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Abstract 

Modern neuroscience is progressively elucidating that the classic view positing distinct brain regions responsible for 
survi v al, emotion, and cogniti v e functions is outdated. The hypothalamus demonstrates the interdependence of these 
roles, as it is traditionally known for fundamental survival functions like energy and electrolyte balance, but is now 

recognized to also play a crucial role in emotional and cognitive processes. This re vie w focuses on lateral hypothalamic 
melanin-concentrating hormone (MCH) neurons, producing the neuropeptide MCH—a relatively understudied neuronal 
population with inte gr ati v e functions related to homeostatic regulation and motivated behaviors, with widespread inputs 
and outputs throughout the entire central nervous system. Here, we re vie w early findings and recent literature outlining 
their role in the regulation of energy balance, sleep, learning, and memory processes. 
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“ T hose who stud y the h ypothalam us ha ve a some w hat larger com- 
mission than dealing with its role in maintaining the physical 
functions of the body. Man possesses a complexity of charac- 
teristics and behavior that is of an order quite different from 

contraction, secretion, digestion, metabolism, r epr oduction and adapta- 
tion, though related to all of these. That relationship is the mystery. ” 1 
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Figure 1. Conce ptual r e pr esentation of the nerv ous system as the central r egu- 

lator of internal and external inputs and outputs (r e pr oduced with permission 
fr om Br ooks 1 ). The hypothalam us is a structur e uniquel y positioned to fulfil this 
role. 
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Figure 2. Simplified r e pr esentation along the antero-posterior and medio-lateral 
axes of the organization and functions of hypothalamic nuclei, including home- 
ostatic functions and moti v ated behaviors (r e pr oduced with permission from 

Sternson 5 ). 

 

b  

c  

o  

t  

s

m  

a  

a  

i  

s  

m  

a  

i  

i  

r  

(  

o  

c  

t  

m  

b
 

b  

n  

c  

r  

a  

g

T

M  

L  

f  

n  

r  

s  

t  

h  

t  

a

An influential theory of the past, which has attempted to
o so has been the “triune brain” theory, de veloped b y Paul
cLean and posing that the brain is composed by three dis-

inct structures, which evolved separately and function inde-
endently. The oldest part is the “reptilian brain,” which consists
f the ventral-most brain structures such as the basal ganglia
nd the brainstem, and is r esponsib le for the basic, instinctual,
nd stereotyped behaviors and functions essential for survival.
he second structure is the limbic system, inv olv ed in emotional
 esponses and r e pr esenting an ev olutionar y pr ogr ess fr om r e p-
iles to mammals. The third, most recent structure and promi-
ent in humans is the cortex, inv olv ed in mor e sophisticated

unctions such as cognition, reasoning, planning, and rational
ecision-making. 2–4 

Today, this theory is outdated, 3 as we now know that the
rain did not ev olv e in sta ges, but rather that all brain structures
r e shar ed among v ertebrates with differ ences in pr oportion.
dditionall y, brain structur es do not function inde pendentl y,
nd neither are survival, emotion, and cognition se para b le brain
unctions. Finally, the brain does not function solely by react-
ng to stimuli, instead, it continuously predicts and adjusts to
he ever-changing internal and external factors, optimizing its
esponses to the environment both inside and outside the body. 3 

One anatomically defined region of the brain, the hypothala-
us, exemplifies how survival, emotion, and cognition are inter-

ependent in the brain. It has been known for a long time to
nderlie fundamental homeostatic functions, essential for the
urvi v al of the individual and the species, like energy balance,
lectr ol yte balance, endocrine function, and r e pr oduction. Ov er
ime, it has become incr easingl y clear er that it is essential also
or emotional and cogniti v e functions ( Figure 1 ). 

This re vie w focuses on how a genetically defined neuronal
opulation in the hypothalamus, named melanin-concentrating 
ormone (MCH) neurons, in addition to energy homeostasis and
lee p, contr ols cogniti v e and emotional pr ocesses. 

 he Hypothalam us 

“ This bit of brain, 4 grams in weight, integrates almost all higher physi- 
ological functions .” 

Fred Plum and Robert Van Uitert, 1978 
The hypothalamus is a heterogeneous region located at the
ase of the brain, which controls a variety of physiological pro-
esses essential for survi v al, such as feeding and energy home-
stasis, thirst and osmotic homeostasis, hormone release, body
emper ature , sleep, locomotion, and basic social behaviors like
exual and r e pr oducti v e behavior, escape and a ggr ession. 

It is an ancient and conserv ed structur e of the forebrain, 6 , 7 

ade up of several nuclei and neuronal populations, which
ct as internal sensors (inter oce ptors) of homeostatic states
nd or c hestr ate the essential behaviors aimed at counteract-
ng needs, 5 such as foraging and consuming food when in a
tate of energy de pri v ation ( Figur e 2 ). Neur ons in the hypothala-
us sense and respond to internal signals (hormones, nutrients,

nd other molecules) and initiate complex, moti v ated behav-
ors when stimulated e xo genously, as shown in classical stud-
es. 5 More recently, it has been shown that hypothalamic neu-
 ons not onl y r espond to internal stim uli on a slow timescale
minutes, hours), but are also responsive to external stimuli
n a faster timescale (seconds). 8 The latter are environmental
ues used to pr edict futur e homeostatic needs and to or c hes-
rate complex behaviors flexib l y and depending on environ-

