCH peptide to MCHR1 can activate Gy, cou-
pled pathways, which decrease intracellular cAMP levels and
are associated with neuronal inhibition, but also Gq coupled
pathways, which lead to an increase in intracellular Ca?* levels
and are associated with neuronal activation. Instead, activation
of MCHR2 causes exclusively increase in intracellular Ca?* lev-
els through Gq’37> pathways. Most rodent studies on the func-
tions of the MCH system only involve MCHR1, due to the lack
of MCHR2. A mouse model engineered to express MCHR2 under
the promoter of MCHR1 showed protection against diet-induced
obesity by reducing feeding,’® an effect similar to MCHR1. How-
ever, additional studies are needed to fully elucidate the phys-
iological role of MCHR2. MCH peptide itself has been reported
to have mainly inhibitory effects on other hypothalamic neuron
types.”®

As many other neuron types,?> MCH neurons likely co-
release other neurotransmitter molecules in addition to MCH
peptide. This is suggested by differences in the phenotypes of
animal models lacking the MCH gene (MCH-KO mice) compared
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to those lacking MCH neurons altogether (MCH-ablated mice),
as is the case for glucose tolerance profiles.® Evidence for the
release of both classic neurotransmitters glutamate and GABA
from MCH neurons and the presence of their molecular machin-
ery in MCH neurons®8? has been reported. A study®® found
that nearly all MCH neurons express the glutamate transporter
VGlut2 and that its knockout leads to a phenotype partially
overlapping but different from the knockout of MCH peptide.
Another study®* reported that a small subset (about 5%) of MCH
terminals projecting to the locus coeruleus (LC) contains the
machinery for GABA release and transmission. Finally, it has also
been reported that MCH terminals projecting to the lateral sep-
tum (LS)—a site of very dense MCH innervation—release gluta-
mate.®

MCH neurons also express the CART peptide and endo-
cannabinoids, but this is not a specific characteristic of MCH
neurons, since these molecules are expressed by several neu-
ronal populations in the hypothalamus® and in the rest of the
brain.®-88

Inputs and Outputs of MCH Neurons

MCH neurons send extensive projections to most brain areas,
notably the cortex, the olfactory areas, the hippocampal for-
mation, the septal nuclei, the amygdala, the nucleus accum-
bens, the LC, the raphe and nuclei of the reticular formation,
and the spinal cord.® Intra-hypothalamic MCH projections tar-
get the arcuate nucleus, dorsomedial hypothalamus, lateral and
posterior hypothalamus and tuberomammillary nuclei (TMN).%°
MCH axons also contact the median eminence (ME),*® which is
an interface between the CNS and the periphery and a major
site of blood-brain barrier permeability. Additionally, MCH neu-
rons have been hypothesized to interact with tanycytes,*® elon-
gated cells in the ME and third ventricle which control the
blood-hypothalamus barrier and, therefore, the entry of periph-
eral signals into the hypothalamus.'**'>2 MCH peptide has been
shown to affect the beating frequency of cilia on ependymo-
cytes®:°2148 and to regulate the permeability of the blood-brain
barrier by controlling microvessel fenestration and facilitating
leptin action in the arcuate nucleus.”® Additionally, MCH pep-
tide itself is released in the cerebrospinal fluid (CSF), thus poten-
tially reaching non-synaptically connected brain regions, which
has been shown to be one of the routes for its regulation of feed-
ing.** MCH may act through non-synaptic communication also
in the brain itself, as the expression of MCHR1 has been found
associated to a subcellular structure called the primary cilium,
which is involved in the detection of neurochemical messengers
in the extracellular space.® In general, MCHR1 expression in the
brain largely mirrors that of MCH-containing axons.?®

MCH neurons receive and respond to a wide variety of signals
(Figure 4). They are depolarized by glutamate and hyperpolar-
ized by GABA.*%®” They express ionotropic «-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-
aspartate (NMDA) glutamate receptors, group I metabotropic
glutamate receptors®-*® and GABA-A receptors.8197,99,100 MCH
neurons express MCHR1 autoreceptors, but no effect of their
activation has been found.%101

