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Abstract: Rapid industrialization has resulted in serious heavy metal pollution. The removal of
heavy metal ions from solutions is very important for environmental safety and human health. Poly
(amidoamine) (PAMAM) dendrimers are artificial macromolecular materials with unique physical
and chemical properties. Abundant amide bonds and amino functional groups provide them with
a high affinity for heavy metal ions. Herein, PAMAM-functionalized adsorbents are reviewed in
terms of different nanomaterial substrates. Approaches in which PAMAM is grafted onto the surfaces
of substrates are described in detail. The adsorption isotherms and kinetics of these adsorbents
are also discussed. The effects of PAMAM generation, pH, adsorbent dosage, adsorption time,
thermodynamics, and ionic strength on adsorption performance are summarized. Adsorption
mechanisms and the further functionalization of PAMAM-grafted adsorbents are reviewed. In
addition to the positive results, existing problems are also put forward in order to provide a reference
for the optimization of PAMAM-grafted adsorbents of heavy metal ions.

Keywords: adsorbents; poly (amidoamine); heavy metal ions; adsorption mechanisms; further
functionalization

1. Introduction

With the rapid development of human civilization, environmental pollution caused
by industrialization has become a focus of concern all over the world [1–3]. Among
numerous pollutants, heavy metal ions are some of the most harmful. The main source of
heavy metal ion pollution is effluents from industrial activities, such as battery production,
electroplating, staining, metallurgy, and rubber production. More than 35 elements could
be considered as heavy metals, and most of them are toxic. These heavy metal ions are
discharged into the environment with industrial wastewater, enter rivers and soil, and
eventually accumulate in the human body through the food chain. Unlike other pollutants,
heavy metal ions cannot be metabolized and thus do harm to the human body. Generally,
common heavy metal contaminants include Pb, Hg, Cu, Cd, As, Co, Ni, Mn, and Zn [4].
These heavy metal ions interfere with the functions of living creatures by binding to their
vital cellular components. For example, excess lead ions can damage the liver, kidneys,
central nervous system, and gastrointestinal tract [5,6]. Large amounts of copper ions can
cause headache, depression, and learning disorders [7,8]. Respiratory failure, kidney injury,
chronic diseases, central nervous system disorders, and brain damage can be caused by
mercury [9]. Therefore, the elimination of heavy metal ions from the environment is of
great significance to human health.

Considering the harm caused by heavy metal ions, various methods have been applied
to remove them from the environment, such as oxidation [10], biological treatments [11],
ion exchange [12], electrochemical treatments [13], and adsorption [14,15]. The main
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characteristics of these methods are shown in Figure 1. Although these methods have
been successfully applied in industries, some of them still suffer from unavoidable draw-
backs [16,17]. For example, oxidation methods have high energy costs and produce a large
amount of byproducts. Biological treatments require a high level of technical skill. Ion
exchange resins are poor in thermostability and are difficult to regenerate. Electrochemical
treatments consume much electric power and generate secondary waste. According to the
existing literature, the adsorption method is outstanding because of its simple process, high
adsorption efficiency, and environmentally friendly operation. Therefore, a large number
of materials that adsorb heavy metal ions have been developed [18–21].

Over the past few decades, nanomaterial adsorbents have been highly favorable for
heavy metal ion removal due to their unique properties, such as their nano size, developed
porosity, large specific surface area, high reactivity, strong mechanical properties, hy-
drophilicity, and dispersibility [22,23]. Generally, these adsorption materials are nano-sized
particles consisting of substrates and surface functional groups. Nanomaterial substrates
can be divided into inorganic matrixes and organic matrixes, which usually have a large
specific surface areas, good stability, and high dispersibility while being easy to modify. Sur-
face functional groups are usually introduced by further functionalization of the substrates,
and they always have good affinity for heavy metal ions. Common functional groups
include amino groups, carboxyl groups, amide bonds, and sulfhydryl groups [24–27].
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Poly (amidoamine) (PAMAM) dendrimers are synthetic polymer materials with a
highly symmetrical structure. They always have controllable molecule chains, vast internal
cavities, and abundant functional groups [29]. On the basis of these special structural char-
acteristics, PAMAM dendrimers have many unique properties, such as high hydrophilicity,
high dispersity, high bioaffinity, and ease of modification, and thus have been widely
used in various fields [30–34]. Especially in adsorbents of heavy metal ions, PAMAM
dendrimers play an important role in the modification of nanomaterial substrates [35–39].
A large number of amino and amide functional groups of PAMAM dendrimers can strongly
chelate heavy metal ions, thus improving the enrichment efficiency.