ental context—as opposed to the generation of stereotyped
ehaviors. 9 , 10 

The hypothalam us contr ols the autonomic nerv ous system
y innervating autonomic preganglionic neurons and various
uclei in the brainstem that control autonomic reflexes. 10 It
ontrols the endocrine system directly through groups of neu-
ons that connect to the anterior and posterior pituitary gland
nd indir ectl y thr ough autonomic innerv ation of endocrine
lands. 10 

 he La ter al Hypothalamic Area (LH or LHA) 

any structural and functional studies support a role of the
H in the control of feeding behavior, 11 arousal, 12 , 13 and rein-
orcement pr ocesses—earl y lesion studies showed that the LH is
ecessary for feeding behavior, while electrical self-stimulation
 ev ealed the LH as one of the brain areas supporting the
tr ongest self-stim ulation. 14–16 The LH has extensi v e connec-
ions with the brainstem and hypothalamic areas that process
omeostatic signals from the body, and with forebrain cogni-

i v e and hedonic systems and areas mediating stress, anxiety,
rousal, and sleep. 17 
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Figure 3. Amino-acid sequence and structure of the mammalian MCH peptide 
after precursor processing. 
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The LH has two main non-ov erlapping neur onal popula- 
ions, unique to the LH and defined by their neur ope ptides: 
r exin/hypocr etin (ORX) neur ons and MCH neur ons. Other, less 
 ell-c har acterized cell types are also present in the LH, such 

s GAD65 neurons, 18 Trh-expressing, and Sst-expressing neu- 
 ons. 19 Additionall y, other neur otransmitter markers (glutamate 
nd glutamate transporters, gamma-aminobutyric acid (GABA) 
ransporters), 20 neur ope ptides [cocaine- and amphetamine- 
e gulated tr anscript (C ART), d ynorphin, nesfatin], and r ece ptors 
le ptin r ece ptor) ar e expr essed and/or co-r eleased by LH neur ons
o various degrees. 19 , 21 

ORX and MCH neur ons ar e thought to have opposing roles 
n arousal and feeding, as they show r ecipr ocal acti vity pr o- 
les 22 and are differently modulated by glucose. 23 , 24 However, 
hey show similarities in that both neuronal types have brain- 
ide inputs and outputs, not only to r egions r egulating feeding 

nd arousal, but also locomotion, cognition, and reward. 22 , 25 , 26 

ORX neur ons ar e identified by the expr ession of the neu- 
 ope ptide or e xin, which has an e xcitatory action on postsynap- 
ic neurons. 27–29 Additionally, they express and release gluta- 

ate. 20 They are known to promote stable wakefulness, 30 , 31 as 
heir loss results in narcolepsy, a sleep disorder. 32–34 They also 

ediate feeding, 35 and control behavior under situations of high 

oti v ational r elev ance. 36 Mor e r ecentl y, the y ha ve also been
ound to be inv olv ed in locomotion 

37 and cognition. 38 

GAD65 neur ons ar e inhibited by glucose 18 and are active dur- 
ng slee p. 39 Locall y, they synapse onto neighboring MCH neu- 
 ons 40 and ar e acti v ated by ORX neur ons. 41 They likel y partici-
ate in GABAergic LH projections to more distant brain regions, 
uch as the ventral tegmental area (VTA). 42 

MCH neur ons ar e the focus of this re vie w and are covered 

or e extensi v el y below. 

he MCH System 

arly Findings 

he MCH peptide was first isolated from the pituitary of teleost 
sh, where it is secreted in circulation and causes the con- 
entration of melanin granules in the scales, thus determining 
olor change in response to the environment. 43 Subsequently, 
t was found in the hypothalamus 44 of rodents and humans 45 

and in some peripheral tissues, 46 see the section “Functions— 

verview”). The mammalian MCH peptide ( Figure 3 ) consists 
f 19 amino acids, encoded by the Pmch gene, which gi v es 
ise to a longer precursor peptide (165 amino acids), prepro- 
CH. The Pmch gene is highl y conserv ed between teleost fish 

nd mammals and the MCH peptide is identical in all mam- 
als analyzed so far. 47 , 48 In contrast to fish, MCH in the mam- 
alian brain is found in the LH and zona incerta (or incerto- 

ypothalamic area). 26 In spite of slight differences in localiza- 
ion, in all vertebrates analyzed, MCH has been found exclu- 
i v el y in the hypothalamus or homologous structures. 47 Alterna- 
i v e pr ocessing of the pr e pr o-MCH pr ecursor generates 2 other
eptides, NGE and NEI, 49 the function of which is not well 
nown. 26 

unctions—Overview 

he MCH system is implicated in a variety of processes within 

he central nervous system (CNS). This ubiquitous peptide acts 
s an important neuromodulator for the organism’s homeo- 
tatic balance, acting over a large spectrum of inte gr ati v e func- 
ions, especially those related to homeostatic regulation and 
oti v ated behaviors. Early evidence implicated the MCH pep- 
ide in the regulation of feeding behavior, finding its expression 

ncreased after fasting 50 , 51 and intracer ebr ov entricular (ICV) 
njection of MCH increased food consumption. 51 Later, MCH 

eptide has also been found to be implicated in sleep 

52 and, 
or e r ecentl y, learning and plasticity processes, emotion, 53–55 

nd r e pr oduction. 56 , 57 The MCH system has also been found 

o have a role in the periphery: in the gut, 54 , 58 in pancreatic 
slet function, 59 in brown adipose tissue (BAT), 60 , 61 and in the 
mmune system, 62 , 63 and to exert neuroendocrine actions 64 in 

ddition to non-neuroendocrine roles. MCH neurons project 
idel y thr oughout the brain 