In the LH, MCH neurons are intermingled with ORX neu-
rons. Orexin neurons possess the MCHR1 and its activation by
MCH peptide has an inhibitory effect.}> MCH neurons, in turn,
express orexin receptors whose activation depolarizes them,”
but orexin neurons also inhibit MCH neurons through excitation
of local GAD65 neurons.'%

MCH neurons receive dense inputs from other hypothala-
mic nuclei and neuronal populations, such as oxytocin and
vasopressin neurons in the paraventricular nucleus, POMC (Pro-
opiomelanocortin) neurons in the arcuate nucleus, and the
supraoptic nucleus.?? MCH neurons also receive projections
from NPY-producing neurons of the arcuate nucleus'® and
express NPY receptors,® but their effect is not clear.’®*” MCH
neurons also express the MC4R for «-MSH produced by POMC
neurons in the arcuate nucleus, but this receptor may not be
functional.”’

They also receive inputs from cerebral nuclei (bed nucleus
of the stria terminalis, nucleus accumbens, LS, and diago-
nal band nucleus), from the midbrain (VTA, reticular nucleus,
periaqueductal gray, nucleus raphe), and from cortical areas
(mostly hippocampus and amygdala nuclei).??% In vitro evi-
dence shows that noradrenaline (norepinephrine) hyperpo-
larizes MCH neurons through «2 adrenergic receptors, and
acetylcholine hyperpolarizes MCH neurons through its mus-
carinic receptors®®-%7:1% and both transmitters modulate synap-
tic inputs to MCH neurons.”’ Serotonin also hyperpolarizes MCH
neurons.” Dopamine also depresses MCH neuron activity.'”
These transmitters are involved in arousal, stress, attention,
memory, motivation, and reward. MCH neurons also interact
with opioids and cannabinoids in the LH'%®—where they have
indirect excitatory actions on MCH neurons by inhibiting local
GABAergic neurons!®—and in the nucleus accumbens,''® and
with thyrotropin-releasing hormone (TRH).!!?

MCH neurons also sense signaling molecules from the
periphery. They respond to physiological concentrations
of glucose by depolarizing?* and are affected—presumably
indirectly—by feeding-related hormones such as leptin and
insulin (see below).

MCH Neurons and Energy Balance

Energy homeostasis is the process through which energy stored
in the body is held constant over time, and for this the amount
of energy consumed and energy expended is made to match, by
integrating the body’s short-term and long-term energy needs.
The hypothalamus is a crucial regulator of this process, in which
MCH neurons take part among others.

Several peripheral signals act to regulate food intake and
energy expenditure: adiposity-related leptin secreted by the
adipose tissue, blood-glucose regulating insulin and glucagon
secreted from pancreatic cells, and meal-generated satiety sig-
nals secreted from the gut, such as CCK and ghrelin.?*® These
are transported into the brain through the blood-brain barrier
and exert their action especially in the hypothalamus, in several
nuclei and neuronal populations.

MCH neurons are considered “second order” feeding neurons
as they are under the control of “first order” arcuate nucleus
neurons, which receive direct signals from the periphery.'08.114
Arcuate POMC neurons, expressing alpha-melanocyte stimulat-
ing hormone («-MSH) and CART, signal satiety and inhibit food
intake and energy storage. Neighboring neurons containing neu-
ropeptide Y (NPY) and agouti-gene related peptide (AgRP) sig-
nal hunger and promote food intake and weight gain.!'> NPY-
AgRP are inhibited by leptin and insulin, whereas POMC neu-
rons are stimulated by them. Both populations send projec-
tions to MCH neurons, which, in turn, negatively regulate POMC
neurons.

