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ABSTRACT
The gut microbiota may play an important role in affecting human health. To explore the genetic 
mechanisms underlying microbiota-host relationships, many genome-wide association studies 
have begun to identify host genes that shape the microbial composition of the gut. It is becoming 
increasingly clear that the gut microbiota impacts host processes not only through the action of 
individual microbes but also their interaction networks. However, a systematic characterization of 
microbial interactions that occur in densely packed aggregates of the gut bacteria has proven to be 
extremely difficult. We develop a computational rule of thumb for addressing this issue by 
integrating ecological behavioral theory and genetic mapping theory. We introduce behavioral 
ecology theory to derive mathematical descriptors of how each microbe interacts with every other 
microbe through a web of cooperation and competition. We estimate the emergent properties of 
gut-microbiota networks reconstructed from these descriptors and map host-driven mutualism, 
antagonism, aggression, and altruism QTLs. We further integrate path analysis and mapping theory 
to detect and visualize how host genetic variants affect human diseases by perturbing the internal 
workings of the gut microbiota. As the proof of concept, we apply our model to analyze a published 
dataset of the gut microbiota, showing its usefulness and potential to gain new insight into how 
microbes are organized in human guts. The new model provides an analytical tool for revealing the 
“endophenotype” role of microbial networks in linking genotype to end-point phenotypes.
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Introduction

In modern translational medicine, increasing 
recognition has been gained from the potential 
associations of the gut microbiota with multiple 
human diseases.1–4 To study the genetic mechan-
isms of such microbiota-host associations, many 
large-scale genome-wide association studies 
(GWAS) have been initiated in recent years, leading 
to the successful identification of a number of host 
genetic variants that determine the composition of 
the gut microbiota.5–11 The premise of these studies 
is that the gut microbiome affects human health or 
diseases through its taxonomic composition and 
diversity.12 For example, in a well-designed 
GWAS, Turpin et al.13 detected 58 host SNPs 

associated with the relative abundance of 33 micro-
bial taxa. Growing evidence suggests that the extent 
to which the microbiota impacts human health 
risks largely relies on how different microbes com-
municate, cross-feed, and interact with each other 
in the gut microorganism community .14 As such, 
a systematic illustration of host genetic control over 
microbial interactions is a meaningful way to shed 
light on the genetic mechanisms for casual relation-
ships between microbiota and host health.

Several authors have emphasized the use of net-
work approaches to model the interactions among 
microbes .15–17 Stein et al.18 and Coyte et al.19 

developed various mathematical models for esti-
mating the dynamics of microbial interactions in 
a time course. These approaches are instrumental 
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for dissecting the ecological mechanisms underly-
ing how microbes co-exist and co-evolve in the gut, 
but their utility is limited to those studies in which 
microbial abundance is measured repeatedly for the 
same subject at different time points. The longitu-
dinal collection of the gut microbiota is costly but 
not very informative in some situations since the 
microbiome is intrinsically stable and resilient in 
the gut .20,21 Furthermore, these approaches were 
developed for a small group of highly-resolved 
microbes, yet we encounter the big challenge of 
charting a high-dimensional landscape of microbial 
interactions. The microbiome inhabits and aggre-
gates the host gut at an extremely high density, 
whose diversity represents one of the most complex 
ecosystems on earth .21 Given such a highly packed 
aggregation of cells, it is impractical to precisely 
discern and distinguish interactions between each 
and every pair of microbes. As a result, the devel-
opment of a rule of thumb for capturing the funda-
mental principle governing the gut microbiota has 
become essential.