Over the past 20 years, PAMAM-functionalized nanomaterials have been reported
in nearly 100 papers regarding the adsorption of heavy metal ions (Figure 2), mainly in-
volving silica gel, carbon nanomaterials, magnetic materials, and biopolymers. In addition
to the direct grafting of PAMAM dendrimers, the further functionalization of PAMAM-
grafted adsorbents has led to increased selectivity and adsorption efficiency. Herein, we
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review PAMAM-functionalized adsorbents from the perspective of different nanomaterial
substrates and discuss the influences of PAMAM generation, pH, adsorbent dosage, ad-
sorption time, thermodynamics, and ionic strength on adsorption efficiency. Adsorption
isotherms and adsorption kinetics are also discussed. The adsorption mechanisms and
further functionalization of adsorbents are also summarized. Finally, the disadvantages of
PAMAM-functionalized adsorbents are explained, which could provide a direction for the
future development of PAMAM-grafted materials that adsorb heavy metal ions.
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2. Chemical and Physical Properties of PAMAM Dendrimers

PAMAM dendrimers are prepared with ethylenediamine as the initial core, which
is modified by alternating a Michael addition and an amidation reaction with methyl
acrylate and ethylenediamine [40,41]. In this process, the chain length, terminal groups,
and molecular size of PAMAM dendrimers can be strictly controlled by varying the number
of reaction cycles (Figure 3). The structure generated by each step of the reaction is called
a half-generation (0.5 G). Half-generation (0.5 G, 1.5 G, 2.5 G, etc.) PAMAM dendrimers
have ester groups as the terminal, and whole-generation (1.0 G, 2.0 G, 3.0 G, etc.) PAMAM
dendrimers have amino groups as the terminal. In general, lower-generation (≤3.0 G)
PAMAM dendrimers have planar structures, while higher-generation (>4.0 G) PAMAM
dendrimers have spatial structures. Moreover, with increasing generations, the molecular
chains of PAMAM dendrimers become longer, internal cavities become denser, and the
number of functional groups grows exponentially, which therefore provides more binding
sites for the adsorption process.
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Compared to other traditional materials, PAMAM dendrimers have significant advan-
tages in the adsorption of heavy metal ions: Firstly, PAMAM dendrimers have abundant
functional groups. According to the scheme in Figure 3, the number of functional groups
increases exponentially with the continuous growth of PAMAM generations. More func-
tional groups in higher generations may provide more binding sites for heavy metal ions.
Secondly, PAMAM dendrimers have controllable molecule chains. PAMAM dendrimers
are composed of repeated amide structural units generated by repeated and alternating
reactions. By varying the reaction cycles, the length of the molecule chains can be effectively
regulated, as can the adsorption capacity of PAMAM-grafted adsorbents. The excellent
solubility of PAMAM dendrimers improves the dispersion of adsorbents of heavy metal
ions, thus leading to higher adsorption efficiency. Finally, PAMAM dendrimers are easily
modified, which improves the selectivity and properties of heavy metal ion adsorbents by
further derivatization.

3. Adsorbents of Different Substrates

As discussed above, PAMAM dendrimers with a large number of internal cavities
and amino functional groups are good candidates for the adsorption of heavy metal ions.
However, the excellent aqueous solubility of PAMAM dendrimers makes them difficult
to separate from solutions. To overcome this problem, many researchers have grafted
PAMAM dendrimers to the surfaces of various nanomaterials and obtained satisfactory
results. Although the proposed PAMAM-grafted adsorbents could be recovered by cen-
trifugation, filtration, or magnetic fields, their high cost and multistep synthesis make them
unsuitable for a wide range of applications. Therefore, the development of more efficient
and economical PAMAM-functionalized adsorption nanomaterials is of greater practical
significance for the removal of heavy metal ions from aqueous solutions.

3.1. Adsorbents Based on Inorganic Substrates

The first PAMAM-grafted adsorbents for heavy metal ions were proposed with silica
gel as the substrate [43]. Silica gel is one of the most widely used adsorbent matrix materials
because of its good thermal stability, superior mechanical resistance, modifiability, and
high surface area [44–46]. Qu et al. prepared a series of ester- and amino-terminated
PAMAM-grafted silica gels (SiO2-G0-SiO2-G4.0) by a divergent method. Firstly, the surface
silanol groups were treated with γ–aminopropyltriethoxysilane (APTES) to introduce
amino groups to the surface of the silica gel. Afterwards, PAMAM dendrimers were
grafted by repeating two processes: (1) the Michael addition of methyl acrylate to surface
amino groups; and (2) the amidation of the resulting esters with an ethylenediamine
reagent (Figure 4). Further adsorption experiments showed that all of the ester- and
amino-terminated dendrimer-like PAMAM-grafted silica gels presented regularities in
the adsorption of noble metal ions to a certain extent. On the basis of this work, more
researchers applied PAMAM-functionalized silica gels to the adsorption of heavy metal
ions and further investigated the adsorption kinetics, the isothermal adsorption model, and
the adsorption mechanisms [47–52].