It has emerged from various studies that MCH promotes
energy conservation and accumulation by increasing food
intake and reducing energy expenditure.!*¢1® Elevating MCH
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Figure 4. Neurotransmitters and neuropeptides acting on MCH neurons and their receptors (from Guyon et al.'?). MCH neurons respond to a wide variety of local and

long-range signaling molecules.

in the brain increases food intake®l:119122; gcute effects of ICV
MCH injection are washed out after 24h, while chronic infu-
sion increases food intake and body weight over time.'?* Both
acute and chronic ICV infusions of MCH in mice and rats lead
to hyperphagia,>!-11%-121,124,125 which persists even in obese ani-
mals.’?! Indeed, MCH levels are increased in most mouse mod-
els of obesity.'?6-1?8 Overexpression of MCH in transgenic mouse
models increases body weight and leads to obesity.'*® Con-
versely, pharmacological'?*132 or genetic inhibition of MCH or
blockade of MCHR18%:117:133-135 Jeads to weight loss in both lean
and obese mice, independently of food palatability.’*® Addi-
tionally, MCH neuron ablation reduces age-associated weight
gain.133.134

MCH neurons respond to and interact with several peripheral
feeding-related signals. They are stimulated by glucose?* and
regulate peripheral glucose homeostasis.'¥” Central infusion of
MCH induces glucose intolerance.'®:1% Glutamate signaling in
MCH neurons is necessary for the MCH-neuron-mediated effects
on glucose tolerance®® and mice with glucose-insensitive MCH
neurons have altered glucose tolerance.’®” Insulin, which stimu-
lates glucose uptake and metabolism and decreases food intake
and body weight when administered centrally, also modulates
MCH neurons, as they increase the level of MCH peptide
expression after insulin administration, and deletion of the
insulin receptor from these neurons improves insulin sensi-
tivity in obese mice.'® Chronic central administration of MCH
promotes insulin resistance via a mechanism that is indepen-
dent of weight gain.'®13° The MCH system interacts with lep-
tin, with several studies showing evidence of a negative interac-
tion between the two.1%8141-143 Additionally, estrogen has been

reported to regulate the orexigenic effect of MCH neurons, mak-
ing it sexually dimorphic.1#4147

MCH neurons interact with other neuronal populations
involved in the control of energy balance, both in the hypotha-
lamus and in the rest of the brain. Since LH ORX neurons have
an anorexigenic action''>> and engage in reciprocal inhibitory
circuits with MCH neurons,'® these two nutrient-sensing pop-
ulations are likely to generate an intra-LH circuit for antag-
onistic regulation of feeding and energy balance. Outside the
hypothalamus, MCH neurons project, among others, to reward
areas such as the VTA and nucleus accumbens (Nac).®>:%%:8° MCH
injection and antagonism in the Nac respectively increase and
decrease food intake.’®!> MCH activation is able to increase
preference for palatable foods'*® and rats fed a high-fat diet con-
tinue to show increased levels of MCH even after switching to a
standard diet.!®® Moreover, activation of MCH neurons alone is
rewarding and reinforces ongoing feeding.'®® These results have
led to the hypothesis that MCH neurons are involved in the moti-
vational components of feeding and food-seeking behaviors.
This function likely depends on an interaction with dopamine
in the Nac, as MCH-KO mice show increased dopamine release
and dopamine transporters expression’®”-1¢! and GABAergic
medium spiny neurons (MSNs)—the primary projection neurons
of the Nac—express the MCH-R1.162

MCH neurons are involved in the regulation of energy expen-
diture beyond feeding alone, regulating locomotion and thermo-
genesis. ICV injection of MCH in mice reduces energy expen-
diture'®® and genetic deletion of components of the MCH sys-
tem results in a lean phenotype with an increased metabolic
rate and increased oxygen consumption, independently of their
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diet.117,135,147,164 Additionally, deletion of the Pmch gene in obese
leptin-deficient mice results in a reduction of body weight due
to increased energy expenditure and locomotor activity.?®> MCH
neurons are polysynaptically connected to the BAT.%%:1% In mice,
ICV injection of MCH reduces thermogenesis of the BAT, reduc-
ing core body temperature'? and mice with MCH-R1 knockout
have a higher core body temperature.’®” MCH neurons thus pro-
mote energy saving by reducing locomotion and BAT thermo-
genesis. Additionally, activation of MCH signaling in the arcu-
ate nucleus favors fat storage in the white adipose tissue and
increases body weight independent of feeding.'** MCH also
induces adiposity by reducing sympathetic neural activity and
regulating liver metabolism.?4:138