65 , 66 and r ecei v e inputs fr om sev eral
r ain re gions. 22 

ransmitters and Receptors Involved in the MCH 

ystem 

he MCH peptide has 2 known G-protein coupled receptors: 
CHR1, 67–71 found in all vertebrates, and MCHR2, found in pri- 
ates and carni v or es but not in rodents. 72 , 73 The two recep-

ors ar e highl y homologous 48 and both ar e found pr edomi-
antl y expr essed in the brain compar ed to other tissues. 73–77 

he binding of MCH peptide to MCHR1 can acti v ate G i/o cou-
led pathways, which decrease intracellular cAMP levels and 

re associated with neuronal inhibition, but also G q coupled 

athways, which lead to an increase in intracellular Ca 2 + levels 
nd are associated with neuronal activation. Instead, activation 

f MCHR2 causes exclusi v el y incr ease in intracellular Ca 2 + lev-
ls through Gq 

73 , 75 pathw ays. Most r odent studies on the func- 
ions of the MCH system onl y inv olv e MCHR1, due to the lack
f MCHR2. A mouse model engineered to express MCHR2 under 
he promoter of MCHR1 showed protection against diet-induced 

besity by reducing feeding, 78 an effect similar to MCHR1. How- 
ver, additional studies are needed to fully elucidate the phys- 
ological role of MCHR2. MCH peptide itself has been reported 

o have mainly inhibitory effects on other hypothalamic neuron 

ypes. 79 

As many other neuron types, 20 MCH neurons likely co- 
elease other neurotransmitter molecules in addition to MCH 

eptide. This is suggested by differences in the phenotypes of 
nimal models lacking the MCH gene (MCH-KO mice) compared 
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o those lacking MCH neurons altogether (MCH-ablated mice),
s is the case for glucose tolerance profiles. 80 Evidence for the
elease of both classic neurotransmitters glutamate and GABA
r om MCH neur ons and the pr esence of their molecular machin-
ry in MCH neurons 81 , 82 has been reported. A study 83 found
hat nearly all MCH neurons express the glutamate transporter
Glut2 and that its knockout leads to a phenotype partially
verlapping but different from the knockout of MCH peptide.
nother study 84 r e ported that a small subset (a bout 5%) of MCH

erminals projecting to the locus coeruleus (LC) contains the
achiner y for GABA r elease and tr ansmission. F inally, it has also

een r e ported that MCH terminals pr ojecting to the lateral sep-
um (LS)—a site of v er y dense MCH innerv ation—r elease gluta-

ate. 85 

MCH neurons also express the CART peptide and endo-
annabinoids, but this is not a specific c har acteristic of MCH
eurons, since these molecules are expressed by several neu-
onal populations in the hypothalamus 86 and in the rest of the
rain. 87 , 88 

nputs and Outputs of MCH Neurons 

CH neur ons send extensi v e pr ojections to most brain ar eas,
ota b l y the cortex, the olfactory areas, the hippocampal for-
ation, the septal nuclei, the amygdala, the nucleus accum-

ens, the LC, the raphe and nuclei of the reticular formation,
nd the spinal cord. 89 Intra-hypothalamic MCH projections tar-
et the arcuate nucleus, dorsomedial hypothalamus, lateral and
osterior hypothalamus and tuberomammillary nuclei (TMN). 89 

CH axons also contact the median eminence (ME), 90 which is
n interface between the CNS and the periphery and a major
ite of blood-brain barrier permeability. Additionally, MCH neu-
 ons hav e been h ypothesized to interact with tan ycytes, 149 elon-
ated cells in the ME and third ventricle which control the
 lood-hypothalam us barrier and, ther efor e, the entr y of periph-
ral signals into the hypothalam us. 150–152 MCH pe ptide has been
hown to affect the beating frequency of cilia on ependymo-
ytes 91 , 92 , 148 and to regulate the permeability of the blood–brain
arrier by controlling microvessel fenestration and facilitating

eptin action in the arcuate n ucleus. 93 Additionall y, MCH pe p-
ide itself is released in the cerebrospinal fluid (CSF), thus poten-
iall y r eaching non-synapticall y connected brain r egions, which
as been shown to be one of the routes for its regulation of feed-

ng. 94 MCH may act through non-synaptic communication also
n the brain itself, as the expression of MCHR1 has been found
ssociated to a subcellular structure called the primary cilium,
hich is inv olv ed in the detection of neurochemical messengers

n the extracellular space. 95 In general, MCHR1 expression in the
rain largely mirrors that of MCH-containing axons. 26 

MCH neur ons r ecei v e and r espond to a wide variety of signals
 Figure 4 ). They are depolarized by glutamate and hyperpolar-
zed by GABA. 96 , 97 They express ionotropic α-amino-3-hydroxy- 
-methyl-4-isoxazole pr opionic acid (AMPA) and N-methyl-D- 
spartate (NMDA) glutamate r ece ptors, gr oup I meta botr opic
lutamate r ece ptors 97 , 98 and GABA-A r ece ptors. 81 , 97 , 99 , 100 MCH
eur ons expr ess MCHR1 autor ece ptors, but no effect of their
cti v ation has been found. 96 , 101 