In addition to silica gel, other inorganic substrates have also been tested as substrates
for PAMAM-grafted adsorbents. For example, Barakat et al. immobilized 4.0G PAMAM
dendrimers over titanium(IV) oxide (titania) for the removal of Pb2+ from solutions [53]. A
maximum Pb2+ adsorption was found at pH 7. The adsorption of Pb2+ on PAMAM den-
drimers conformed to the Langmuir isotherm and the second-order kinetic model. Qin et al.
developed a series of (G1.0, G2.0, G3.0, and G4.0) PAMAM-dendrimer-modified attapulgite
(ATP) sorbents (G1.0–G4.0 PAMAM-ATP) to remove Hg2+ from aqueous solutions [54].
Over 90% of the Hg2+ was removed within 80 min at an optimal pH of 5.0. The adsorption
was also suitable for the pseudo-second-order kinetic model and the Langmuir model.
These inorganic substrates have a large surface area and a high surface active site density
but suffer from poor selectivity and biotoxicity. PAMAM grafting can solve these problems
effectively and achieve the efficient selective adsorption of heavy metal ions from solutions.
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3.2. Adsorbents Based on Biopolymers

In recent years, low-cost adsorbents, such as biopolymers, have attracted increasing
attention and have proven to be extremely promising materials [55–57]. Polysaccharides
are renewable and biodegradable polymers that have great application prospects as an
adsorption matrix. A large number of surface functional groups, such as hydroxyl, carboxyl,
and amine groups, leads to a high affinity for heavy metal ions. Although polysaccharides
have many advantages, including high hydrophilicity, nontoxicity, biodegradability, and
environmental friendliness, many problems continue to prevent them from being directly
used as adsorbents [58]. Firstly, polysaccharides have poor mechanical strength and have a
tendency to agglomerate and form gels in aqueous solutions. Secondly, poor stability in
acid solutions greatly limits their applications. Thirdly, the adsorption capacity of most raw
polysaccharides for heavy metal ions is not satisfactory because of their low binding site
density. Therefore, further chemical modification with PAMAM dendrimers may enhance
the physical and chemical properties of polysaccharides and improve the selectivity and
efficiency of the adsorption of heavy metal ions.

Cellulose and chitosan are two of the most abundant polysaccharides and have at-
tracted great interest in relation to the development of PAMAM-grafted adsorbents of
heavy metal ions [59–61]. Wang et al. proposed PAMAM-functionalized nanocrystalline
cellulose (NCC) for Cu2+ removal [62]. In their work, amino-functionalized NCC (NCC-
NH2) was synthesized from raw NCC materials. Subsequently, PAMAM dendrimers were
grafted onto the surface of NCC-NH2 by two alternate reactions: the Michael addition
of amine groups of NCC-NH2 to the double bond of methyl acrylate and the amidation
of the resulting methyl ester with ethanediamine. The obtained materials were applied
as adsorbents in the removal of Cu2+ from water solutions. Compared with raw NCC
materials, PAMAM-functionalized NCCs showed a significantly higher adsorption capacity.
The adsorption isotherm of Cu2+ by PAMAM-grafted NCC follows the Langmuir model.
Similarly, Zarghami et al. designed a chitosan-PAMAM dendrimer biosorbent for heavy
metal removal and studied its adsorption kinetics and thermodynamics [63]. Adsorption
experiments showed that the adsorption capacity of as-prepared adsorbents with 3.0G
PAMAM is 18 times higher than that of materials with chitosan only. Thermodynamic and
kinetic studies showed that the adsorption of Pb2+ conforms to the Langmuir isotherm
model and the pseudo-second-order kinetic model.
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In addition to polysaccharides, biochar is another novel biopolymer that has been
garnering increasing attention for the elimination of heavy metal ions from water. Generally,
biochar is synthesized by a thermochemical decomposition process of biomass under
oxygen-limited conditions. The obtained material has unique advantages, such as an easy
preparation process, a high cation exchange capacity, and low costs and environmental
impacts. However, a low specific surface area limits its removal efficiency. To overcome this
issue, Yin et al. modified magnetic biochar with PAMAM dendrimers [64]. With abundant—
NH2 groups on the surface, the obtained materials showed outstanding performances in
Cu2+ adsorption. The maximal adsorption amount was 251.81 mg g−1. A batch adsorption
experiment proved that the adsorption process of Cu2+ was better fitted with the Langmuir
isotherm model and the pseudo-second-order model.

3.3. Adsorbents Based on Carbon Nanomaterials

Carbon nanomaterials are one of the most widely used types of nanomaterials in
the field of materials and chemistry [65–68]. They have many unique characteristics,
such as good chemical stability, a high surface area, satisfactory flexibility, and electrical
conductivity. On the basis of these properties, carbon nanomaterials have played an
important role in various fields. In analytical chemistry, carbon nanomaterial adsorbents
have also shown excellent performance in sample pretreatment [69,70]. Due to their limited
surface functional groups, these adsorbents were always synthesized with raw carbon
nanomaterials as substrates and then modified with various functional molecules. Among
these adsorbents, PAMAM-grafted carbon nanomaterials were good candidates for the
adsorption of heavy metal ions.