Together, these studies show that MCH neurons are involved
in the control of energy homeostasis on multiple levels, by pro-
moting feeding and, possibly, the rewarding properties of food,
by promoting energy storage in the adipose tissue and by reduc-
ing energy expenditure. The latter function may be related to
their role in sleep and sleep transitions.

MCH Neurons and Sleep

In addition to the regulation of energy balance, MCH neurons
are involved in another homeostatic process: sleep. For some
time, they have been thought to only be active during sleep,%®
although now it is clear that they are also active during wake-
fulness.?240.61

Sleep is a highly conserved physiological state across ani-
mals, and it serves to provide rest, memory processing, and
recovery of all bodily systems. It is characterized by a decreased
muscle tone and an increased threshold for responsiveness to
stimuli. It has 2 main phases, non-rapid eye movements (NREM)
and rapid eye movements (REM ). In NREM sleep, brain activ-
ity as measured by electroencephalogram (EEG) is highly syn-
chronized, with high amplitude and low frequency. In REM sleep,
EEG activity appears similar to activity during wakefulness, with
low amplitude, high frequency, and general de-synchronization.
Several systems and neuronal types in the brain have been
found to regulate wake and sleep. The wake-promoting sys-
tem includes several areas in the ascending reticular activat-
ing system in the pons and midbrain—among which noradren-
ergic neurons in the LC and dopaminergic neurons of the VTA
and substantia nigra pars compacta (SNc)—and another group
of neurons in the forebrain—among which histaminergic neu-
rons in the TMN ORX neurons in the LH. The sleep-promoting
system includes GABAergic neurons in the thalamic reticular
nucleus, in the hypothalamic preoptic area (POA) and in the cor-
tex. Sleep onset is thought to be due to the accumulation of
various metabolites produced during wakefulness, which inacti-
vate wake-promoting neuronal populations and activate sleep-
promoting neuronal populations.'®®

MCH neurons appear to be sleep-promoting, as ICV injec-
tions of MCH peptide induce hypersomnia, with an increase in
REM and slow-wave sleep (a stage of NREM sleep).?%7" Mouse
models with deletions of components of the MCH system show
increased locomotor activity and wakefulness, especially dur-
ing the dark (active) phase.8083,117,133,135,140,162,164,172,173  Addj-
tionally, MCH neurons show activation during REM sleep?’417>
and after sleep rebound following sleep deprivation.170:176,177
Accordingly, in rodents MCH levels increase in the CSF during
the light (sleep) phase and decrease during the dark (active)
phase.'’® MCH axons and the MCH-R1 are present in brain

regions implicated in the control of sleep.®*’18° For exam-
ple, MCH neurons receive direct afferents from the hypothala-
mic suprachiasmatic nucleus (SCN), the master circadian pace-
maker,78'° and SCN neurons express MCH-R1.178180 Activa-
tion of the MCH system in several target sites also increases
the number and duration of REM sleep episodes.’®*183 Opto-
genetic activation of MCH neurons during NREM sleep facili-
tates the onset of REM sleep, while activation during REM sleep
extends the duration of REM sleep episodes.!®:18 Interestingly,
a recent study has found that MCH neurons regulate REM sleep
in response to ambient temperature.’®> The sleep-related func-
tions of MCH neurons are fine-tuned by local astrocytes,®
which modulate presynaptic glutamatergic transmission onto
MCH neurons in response to sleep deprivation.'®”

Together, these findings demonstrate an interaction between
MCH neurons and sleep systems, with a role for MCH neurons
especially in REM sleep. This sleep phase is important for mem-
ory consolidation,'®:18° therefore it might be one of the ways
through which MCH modulates learning and memory processes.