In the LH, MCH neur ons ar e intermingled with ORX neu-
 ons. Or exin neur ons possess the MCHR1 and its acti v ation by
CH peptide has an inhibitory effect. 102 MCH neurons, in turn,

xpr ess or exin r ece ptors whose acti v ation de polarizes them, 97 

ut orexin neurons also inhibit MCH neurons through excitation
f local GAD65 neurons. 103 
MCH neur ons r ecei v e dense inputs fr om other hypothala-
ic nuclei and neuronal populations, such as oxytocin and
 asopr essin neur ons in the parav entricular n ucleus, POMC (Pr o-
piomelanocortin) neurons in the arcuate nucleus, and the
upraoptic n ucleus. 22 MCH neur ons also r ecei v e pr ojections
r om NPY-pr oducing neur ons of the arcuate n ucleus 104 and
xpr ess NPY r ece ptors, 81 but their effect is not clear. 96 , 97 MCH
eur ons also expr ess the MC4R for α-MSH pr oduced by POMC
eurons in the arcuate nucleus, but this r ece ptor may not be

unctional. 97 

They also r ecei v e inputs from cerebral nuclei (bed nucleus
f the stria terminalis, nucleus accumbens, LS, and diago-
al band n ucleus), fr om the midbrain (VTA, reticular nucleus,
eriaqueductal gray, nucleus raphe), and from cortical areas

mostly hippocampus and amygdala nuclei). 22 , 105 In vitro evi-
ence shows that noradr enaline (nor e pine phrine) hyperpo-

arizes MCH neurons through α2 adrenergic receptors, and
cetylcholine hyperpolarizes MCH neurons through its mus-
arinic r ece ptors 96 , 97 , 106 and both transmitters modulate synap-
ic inputs to MCH neurons. 97 Serotonin also hyperpolarizes MCH
eurons. 97 Dopamine also depresses MCH neuron activity. 107 

hese transmitters are involved in arousal, stress, attention,
emor y, moti v ation, and r ew ard. MCH neur ons also interact
ith opioids and cannabinoids in the LH 

108 —where they have
ndir ect excitator y actions on MCH neur ons by inhibiting local
ABAergic neurons 109 —and in the nucleus accumbens, 110 and
ith thyr otr opin-r eleasing hormone (TRH). 111 

MCH neurons also sense signaling molecules from the
eriphery. They respond to physiological concentrations
f glucose by depolarizing 24 and are affected—presumably

ndir ectl y—by feeding-r elated hormones such as le ptin and
nsulin (see below). 

CH Neurons and Energy Balance 

nergy homeostasis is the process through which energy stored
n the body is held constant over time, and for this the amount
f energy consumed and energy expended is made to match, by

nte gr ating the body’s short-term and long-term energy needs.
he hypothalamus is a crucial regulator of this process, in which
CH neurons take part among others. 

Sever al peripher al signals act to re gulate food intake and
nergy expenditure: adiposity-related leptin secreted by the
dipose tissue, blood-glucose regulating insulin and glucagon
ecr eted fr om pancr eatic cells, and meal-generated satiety sig-
als secr eted fr om the gut, such as CCK and ghrelin. 113 These
re transported into the brain through the blood–brain barrier
nd exert their action especially in the hypothalamus, in several
uclei and neuronal populations. 

MCH neur ons ar e consider ed “second order” feeding neurons
s they are under the control of “first order” arcuate nucleus
eur ons, which r ecei v e dir ect signals fr om the peripher y. 108 , 114 

rcuate POMC neurons, expressing alpha-melanocyte stimulat-
ng hormone ( α-MSH) and CART, signal satiety and inhibit food
ntake and energy stor age . Neighboring neurons containing neu-
 ope ptide Y (NPY) and a gouti-gene r elated pe ptide (AgRP) sig-
al hunger and promote food intake and weight gain. 115 NPY-
gRP are inhibited by leptin and insulin, whereas POMC neu-
 ons ar e stim ulated by them. Both populations send projec-
ions to MCH neurons, which, in turn, negati v el y r egulate POMC
eurons. 

It has emerged from various studies that MCH promotes
nergy conservation and accumulation by increasing food
ntake and reducing energy expenditure. 116–118 Elevating MCH
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Figure 4. Neurotransmitters and neuropeptides acting on MCH neurons and their receptors (from Guyon et al. 112 ). MCH neurons respond to a wide variety of local and 

long-range signaling molecules. 
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n the brain increases food intake 51 , 119–122 : acute effects of ICV 

CH injection ar e w ashed out after 24 h, while chr onic infu- 
ion increases food intake and body weight over time. 123 Both 

cute and chronic ICV infusions of MCH in mice and rats lead 

o hyperphagia, 51 , 119–121 , 124 , 125 which persists even in obese ani- 
als. 121 Indeed, MCH levels are increased in most mouse mod- 

ls of obesity. 126–128 Ov er expr ession of MCH in transgenic mouse 
odels increases body weight and leads to obesity. 116 Con- 
 ersel y, pharmacological 129–132 or genetic inhibition of MCH or 
lockade of MCHR1 80 , 117 , 133–135 leads to weight loss in both lean 

nd obese mice, inde pendentl y of food palatability. 136 Addi- 
ionall y, MCH neur on a b lation r educes a ge-associated weight 
ain. 133 , 134 