In 2016, Hayati et al. proposed a PAMAM/CNT nanocomposite as a super-capacity
adsorbent for heavy metal ions from wastewater [71]. Carbon nanotubes (CNTs) were
oxidized to carboxylic acid functional groups (CNT-COOH) in a concentrated mixture of
H2SO4 and HNO3. After that, PAMAM dendrimers were grafted to the surface of CNTs by
reaction with surface carboxyl groups (Figure 5). Finally, the adsorption capacities of the
PAMAM/CNT nanocomposites for Ni2+, Zn2+, As3+, and Co2+ were examined. Maximum
adsorption was obtained at pH = 8. The results showed that the Langmuir isotherm and
the pseudo-second-order kinetic model are the most appropriate models for the adsorption
of heavy metal ions.
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In addition to carbon nanotubes, graphene and graphene oxide are also important
carbon nanomaterials. Peer et al. synthesized PAMAM-grafted magnetic graphene oxide
nanosheets and investigated their abilities to effectively remove Cd2+, Pb2+, and Cu2+ from
an aqueous solution [72]. The results of the batch adsorption experiment showed that the
adsorption capacities for Cd2+, Pb2+, and Cu2+ were 435.85, 326.729, and 353.59 mg g−1,
respectively. The obtained data were well-fitted with the Freundlich isotherm model and
the pseudo-second-order kinetic model. Kommu et al. conducted molecular dynamics
simulations to understand the effect of PAMAM-grafted graphenes (GS) and graphene
oxide (GO) on the adsorption properties of heavy metal ions [73]. Using Pb2+ as an example:
the adsorption capacity of the Pb2+ ion was calculated in the following order: GO-PAMAM-
COO- > GO-PAMAM-OH > GO-PAMAM > GO > GS-PAMAM-COO- > GS-PAMAM-OH >
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GS-PAMAM > GS. The adsorption behaviors were well described by the Langmuir isotherm
model. It should be mentioned that the interaction between Pb2+ and PAMAM dendrimers
was shown to play a significant role in adsorption, indicating the importance of functional
PAMAM dendrimers for the adsorption of heavy metal ions.

3.4. Adsorbents Based on Membrane Materials

With the rapid development of bioscience and the pharmaceutical industry, mem-
brane separation has been widely used as an important purification technology [74–76].
Biomacromolecules are increasingly being purified by membrane separation [77,78]. In
addition, membrane separation technology is important for water treatment due to its
ease of operation, its high adsorption efficiency, and its reusability [79,80]. Generally,
polyvinylidene fluoride (PDVF) is the most widely used membrane material due to its
excellent mechanical strength, thermal stability, acid and alkali resistance, and low cost [81].
However, PDVF membrane materials have few functional groups on their surfaces, which
is unfavorable to the adsorption of heavy metal ions. Therefore, further modifications are
needed to improve their adsorption ability.

Considering their high-affinity interaction with heavy metal ions, PAMAM dendrimers
were used to modify membrane materials and improved their adsorption capacity [82–85].
With PDVF as a raw substrate, Kotte et al. reported a one-pot method for the preparation
of a new family of mixed matrix PVDF membranes with in situ synthesized PAMAM
dendrimers [83]. The obtained materials have neutral and hydrophilic surface layers, a high
load of PAMAM dendrimers, and strong mechanical integrity. Further experiments showed
that the PAMAM-functionalized PVDF membranes have a high adsorption capacity for
Cu2+. Recently, Sun et al. also proposed a novel kind of PVDF-g-PAA-PAMAM membrane
by grafting different-generation PAMAM dendrimers onto PVDF-g-PAA membranes [84].
The membrane materials were first modified with acrylic acid, and a large number of
carboxyl groups were introduced to the surface. Subsequently, PAMAM dendrimers were
grafted onto membrane materials by a dehydration reaction with surface carboxyl groups
(Figure 6). As the grafting of PAMAM dendrimers can greatly improve the water flux and
the affinity for heavy metal ions, the adsorption capacity of the obtained PVDF-g-PAA-
PAMAM membranes for Cu2+ improved from 2.6 mg/g to 100.98 mg/g.
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3.5. Adsorbents in Gel State