MCH Neurons and Learning

Living in a changing and partially unknown environment
requires behavioral adaptation. Upon specific events, new
behaviors must be learned, consolidated, stored, and then
recalled in response to specific stimuli. Therefore, learning and
memory processes are crucial for the survival of organisms.
Learning is the process of acquiring new knowledge about the
world, and memory is the process of retaining and reshaping
that knowledge over time.*°

Behavioral adaptation requires the integration of internal
and external signals, therefore learning in the brain needs to
be adapted to changing external variables, such as rewards,'*!
punishments, context, and internal variables such as nutritional
state,'®? attention, and motivation. Likewise, memory storage is
not a linear and fixed sequence of events but is the dynamic
outcome of several interacting processes—from initial acqui-
sition, to consolidation, retrieval, and integration with other
memories—and it is modulated by those variables. The biologi-
cal basis for learning and memory storage in the brain is synap-
tic plasticity, the ability of neurons to change the strength of
their synapses with use.'® Thus, memory storage does not need
to rely on specialized “storage neurons,” but rather the capacity
for storing memory is built into the architecture of neuronal cir-
cuits and is made possible by a plethora of cellular mechanisms
that allow synapses to strengthen and weaken in the short and
long term.'®

Accumulating evidence points to a role of MCH neurons in
the modulation of learning and memory (Figure 5), alongside
other hypothalamic populations, such as orexin and AgRP neu-
rons. 3 193-1% While the evolutionary reasons for the involve-
ment of a brain region devoted to homeostasis and survival, as
the hypothalamus, in learning and memory processes may not
appear obvious at first, recent evidence linking metabolism and
memory may help. In the Drosophila fruit fly, it has been found
that under conditions of starvation, the formation of long-term
memory is suppressed and the activity of neurons normally
underlying it is absent.’® Exogenously stimulating these neu-
rons restores long-term memory but reduces survival, providing
evidence that the brain coordinates memory processes, which
have a high energy cost, with metabolic needs to favor sur-
vival.'®? Additionally, fruit flies are able to form “metabolic mem-
ories,” which help balance food choice with caloric intake and



MCH neurons project
to brain regions involved
in learning and memory
(hippocampus, septum, amygdala...)
Early evidence:
LH lesions and
neurodegeneration

impair memory \

Enhance memory
in behavioral tasks
|n vivo

Increase hippocampal
transmission and favor

T UPinvito

=

Active during: exploration,
memory-forming experiences,
and REM sleep
(|nv0|ved in forgetting)

'\

Figure 5. Summary of evidence supporting a role of MCH neurons in cognitive
function, as suggested by early and recent studies.

the hypothalamus-like pars intercerebralis of the Drosophila
brain is necessary for this kind of learning.’®® High-fat diet,
which impairs this process in the fruit fly, also alters the expres-
sion of memory-related genes in the hypothalamus of mice,
suggesting that this structure may be involved in metabolism-
related learning also in mammals and that this learning may be
disrupted in obesity.'%

Early evidence for the involvement of the hypothalamus
in learning and memory dates back to the 60s and 70s. Rats
with lesions to the LH were unable to form a new associa-
tive memory, but retained an association formed before the
lesion.' Electrical stimulation of the LH after a learning task
was found to facilitate long-term memory,’® while LH lesion
impaired the formation of flavor-to-nutrient (appetitive) and
flavor-to-toxin (aversive) post-ingestive associations.'® On the
clinical side, “Alzheimer’s neurofibrillary changes” were found
in the hypothalamus and brainstem of “senile dementia,” ie
Alzheimer’s disease (AD), patients, in addition to the hippocam-
pus.?® Other, non-neurodegenerative, lesions in the hypothala-
mus are also associated with memory impairment?? (for more
information on MCH neurons and neurodegenerative disorders,
see below).