MCH neur ons r espond to and interact with sev er al peripher al 
eeding-related signals. They are stimulated by glucose 24 and 

e gulate peripher al glucose homeostasis. 137 Centr al infusion of 
CH induces glucose intoler ance . 138 , 139 Glutamate signaling in 

CH neur ons is necessar y for the MCH-neur on-mediated effects 
n glucose tolerance 83 and mice with glucose-insensiti v e MCH 

eur ons hav e alter ed glucose toler ance . 137 Insulin, whic h stimu- 
ates glucose uptake and metabolism and decreases food intake 
nd body weight when administered centrally, also modulates 
CH neurons, 140 as they increase the level of MCH peptide 

xpression after insulin administration, and deletion of the 
nsulin r ece ptor fr om these neur ons impr ov es insulin sensi- 
ivity in obese mice. 140 Chronic centr al administr ation of MCH 

r omotes insulin r esistance via a mechanism that is indepen- 
ent of weight gain. 134 , 139 The MCH system interacts with lep- 
in, with several studies showing evidence of a negati v e interac- 
ion between the two. 108 , 141–143 Additionally, estrogen has been 
 e ported to r egulate the or exigenic effect of MCH neur ons, mak-
ng it sexually dimorphic. 144–147 

MCH neurons interact with other neuronal populations 
nv olv ed in the control of energy balance, both in the hypotha-
amus and in the rest of the brain. Since LH ORX neurons have
n anorexigenic action 

153–155 and engage in reciprocal inhibitory 
ircuits with MCH neurons, 103 these two nutrient-sensing pop- 
lations ar e likel y to gener ate an intr a-LH cir cuit for antag-
nistic regulation of feeding and energy balance. Outside the 
ypothalam us, MCH neur ons pr oject, among others, to r ew ard
reas such as the VTA and nucleus accumbens (Nac). 65 , 66 , 89 MCH 

njection and antagonism in the Nac respectively increase and 

ecrease food intake. 156 , 157 MCH activation is able to increase 
r efer ence for palata b le foods 158 and rats fed a high-fat diet con-
inue to show increased levels of MCH even after switching to a 
tandard diet. 159 Mor eov er, acti v ation of MCH neur ons alone is
 ew arding and r einforces ongoing feeding. 160 These r esults hav e
ed to the hypothesis that MCH neurons are involved in the moti- 
ational components of feeding and food-seeking behaviors. 
his function likely depends on an interaction with dopamine 

n the Nac, as MCH-KO mice show increased dopamine release 
nd dopamine transporters expression 

157 , 161 and GABAergic 
edium spiny neurons (MSNs)—the primary projection neurons 

f the Nac—express the MCH-R1. 162 

MCH neur ons ar e inv olv ed in the r egulation of energy expen-
iture beyond feeding alone, regulating locomotion and thermo- 
enesis. ICV injection of MCH in mice reduces energy expen- 
iture 163 and genetic deletion of components of the MCH sys- 
em results in a lean phenotype with an increased metabolic 
ate and increased oxygen consumption, independently of their 

art/zqad059_f4.eps


6 FUNCTION , 2023, Vol. 5, No. 1 

d  

l  

t  

n  

I  

i  

h  

m  

g  

a  

i  

i  

r
 

i  

m  

b  

i  

t

M

I  

a  

t
a  

f
 

m  

r  

m  

s  

a  

i  

c  

E  

l  

S  

f  

t  

i  

e  

a  

o  

r  

s  

n  

t  

v  

v  

p
 

t  

R  

m  

i  

i  

t
a
A  

t  

p  

r  

p  

m  

m  

t  

t  

g  

t  

e  

a  

i  

t
w  

M
 

M  

e  

o  

t  

M

L  

r  

b  

r  

m  

L  

w  

t
 

a  

b
p  

s  

n  

o  

s  

m  

c  

t  

t  

t  

f  

c  

t  

l
 

t  

o  

r  

m  

t  

a  

m  

t  

m  

u  

r  

e  

h  

v  

o  
iet. 117 , 135 , 147 , 164 Additionally, deletion of the Pmch gene in obese
e ptin-deficient mice r esults in a r eduction of body weight due
o increased energy expenditure and locomotor activity. 165 MCH
eur ons ar e pol ysynapticall y connected to the BAT. 60 , 166 In mice,

CV injection of MCH reduces thermogenesis of the BAT, reduc-
ng core body temperature 125 and mice with MCH-R1 knockout
ave a higher core body temper ature . 167 MCH neurons thus pro-
ote energy saving by reducing locomotion and BAT thermo-

enesis. Additionall y, acti v ation of MCH signaling in the arcu-
te n ucleus fav ors fat stora ge in the white adipose tissue and
ncreases body weight independent of feeding. 124 MCH also
nduces adiposity by reducing sympathetic neural activity and
 egulating li v er meta bolism. 124 , 138 

Together, these studies show that MCH neurons are involved
n the control of energy homeostasis on multiple le vels, b y pro-

oting feeding and, possib l y, the r ew arding pr operties of food,
y promoting energy storage in the adipose tissue and by reduc-
ng energy expenditure. The latter function may be related to
heir role in sleep and sleep transitions. 