PAMAM dendrimers are a kind of artificial macromolecular material with multiple ter-
minal functional groups, which can be cross-linked to form network structures. Zhou et al.
prepared an amine-rich PAMAM gel in a single step based on the cross-linking reaction
between PAMAM and epichlorohydrin (Figure 7) [86]. The obtained PAMAM gel pos-
sesses abundant amine groups, a positively charged surface, a porous microstructure, and
a high swelling ratio, which helps it to adsorb Cr(VI) ions from water solutions. The
adsorption process could be well-fitted to the pseudo-second-order kinetic model and the
Langmuir isotherm. The PAMAM gel presented favorable reusability after five cycles of
desorption–adsorption. Recently, i-carrageenan/PAMAM aerogels and gelatin/PAMAM
aerogels were also created by cross-linking PAMAM dendrimers with i-carrageenan and
gelatin, respectively [87,88]. The obtained aerogels showed high adsorption efficiencies
for Cr(VI), Mn(II), Co(II), Cu(II), and Cd(II). This work will provide instruction for the
development of PAMAM-grafted materials for heavy metal adsorption with lower cost and
higher efficiency.
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4. Adsorption Studies
4.1. Influence of PAMAM Generations

PAMAM dendrimers were synthesized with ethylenediamine as an initial core, which
was modified by alternating Michael additions and amidation reactions. Each repeat
unit in PAMAM was called a generation (G). Each half-generation PAMAM dendrimer
terminates with ester groups, and whole-generation PAMAM dendrimers terminate with
amino groups. Moreover, the number of terminal functional groups increases exponentially
with increasing PAMAM generations. Therefore, the grafting of PAMAM dendrimers
of different generations may have different effects on the adsorption efficiency of heavy
metal ions.

To verify this conjecture, Fu et al. investigated the adsorption of Mn2+ from aqueous
solutions by silica-gel-grafted PAMAM dendrimers in different generations (SiO2-G0~SiO2-
G4.0) [89]. The adsorption results showed that the adsorption capacity of amino-terminated
PAMAM dendrimers was higher than that of the corresponding ester-terminated ones,
which could be interpreted as meaning that amino groups display a stronger ability to
bind to heavy metal ions. The adsorption capacity of the adsorbents grafted with ester-
terminated PAMAM dendrimers follows the order of SiO2-G3.5 > SiO2-G2.5 > SiO2-G1.5
> SiO2-G0.5. With increasing generations PAMAM dendrimers, more functional groups
were grafted to the surface of SiO2, leading to a higher adsorption efficiency. However, the
adsorption capacity of the adsorbents grafted with amino-terminated PAMAM dendrimers
follows the order of SiO2-G3.0 > SiO2-G2.0 > SiO2-G4.0 > SiO2-G1.0. In PAMAM generations
varying from 1.0G to 3.0G, adsorption efficiency increased with PAMAM generations. The
adsorption capacity of SiO2-G4.0 is lower than that of SiO2-G2.0 and SiO2-G3.0, implying
that a high generation of PAMAM grafted onto the surface of SiO2 did not mean a high
adsorption capacity. A high degree of cross-linking and steric hindrance in PAMAM of
higher generations may hinder the interaction between heavy metal ions and PAMAM
dendrimers, thus reducing the adsorption efficiency [38,90].
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In addition to the PAMAM structure, solvents also affect the adsorption capacity
of adsorbents in different PAMAM generations. For example, the order of adsorption
capacity of SiO2-G1.0, SiO2-G2.0, and SiO2-G3.0 for Cu2+ was SiO2-G1.0 > SiO2-G2.0 >
SiO2-G3.0 in an ethanol solution, which is different from that of SiO2-G2.0 > SiO2-G3.0 >
SiO2-G1.0 in an aqueous solution [44]. Similarly, the order of the adsorption capacity for an
Hg2+ aqueous solution was SiO2-G1.0 < SiO2-G2.0 < SiO2-G3.0, which is quite different
from the adsorption in an ethanol solution (SiO2-G2.0 > SiO2-G1.0 > SiO2-G3.0) [91]. The
differences between adsorption capabilities in different solvents may be related to the
solvated structure of heavy metal ions.

4.2. Influence of pH

In the process of the adsorption of heavy metal ions, the pH of a solution is a key factor
affecting the adsorption results, as it affects not only the structure of surface functional
groups of adsorbents but also the state of heavy metal ions. Therefore, the influence of
pH on PAMAM-grafted adsorbents of heavy metal ions has also been investigated by
many researchers.

According to the adsorption results of a variety of heavy metal ions, PAMAM-grafted
adsorbents showed the highest adsorption efficiency under neutral to weakly acidic con-
ditions (pH = 5–7) [71,92–94]. PAMAM dendrimers have primary amine groups with a
pKa value of 6.85 and internal tertiary amine groups with a pKa value of 3.86 [95]. Most
amino groups are protonated at lower pH values, leading to strong electrical repulsion with
heavy metal cations which hinders adsorption interactions. In addition, a large amount
of H+ in an acidic solution will compete for adsorption sites with heavy metal ions. As
the pH increases, the amino groups gradually deprotonate, and the adsorption capacity
for heavy metal ions is enhanced. As the pH further increases, heavy metal ions will
be hydrolyzed. Therefore, most PAMAM-functionalized adsorbents exhibit their largest
adsorption capacities at pH 5–7.