MCH neurons project to brain regions involved in learning
and memory, such as the hippocampal formation, subiculum,
cerebral cortex, basolateral amygdala, and shell of the nucleus
accumbens (Nac).6>:66:89.202 They were shown to be required for
learning to select nutrient-containing foods'*® and responding
to food cues?®® but also for non-food-related memory forma-
tion, such as object recognition,* and activation of MCH neu-
rons seems to enhance learning and memory processes.?04208
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MCH peptide was found to improve memory performance when
infused in the hippocampus and amygdala in rats®® and to
revert the amnesic effects of a nitric-oxide-synthase inhibitor,
a known disruptor of hippocampal plasticity.2’® In vitro, MCH
peptide applied to brain slices induces a dose-dependent and
long-lasting increase in hippocampal synaptic transmission.?"”
In hippocampal slices from rats injected with MCH and trained
in a memory task, the frequency threshold for the induction
of long-term potentiation (LTP) was found to be reduced and
expression of NMDA-receptor subunits important for plastic-
ity was increased.?8:210 Additionally, MCH peptide was found
to decrease hippocampal LTP thresholds by increasing synaptic
transmission.?%8:211 On the other hand, mice with a knock-out
of the MCHR1 show impairments in various behavioral learning
tasks,?+212 reduced expression of both AMPA?*3 and NMDA?%
glutamate receptors in the hippocampus and impaired LTP and
long-term depression.?!2,213

MCH neurons project to the hippocampus, specifically to
GABAergic basket cells, and they also innervate cholinergic neu-
rons of the medial septal nucleus, which, in turn, project to
the hippocampus.?’* Thus, MCH neurons communicate with
the hippocampus both directly and indirectly, and these cir-
cuits have been hypothesized to participate in the organiza-
tion of exploratory behavior during foraging, as the hippocam-
pus is well known to be crucial for spatial exploration and
memory. Additionally, they have been found to increase the
signal-to-noise ratio of the dorsolateral septum (dLS),?**> an out-
put structure of the hippocampus. This would allow hippocam-
pal cognitive maps to be transformed into behavioral actions,
and, indeed, enhancing MCH signaling in the dLS facilitates
hippocampal-dependent memory formation.?*>

MCH neurons themselves may also play a direct role in
exploratory behavior, as they have been found to be active espe-
cially when animals explore novel objects.?>?> MCH activity
during encounters with objects is higher if the object is novel
and decreases over time as the object becomes familiar.*° Opto-
genetic silencing of object associated MCH activity during ini-
tial exploration prevents the recognition of the object on sub-
sequent exposure, showing the necessity of MCH activity for
the acquisition of memory about the object.** MCH activity is
under inhibitory control of local hypothalamic GAD65 neurons,
whose silencing instead improves future object recognition.
These results suggest a role of MCH signaling as a “novelty sig-
nal” favoring memory acquisition.

MCH neurons have also been found to be endogenously
active during learning-driving aversive experience and this acti-
vation is necessary for a correct extinction of fear as, in its
absence, mice display overactive, relapsing fear behavior.?!¢ A
hallmark of pathological fear in human PTSD is the presence of
fear responses in safe situations erroneously perceived as dan-
gerous, due to inflexible coupling of cues which are no longer
predictive of danger to fearful behavioral responses.?’-?¥ Expo-
sure therapy is often not enough to provide a full recovery from
these fear responses??>-?22 and these results closely mirror this
phenomenon with silencing of MCH neurons during the initial
aversive experience. Therefore, this can be used as an animal
model for dysfunctional safety learning without disruption of
the initial and useful fear learning. In this study,?!® as in the
study investigating MCH function during novel object explo-
ration,*° the activity of MCH neurons during the early stages of
a sensory experience determines whether the memory of that
experience is correctly expressed behaviorally later on. Together,
they point to an important role of MCH neurons in memory
updating.
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More recently, MCH activity has been found to co-occur with
and to specifically drive events of self-paced exploratory rear-
ing in mice,?” an innate behavior during which animals stand
on their hind legs to sample the environment.??* This find-
ing opens the possibility that MCH neurons participate in the
active seeking of novel information, in addition to processing
it for storage in memory and future retrieval. Furthermore, LC
noradrenergic (LC-NA) neurons—classically involved in stress
responses??>??’—have been found to inhibit MCH neurons and
thus impair exploratory rearing,??* thus providing a mechanistic
substrate for the reduction of exploration under stressful condi-
tions.??®