CH Neurons and Sleep 

n addition to the regulation of energy balance, MCH neurons
r e inv olv ed in another homeostatic pr ocess: slee p. For some
ime, they have been thought to only be active during sleep, 168 

lthough now it is clear that they are also acti v e during w ake-
ulness. 22 , 40 , 61 

Sleep is a highly conserved physiological state across ani-
als, and it serves to provide rest, memory processing, and

 ecov er y of all bodily systems. It is c har acterized by a decreased
uscle tone and an increased threshold for responsiveness to

timuli. It has 2 main phases, non-rapid eye movements (NREM)
nd r apid ey e mov ements (REM ). In NREM slee p, brain acti v-
ty as measured by electroencephalogram (EEG) is highly syn-
hronized, with high amplitude and lo w frequenc y. In REM sleep ,
EG activity appears similar to activity during wakefulness, with
ow amplitude, high frequency, and general de-synchronization.
everal systems and neuronal types in the brain have been
ound to regulate wake and sleep. The wake-promoting sys-
em includes sev eral ar eas in the ascending reticular activat-
ng system in the pons and midbrain—among which noradren-
rgic neurons in the LC and dopaminergic neurons of the VTA
nd substantia nigra pars compacta (SNc)—and another group
f neurons in the forebrain—among which histaminergic neu-
ons in the TMN ORX neurons in the LH. The slee p-pr omoting
ystem includes GABAergic neurons in the thalamic reticular
ucleus, in the hypothalamic preoptic area (POA) and in the cor-
ex. Sleep onset is thought to be due to the accumulation of
 arious meta bolites pr oduced during w akefulness, which inacti-
 ate w ake-pr omoting neur onal populations and acti v ate slee p-
r omoting neur onal populations. 169 

MCH neurons appear to be sleep-promoting, as ICV injec-
ions of MCH peptide induce hypersomnia, with an increase in
EM and slow-w av e slee p (a sta ge of NREM slee p). 170 , 171 Mouse
odels with deletions of components of the MCH system show

ncr eased locomotor acti vity and w akefulness, especiall y dur-
ng the dark (acti v e) phase. 80 , 83 , 117 , 133 , 135 , 140 , 162 , 164 , 172 , 173 Addi-
ionall y, MCH neur ons show acti v ation during REM slee p 

174 , 175 

nd after sleep rebound following sleep deprivation. 170 , 176 , 177 

ccordingly, in rodents MCH levels increase in the CSF during
he light (sleep) phase and decrease during the dark (active)
hase. 178 MCH axons and the MCH-R1 are present in brain
egions implicated in the control of sleep. 65 , 71 , 89 For exam-
le, MCH neur ons r ecei v e dir ect affer ents fr om the hypothala-
ic supr ac hiasmatic nucleus (SCN), the master circadian pace-
aker, 178 , 179 and SCN neurons express MCH-R1. 178 , 180 Activa-

ion of the MCH system in several target sites also increases
he number and duration of REM sleep episodes. 181–183 Opto-
enetic acti v ation of MCH neur ons during NREM slee p facili-
ates the onset of REM sleep, while activation during REM sleep
xtends the duration of REM slee p e pisodes. 181 , 184 Inter estingl y,
 recent study has found that MCH neur ons r egulate REM slee p
n response to ambient temper ature . 185 The slee p-r elated func-
ions of MCH neur ons ar e fine-tuned by local astrocytes, 186 

hich modulate presynaptic glutamatergic transmission onto
CH neurons in response to sleep deprivation. 187 

Together, these findings demonstrate an inter action betw een
CH neurons and sleep systems, with a role for MCH neurons

speciall y in REM slee p. This slee p phase is important for mem-
ry consolidation, 188 , 189 ther efor e it might be one of the ways
hrough which MCH modulates learning and memory processes.

CH Neurons and Learning 

iving in a changing and partially unknown environment
 equir es behavioral adaptation. Upon specific events, new
ehaviors must be learned, consolidated, stored, and then
 ecalled in r esponse to specific stim uli. Ther efor e, learning and

emor y pr ocesses ar e crucial for the survi v al of organisms.
earning is the process of acquiring new knowledge about the
orld, and memory is the process of retaining and reshaping

hat knowledge over time. 190 

Behavioral adaptation r equir es the inte gr ation of internal
nd external signals, ther efor e learning in the brain needs to
e adapted to changing external v aria b les, such as r ew ards, 191 

unishments, context, and internal v aria b les such as nutritional
tate, 192 attention, and moti v ation. Likewise, memor y stora ge is
ot a linear and fixed sequence of events but is the dynamic
utcome of several interacting pr ocesses—fr om initial acqui-
ition, to consolidation, r etriev al, and inte gr ation with other
emories—and it is modulated by those v aria b les. The biologi-

al basis for learning and memor y stora ge in the brain is synap-
ic plasticity, the ability of neurons to change the strength of
heir synapses with use. 190 Thus, memory storage does not need
o r el y on specialized “stora ge neur ons,” but rather the capacity
or storing memory is built into the ar c hitecture of neuronal cir-
uits and is made possible by a plethora of cellular mechanisms
hat allow synapses to strengthen and weaken in the short and
ong term. 190 