4.3. Influence of Other Parameters

Considering the special structure of PAMAM dendrimers, PAMAM generations and
pH have exhibited great impacts on PAMAM-functionalized adsorbents. However, other
parameters that affect the adsorption efficiency are also worth discussing, such as adsorbent
dosage, adsorption time, thermodynamics, and ionic strength.

To investigate the effect of adsorption dosage, Peer et al. [72] applied 2–10 mg/100 mL
PAMAM-grafted magnetic graphene oxide nanosheets (mGO2nd-PAMAM) for Cd2+, Pb2+,
and Cu2+ adsorption, respectively. The results showed that adsorption efficiency for heavy
metal ions increased with increasing adsorbent dosages. It could be that a higher amount of
adsorbent provided more active sites and trapped more heavy metal ions on the adsorbent
sites. It is worth mentioning that the adsorption amount of the unit adsorbent decreased
at a certain quantity of the adsorbent, causing aggregation of the adsorbent and possibly
decreased availability of active sites. In addition to adsorption dosage, they also evaluated
the influence of adsorption time. Appropriate amounts of mGO2nd-PAMAM adsorbents
were dispersed in 100 mL of 30 mg L−1 of Cd2+ at pH 7 and 20 mg L−1 Pb2+ and Cu2+ at pH
6 and 7, respectively. According to the results, the removal efficiency of the heavy metal ions
increased sharply within the first 10 min and finally reached equilibrium. The adsorption
equilibrium time of Cd2+, Pb2+, and Cu2+ were 120 min, 100 min, and 90 min, respectively,
which implies that PAMAM-functionalized adsorbents exhibit different adsorption times
for different heavy metal ions.

Temperature is considered one of the most important factors in adsorption processes,
which may affect the adsorption efficiency of heavy metal ions. Fu et al. [89] evaluated the
adsorption thermodynamics of Mn2+ on PAMAM-grafted silica gel particles. Adsorption
experiments at three different temperatures (288, 298, and 308 K) with four different adsor-
bents (SiO2-G1.0, SiO2-G2.0, SiO2-G3.0, and SiO2-G4.0) were performed. The results were
calculated by the Gibbs free energy change (∆G, kJ/mol), enthalpy change (∆H, kJ/mol),
and entropy change (∆S, J/mol K). The calculated parameters are summarized in Table 1.
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The negative values of ∆G indicated that the adsorption of heavy metal ions was spon-
taneous. The positive values of ∆H revealed that the adsorption was endothermic. The
positive values of ∆S implied increasing disorder at the solid–liquid interface.

Table 1. Thermodynamic parameters for the adsorption of Mn2+ [89]. Reprinted with permission
from Ref. [89]. 2019, Elsevier.

Adsorbents T (K) ∆G (kJ mol−1) ∆H (kJ mol−1) ∆S (J mol−1 K−1)

SiO2-G1.0
288 −11.45

89.83 351.65298 −14.96
308 −18.48

SiO2-G2.0
288 −12.65

59.96 252.12298 −15.17
308 −17.69

SiO2-G3.0
288 −15.62

6.13 75.56298 −16.38
308 −17.13

SiO2-G4.0
288 −13.98

40.36 188.68298 −15.87
308 −17.75

In the practical application of adsorbents of heavy metal ions, the presence of other
ions in the solution may interfere with the adsorption efficiency. Therefore, Yin et al. [96]
proposed silica-gel/PAMAM dendrimer hybrid adsorbents and discussed the effects of
ionic strength on Cr3+ adsorption. The effects of ionic strength on the adsorption were
evaluated by introducing Na+, Ca2+, and Mg2+ into the solution. Compared to the saturated
adsorption capacity, the adsorption capacity for Cr3+ decreased with the interference of
other ions. The reason for the decrease of the adsorption capacity could be attributed
to the competition between Na+, Ca2+, Mg2+, and Cr3+ for the available adsorption sites.
Coincidentally, the effects of ionic strength were also discussed by Liu et al. [97], who
proposed a PAMAM-based dithiocarbamate magnetic composite for the adsorption of Co2+

from an aqueous solution. They synthesized a PAMAM-grafted magnetic composite and
further derived PAMAM terminal groups with a carbon disulfide reagent. The obtained
adsorbents exhibited good adsorption effects on Co2+ in the presence of interfering ions,
indicating that further derivatization of PAMAM-functionalized adsorbents could bypass
the effect of ionic strength and improve selectivity for the adsorption of heavy metal ions.