Whether wake-active and REM-sleep-active MCH neurons
constitute two functionally separate subpopulations is still not
fully elucidated, as one study reported a 70% overlap,'’> while
another reported that only a minority of recorded MCH neu-
rons were active during both wakefulness and REM sleep??
(these differences could be due, for example, to recording MCH
neurons in slightly different anatomical locations). Although
most studies on MCH neuron function in learning and mem-
ory processes suggest that they facilitate memory formation
(including hippocampus-dependent forms of memory), a recent
study has reported that inhibition of MCH neurons active during
REM-sleep facilitates the retention of hippocampus-dependent
memory,?? therefore proposing that REM-active MCH neurons
favor hippocampal forgetting (or disrupt hippocampal consoli-
dation?®®) during sleep.??® An explanation for these apparently
conflicting results could be that MCH neurons are indeed func-
tionally separated into wake-active and sleep-active, and the
former facilitate memory formation while the latter facilitate
instead memory erasure. Alternatively, it is possible that MCH
neurons themselves do not drive plasticity processes towards
a specific direction, but rather function as generic “eligibility
trace” for plasticity, facilitating either potentiation or depotenti-
ation depending on other incoming inputs, promoting memory
updating in general.?®° In this case, the exact timing and context
of MCH manipulations (activation/inactivation) during behav-
ioral experiments would be crucial in determining the outcome
on learning and memory processes.

MCH System and Cognitive Decline: Alzheimer’s and
Parkinson’s Diseases

AD patients show neurofibrillary degeneration in the LH?? and
MCH neurons show aggregates in AD, which, together with loss
of ORX neurons, may underlie the sleep disturbances associ-
ated with this pathology.?3? In scopolamine-induced memory
impaired mice and in AD mouse models, nasal cavity admin-
istration of MCH peptide improved memory impairments and
reduced amyloid beta in AD mice.?

Some Current Questions

Although causal evidence is accumulating that MCH neurons
control cognition, many key questions remain, some of which
we highlight here.

First, which actions of MCH neurons are mediated by
the MCH neuropeptide vs GABA/glutamate that they also co-
release? In some cases, this has been probed by antagonists, and
the data suggest that key actions of MCH neurons indeed rely
on MCH peptide. This could be probed further by targeted, and
preferably conditional/inducible, knockout of MCH receptors in
specific neurons.

Second, are “sleep” and “wake” MCH neurons the same or
different subsets of neurons? This is a point of current debate:
Some studies indicated that a major subset of MCH cells active
during sleep are also active during exploration,'’> but others find
that sleep and wake MCH cells are separate.??

Third, is cognitive modulation by MCH neurons related to (or
even explained by) their role in arousal/sleep? In other words,
is sleep-promotion the primary role of MCH cells, and do their
other impacts arise secondarily to that? If this is the case, then
awake activity dynamics of MCH cells should be inversely corre-
lated with arousal dynamics. This remains to be directly tested.

Finally, are the “classic” functions of MCH in feeding and
energy balance separate from their “new” functions in cognitive
control? This is not necessarily so, since much of cognitive con-
trol presumably evolved to facilitate survival, and energy opti-
mization (eating, metabolism) is a critical element of survival.
Therefore, it is possible that the energy and cognition roles of
MCH neurons are tied together to facilitate integrated control of
cognition and energy balance. There are some recent indications
about how some elements of this might work,>*:160,203,234.235 py ¢
an integrated model accounting for all findings remains to be
produced.
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