Accumulating evidence points to a role of MCH neurons in
he modulation of learning and memory ( Figure 5 ), alongside
ther hypothalamic populations, such as orexin and AgRP neu-
ons. 38 , 193–195 While the evolutionary reasons for the involve-

ent of a br ain re gion devoted to homeostasis and survi v al, as
he hypothalamus, in learning and memory processes may not
ppear obvious at first, recent evidence linking metabolism and
emory may help. In the Drosophila fruit fly, it has been found

hat under conditions of starvation, the formation of long-term
emory is suppressed and the activity of neurons normally

nderlying it is absent. 192 Exogenously stimulating these neu-
 ons r estor es long-term memor y but r educes survi v al, pr oviding
vidence that the brain coordinates memor y pr ocesses, which
ave a high energy cost, with metabolic needs to favor sur-
i v al. 192 Additionall y, fruit flies ar e a b le to form “meta bolic mem-
ries,” which help balance food choice with caloric intake and
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Figure 5. Summary of evidence supporting a role of MCH neurons in cogniti v e 
function, as suggested by early and recent studies. 
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he hypothalamus-like pars inter cerebr alis of the Drosophila 
rain is necessary for this kind of learning. 196 High-fat diet, 
hich impairs this process in the fruit fly, also alters the expres- 

ion of memor y-r elated genes in the hypothalamus of mice, 
uggesting that this structure may be inv olv ed in metabolism- 
elated learning also in mammals and that this learning may be 
isrupted in obesity. 196 

Early evidence for the inv olv ement of the hypothalamus 
n learning and memory dates back to the 60s and 70s. Rats 
ith lesions to the LH were unable to form a new associa- 

i v e memor y, but r etained an association formed before the 
esion. 197 Electrical stimulation of the LH after a learning task 
as found to facilitate long-term memory, 198 while LH lesion 

mpaired the formation of flavor-to-nutrient (appetitive) and 

a vor-to-toxin (a versive) post-ingestive associations. 199 On the 
linical side, “Alzheimer’s neur ofibrillar y changes” were found 

n the hypothalamus and brainstem of “senile dementia,” ie, 
lzheimer’s disease (AD), patients, in addition to the hippocam- 
us. 200 Other, non-neurode gener ative , lesions in the hypothala- 
 us ar e also associated with memor y impairment 201 (for mor e 

nformation on MCH neurons and neurode gener ative disorders, 
ee below). 

MCH neur ons pr oject to brain r egions inv olv ed in learning 
nd memory, such as the hippocampal formation, subiculum, 
ere bral corte x, basolateral amygdala, and shell of the nucleus 
ccumbens (Nac). 65 , 66 , 89 , 202 They were shown to be r equir ed for 
earning to select nutrient-containing foods 158 and responding 
o food cues 203 but also for non-food-related memory forma- 
ion, such as object recognition, 40 and activation of MCH neu- 
ons seems to enhance learning and memory processes. 204–208 
CH pe ptide w as found to impr ov e memor y performance when
nfused in the hippocampus and amygdala in rats 209 and to 
 ev ert the amnesic effects of a nitric-oxide-synthase inhibitor, 
 known disruptor of hippocampal plasticity. 206 In vitro, MCH 

eptide applied to brain slices induces a dose-dependent and 

ong-lasting increase in hippocampal synaptic transmission. 207 

n hippocampal slices from rats injected with MCH and trained 

n a memory task, the frequency threshold for the induction 

f long-term potentiation (LTP) was found to be reduced and 

xpr ession of NMDA-r ece ptor subunits important for plastic- 
ty was increased. 208 , 210 Additionally, MCH peptide was found 

o decrease hippocampal LTP thresholds by increasing synaptic 
ransmission. 208 , 211 On the other hand, mice with a knock-out 
f the MCHR1 show impairments in various behavioral learning 
asks, 204 , 212 r educed expr ession of both AMPA 

213 and NMDA 

204 

lutamate r ece ptors in the hippocampus and impair ed LTP and 

ong-term de pr ession. 212 , 213 

MCH neur ons pr oject to the hippocampus, specificall y to 
ABAergic basket cells, and they also innervate cholinergic neu- 

ons of the medial septal nucleus, which, in turn, project to 
he hippocampus. 214 Thus, MCH neur ons comm unicate with 

he hippocampus both dir ectl y and indir ectl y, and these cir-
uits have been hypothesized to participate in the organiza- 
ion of exploratory behavior during foraging, as the hippocam- 
us is well known to be crucial for spatial exploration and 

emor y. Additionall y, the y ha ve been found to increase the
ignal-to-noise ratio of the dorsolateral septum (dLS), 215 an out- 
ut structure of the hippocampus. This would allow hippocam- 
al cogniti v e maps to be transformed into behavioral actions, 
nd, indeed, enhancing MCH signaling in the dLS facilitates 
ippocampal-de pendent memor y formation. 215 

MCH neur ons themselv es ma y also pla y a dir ect r ole in
xploratory behavior, as they have been found to be active espe- 
ially when animals explore novel objects. 22 , 175 MCH activity 
uring encounters with objects is higher if the object is novel 
nd decreases over time as the object becomes familiar. 40 Opto- 
enetic silencing of object associated MCH activity during ini- 
ial exploration pr ev ents the recognition of the object on sub- 
equent exposure, showing the necessity of MCH activity for 
he acquisition of memor y a bout the object. 40 MCH activity is 
nder inhibitor y contr ol of local hypothalamic GAD65 neurons, 
hose silencing instead impr ov es futur e object r ecognition. 40 

hese results suggest a role of MCH signaling as a “novelty sig- 
al” favoring memory acquisition. 