Considering the influence of adsorption conditions, the adsorption parameters of
PAMAM-functionalized adsorbents of heavy metal ions were fully optimized in the ex-
perimental process in order to obtain the maximum adsorption efficiency. The optimized
parameters for different PAMAM-functionalized nanomaterials are shown in Table 2. Ac-
cording to the table, most adsorbents exhibited a maximum sorption capacity at 298 K with
the pH at 5–7. Adsorption equilibrium time varied from 30 min to 24 h. With the optimized
conditions, most of the adsorption processes complied with the Langmuir isotherm model
and the pseudo-second-order kinetic model.

Table 2. Adsorption of heavy metal ions by different PAMAM functionalized nanomaterials.

Substrates Target Ions Optimal Parameters Maximum Sorption
Capacity

Adsorption
Kinetics

Adsorption
Isotherms Ref.

Silical gel Fe3+
Dosage: 0.05 g/20 mL
Time: 24 h
Temperature: 278 K

0.58 mmol/g Pseudo-second-
order Langmuir [98]

Titania Pb2+

Dosage: 0.5 g/L
pH: 7
Time: 60 min
Temperature: 298 K

400 mg/g Pseudo-second-
order Langmuir [53]
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Table 2. Cont.

Substrates Target Ions Optimal Parameters Maximum Sorption
Capacity

Adsorption
Kinetics

Adsorption
Isotherms Ref.

Cellulose Cu2+

Dosage: 200 mg/L
pH: 5.5
Time: 24 h
Temperature: 29 8K

92.07 mg/g N.D. Langmuir [62]

Chitosan Pb2+

Dosage: 0.01 g/mL
pH: 6
Time: 24 h
Temperature: 298 k

58.5 mg/g Pseudo-second-
order Langmuir [63]

Biochar Cu2+
pH: 2.0–8.0
Time: 24 h
Temperature: 318 K

251.81 mg/g Pseudo-second-
order Langmuir [64]

Carbon
nanotubes

Ni2+

Zn2+

As3+

Co2+

Dosage: 0.03 g/L
pH = 8
Time: 30 min
Temperature: 298 K

3350–3900 mg/g Pseudo-second-
order Langmuir [71]

magnetic graphene
oxide

Cd2+

Pb2+

Cu2+

Dosage:5–6 mg/100 mL
pH: 6–7
Time: 90–120 min
Temperature: 298 K

326.729–435.85 mg/g Pseudo-second-
order Freundlich [72]

PVDF-g-PAA-PAMAM
membrane Cu2+ Time: 110 min

Temperature: 298 K 100.98 mg/g Lagergren
second-order N.D. 1 [84]

PAMAM gel Cr (VI)

Dosage: 50 mg/10 mL
pH: 2
Time: 60 min
Temperature: 293 K

267.4 mg/g Pseudo-second-
order Langmuir [86]

5. Adsorption Mechanisms

According to the structure of PAMAM dendrimers, the possible binding sites for
heavy metal ions included a core tertiary amine, interior amides, and terminal primary
amines. To explore the potential adsorption mechanisms, X-ray photoelectron spec-
troscopy (XPS) [99,100] and density functional theory (DFT) calculations [50,101,102]
were performed.

Recently, Ji et al., proposed PAMAM@UiO-66-NH2 nanocomposites for the selective
removal of Pb2+ [103]. In their work, XPS was used to investigate the adsorption mechanism
for Pb2+. The PAMAM@UiO-66-NH2 adsorbents before and after Pb2+ adsorption were
characterized by XPS. The obtained spectra are displayed in Figure 8. Compared to raw
PAMAM@UiO-66-NH2, a new peak of Pb 4f was observed in the used adsorbents, which
confirm the adsorption of Pb2+. The O 1s and N 1s spectra before and after adsorption
were further compared. The binding energy peaks of C=O (531.22 eV), C-O (533.48 eV),
-NH2 (398.98 eV), and -NH- (399.18 eV) shifted to 531.44, 533.18, 399.08, and 399.20 eV,
respectively. These results proved that both the O groups and the N groups undergo
complexation with Pb2+.

In addition to XPS, DFT calculations were applied to find optimal configurations
between heavy metal species and PAMAM dendrimers, which helps facilitate further study
of the adsorption mechanisms. For example, Wu et al. revealed the adsorption mechanism
of Zn(II) on 1.0G PAMAM-grafted silica gel (G1.0-SG) [90]. Five possible coordination
geometries formed between 1.0G PAMAM and Zn(II) may appear during the removal of
Zn(II) (Figure 9). The binding energies (BE, absolute value) for Zn of different coordination
modes were found to conform to the trend of G1.0-Zn(II)-1 < G1.0-Zn(II)-2 < G1.0-Zn(II)-3
< G1.0-Zn(II)-4 < G1.0-Zn(II)-5, indicating that the chelation between primary and second
amino groups with Zn(II) dominates the adsorption, and the formation of pentacoordinate
chelates dominates the uptake of Zn(II) by G1.0-SG.
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6. Further Functionalization of PAMAM-Grafted Adsorbents

According to the published literature, PAMAM-grafted adsorbents based on various
nanomaterials have shown good stability, high efficiency, and recyclability in the adsorption
of heavy metal ions. However, the selectivity of most PAMAM-grafted adsorbents must
be improved. As a remedy, PAMAM-grafted adsorbents were further functionalized with
special functional groups to improve their adsorption efficiency and selectivity.
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According to the hard−soft acid−base (HSAB) theory, sulfur-containing ligands dis-
play a strong affinity and adsorption selectivity toward Hg2+ [104]. Therefore, various
methods have been proposed to graft sulfur-containing functional groups onto the ter-
minals of PAMAM-functionalized adsorbents. For example, Niu et al. synthesized silica
gel-supported sulfur-capped PAMAM dendrimers by reacting PAMAM-grafted SiO2 adsor-
bents with methyl isothiocyanate [49]. Ghodsi et al. proposed a dendrimer-functionalized
magnetic nano-sorbent and further modified sulfur-containing groups on the terminal
PAMAM dendrimers with a 2-thiophene carbonyl chloride reagent [105]. Due to the
remarkable binding ability between sulfur-containing ligands and Hg2+, all of these func-
tionalized adsorbents showed a high adsorption capacity and selectivity for Hg2+. These
adsorption processes were well-fitted with the pseudo-second-order kinetic model and the
Langmuir isotherm model. In addition to sulfur-containing ligands, PAMAM-grafted adsor-
bents were also functionalized with EDTA [106], P,P-dichlorophenylphosphine oxide [107],
chloroacetic acid [108,109], diglycolamic acid [39,110], and Schiff base [111]. Further sur-
face modification of PAMAM-grafted adsorbents introduced more chelating groups and
negative surface charges, which amplified their combination ability with heavy metal ions
and improved their adsorption properties.

7. Conclusions and Outlook

In this review, PAMAM-grafted nanomaterials for heavy metal ion removal were
examined. Over the past few decades, most adsorbents have been synthesized with
silica gel, metal oxides, biopolymers, carbon nanomaterials, and membranes as substrates.
PAMAM dendrimers have been grafted onto substrates by alternating Michael additions
and amidation reactions with methyl acrylate and ethylenediamine. At the same time,
PAMAM-cross-linked adsorbents in a gel state have also been proposed. All of these
adsorbents showed satisfactory performance in the adsorption of heavy metal ions.

For the purposes of further research, the adsorption isotherms and kinetics of these
adsorbents have been discussed. The effects of PAMAM generation, pH, adsorbent dosage,
adsorption time, thermodynamics, and ionic strength on adsorption efficiency and the
adsorption mechanism have also been discussed. Generally, most PAMAM-functionalized
adsorbents followed the Langmuir isotherm model and the pseudo-second-order kinetic
model, indicating that heavy metal ions undergo single-layer adsorption on the adsorbent
surface and that the adsorption rate is controlled by the chemical adsorption mechanism.
Whole-generation PAMAM dendrimers exhibit better adsorption efficiency than the cor-
responding half-generation PAMAM dendrimers. With increasing PAMAM generations,
the number of surface functional groups increases, and the adsorbents have a higher ad-
sorption capacity. However, this regularity will disappear after 4.0 G PAMAM dendrimers,
which could indicate a high degree of cross-linking and steric hindrance. Most PAMAM
dendrimers have shown the best adsorption results at pH 5–7, since neither protonation of
the PAMAM amino groups nor hydrolysis of heavy metal ions have been observed in this
range. Adsorbent dosage and ionic strength will affect the adsorption efficiency to a certain
extent. PAMAM-functionalized adsorbents have exhibited different adsorption times for
different heavy metal ions. The adsorption process is spontaneous and endothermic. In ad-
dition, the adsorption mechanisms of PAMAM-grafted adsorbents have been investigated
via XPS and DFT calculations. Both O groups and N groups undergo complexation with
heavy metal ions. The chelation between primary and secondary amino groups dominates
the adsorption. Finally, several studies have focused on the further functionalization of
PAMAM-grafted adsorbents to obtain higher selectivity and adsorption properties.

The positive results of these investigations will support the future applications of
PAMAM-grafted adsorbents of heavy metal ions. However, the adsorption of heavy
metal ions can be further improved. With the rapid development of materials, more high-
performance porous materials can be used as novel substrates for PAMAM adsorbents to
improve PAMAM grafting efficiency, as well as the adsorption efficiency of heavy metal
ions. In addition, the steric hindrance of high-generation PAMAM dendrimers needs to
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be addressed by novel assembly methods. Thirdly, further functional modifications of
PAMAM-grafted adsorbents are in the preliminary stage, and more research will provide
broader application prospects for PAMAM-grafted materials that adsorb heavy metals.
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