MCH neur ons hav e also been found to be endogenousl y 
cti v e during learning-dri ving av ersi v e experience and this acti-
ation is necessary for a correct extinction of fear as, in its 
bsence, mice display over active , relapsing fear behavior. 216 A 

allmark of pathological fear in human PTSD is the presence of 
ear responses in safe situations erroneously perceived as dan- 
erous, due to inflexible coupling of cues which are no longer 
r edicti v e of danger to fearful behavioral responses. 217–219 Expo- 
ure therapy is often not enough to provide a full recovery from 

hese fear responses 220–222 and these results closely mirror this 
henomenon with silencing of MCH neurons during the initial 
v ersi v e experience. Ther efor e, this can be used as an animal
odel for dysfunctional safety learning without disruption of 

he initial and useful fear learning. In this study, 216 as in the 
tudy investigating MCH function during novel object explo- 
ation, 40 the activity of MCH neurons during the early stages of 
 sensory experience determines whether the memory of that 
xperience is corr ectl y expr essed behaviorall y later on. Together, 
hey point to an important role of MCH neurons in memory 
pdating. 
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1  
Mor e r ecentl y, MCH acti vity has been found to co-occur with
nd to specifically drive events of self-paced exploratory rear-
ng in mice, 223 an innate behavior during which animals stand
n their hind legs to sample the environment. 224 This find-

ng opens the possibility that MCH neurons participate in the
cti v e seeking of novel information, in addition to processing
t for storage in memory and future retrieval. Furthermore, LC
or adrenergic (LC-N A) neurons—classically involved in stress
 esponses 225–227 —hav e been found to inhibit MCH neurons and
hus impair exploratory rearing, 223 thus providing a mechanistic
ubstrate for the reduction of exploration under stressful condi-
ions. 228 

Whether w ake-acti v e and REM-slee p-acti v e MCH neur ons
onstitute two functionally separate subpopulations is still not
ully elucidated, as one study reported a 70% o verlap , 175 while
nother r e ported that onl y a minority of r ecorded MCH neu-
 ons wer e acti v e during both w akefulness and REM slee p 

229 

these differences could be due, for example, to recording MCH
eur ons in slightl y differ ent anatomical locations). Although
ost studies on MCH neuron function in learning and mem-

r y pr ocesses suggest that they facilitate memor y formation
including hippocampus-dependent forms of memory), a recent 
tudy has r e ported that inhibition of MCH neur ons acti v e during
EM-sleep facilitates the retention of hippocampus-dependent 
emor y, 229 ther efor e pr oposing that REM-acti v e MCH neur ons

avor hippocampal forgetting (or disrupt hippocampal consoli-
ation 

188 ) during sleep. 229 An explanation for these appar entl y
onflicting results could be that MCH neurons are indeed func-
ionall y se parated into w ake-acti v e and slee p-acti v e, and the
ormer facilitate memory formation while the latter facilitate
nstead memory er asure . Alternatively, it is possible that MCH
eur ons themselv es do not dri v e plasticity pr ocesses tow ards
 specific direction, but rather function as generic “eligibility
race” for plasticity, facilitating either potentiation or depotenti-
tion depending on other incoming inputs, promoting memory
pdating in general. 230 In this case, the exact timing and context
f MCH manipulations (acti v ation/inacti v ation) during behav-

or al experiments w ould be crucial in determining the outcome
n learning and memory processes. 

CH System and Cogniti v e Decline: Alzheimer’s and 

arkinson’s Diseases 

D patients show neur ofibrillar y de gener ation in the LH 

231 and
CH neurons show aggregates in AD, which, together with loss

f ORX neurons, may underlie the sleep disturbances associ-
ted with this pathology. 232 In scopolamine-induced memory 
mpaired mice and in AD mouse models, nasal cavity admin-
stration of MCH pe ptide impr ov ed memor y impairments and
educed amyloid beta in AD mice. 233 

ome Current Questions 

lthough causal evidence is accumulating that MCH neurons
ontrol cognition, many key questions remain, some of which
e highlight here. 

F irst, whic h actions of MCH neur ons ar e mediated by
he MCH neur ope ptide vs GAB A/glutamate that the y also co-
elease? In some cases, this has been probed by antagonists, and
he data suggest that key actions of MCH neurons indeed r el y
n MCH peptide. This could be probed further by targeted, and
r efera b l y conditional/inducib le, knockout of MCH r ece ptors in
pecific neurons. 
Second, are “sleep” and “wake” MCH neurons the same or
ifferent subsets of neurons? This is a point of current debate:
ome studies indicated that a major subset of MCH cells acti v e
uring slee p ar e also acti v e during exploration, 175 but others find
hat sleep and wake MCH cells are separ ate . 229 

Third, is cogniti v e modulation by MCH neur ons r elated to (or
 ven explained b y) their r ole in ar ousal/slee p? In other words,
s slee p-pr omotion the primar y r ole of MCH cells, and do their
ther impacts arise secondarily to that? If this is the case, then
w ake acti vity dynamics of MCH cells should be inv ersel y corr e-
ated with arousal dynamics. This remains to be directly tested.

Finall y, ar e the “classic” functions of MCH in feeding and
nergy balance separate from their “new” functions in cognitive
ontrol? This is not necessarily so, since much of cogniti v e con-
r ol pr esuma b l y ev olv ed to facilitate survi v al, and energy opti-

ization (eating, metabolism) is a critical element of survi v al.
her efor e, it is possible that the energy and cognition roles of
CH neur ons ar e tied together to facilitate inte gr ated control of

ognition and energy balance. There are some recent indications
bout how some elements of this might work, 94 , 160 , 203 , 234 , 235 but
n inte gr ated model accounting for all findings remains to be
roduced. 
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