The gut microbiota exists as communities with 
complex interacting and communicating networks 
through the secretion of chemicals or quorum sensing 
systems .22,23 All types of cooperative and competitive 
interactions known to occur between microbes play 
a role in consortia of microbes found in the human 
gut .24 In animals, how each individual responds to 
the presence of others in a shared territory obeys 
a rule of action by which it strives to maximize its 
success of survival and growth,25,26 a process that can 
be explained by behavioral eco-evolutionary theory 
.27–37 We integrated this theory and network science 
to develop mathematical descriptors for measuring all 
possible types of microbe–microbe interactions, 
including mutualism, antagonism, aggression, and 
altruism, from the abundance data of the gut micro-
biota .11 In a previous study, we designed culture 
experiments using fish and bacteria to validate the 
biological relevance of these descriptors .38 These 
descriptors present a computational rule of thumbs 
that can characterize general principles behind micro-
bial community assembly. Its significant merit lies in 
its simplicity and flexibility to excavate microbial 
interaction networks of any dimension at any taxo-
nomical level for individual guts. By regressing the 
emergent properties of microbial networks on host 
genotypes, here we develop a statistical procedure to 

test and estimate how individual SNPs are associated 
with network properties and further visualize the 
genetic architecture of internal workings that take 
place in the human gut.

Results

Biological validation of mathematical descriptors

In our previous study, we derived four mathematical 
descriptors for microbial interactions, i.e., Zmu for 
mutualism, Zan for antagonism, Zag for aggression, 
and Zal for altruism,11 which are given in equation 
(1). In this context, aggression may be thought of as 
a focal species parasitizing another, and altruism 
may be thought of as a focal species being parasitized 
by another. Although the biological relevance of 
these descriptors has been justified from mono- 
and co-cultural experiments of 45 E. coli strains 
and 45 S. aureus strains,38 we performed an addi-
tional larger experiment to further validate these 
descriptors. We collected 100 diverse bacterial 
strains from each of these two species, grew each 
strain in monoculture and its interspecific pair with 
a randomly selected strain from the other species in 
co-culture, and measured the abundance of each 
strain at a series of time points in each culture. The 
comparison of bacterial growth between these two 
types of environments allows us to quantify the 
actual strength of ecological interactions, Mu for 
mutualism, An for antagonism, Ag for aggression, 
and Al for altruism, at each time point of growth 
(see the Methods). The plot of Zmu against Mg shows 
that they are positively associated (r = 0.32–0.40; 
P < .001; Figure 1(a)) at three phases of microbial 
growth, lag, log, and stationary, which are deter-
mined from fitted growth equations .39 We also 
found that significant associations occur between 
Zan and An (r = 0.12–0.34; P < .001; Figure 1(b)). 
between Zag and Ag (r = 0.32–0.73; P < .001; Figure 1 
(c)), and between Zal and Al (r = 0.30–0.51; P < .001; 
Figure 1(d)) at each growth phase. In most cases, the 
correlations are stronger at the stationary growth 
phase than the log growth phase and lag phase. 
Taken together, the mathematical descriptors, Zmu, 
Zan, Zag, and Zal, can well be used as a statistical 
measure of Mu, An, Ag, and Al, respectively, which 
facilitates the use of a general mapping or GWAS 
population to reconstruct the networks of ecological 
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interactions and their genetic architecture in the gut 
microbiota.

Landscaping microbial interaction networks

In a microbial GWAS, Davenport et al.6 genotyped 
127 hosts of a founder population, the Hutterites, 
and obtained fecal microbial abundance data 
(including 101 genera, 50 families, 28 orders, 23 

classes, and eight phyla) during two seasons, with 
93 hosts in winter, 91 hosts in the following summer, 
and 57 hosts in both. For each individual, we calcu-
lated Zmu, Zan, Zag, and Zal parameters between each 
pair of genera and used them to reconstruct four 
corresponding 101-node networks, each describing 
gut-microbial interactions based on a different eco-
logical interaction metric. After the significance test 
of each edge, we obtained a sparse network of each 

Figure 1. Scatter plots of mathematical descriptors of mutualism (Zmu), antagonism (Zan), aggression (Zag), and altruism (Zal) against the 
actual strength of mutualism (Mu) (a), antagonism (An) (b), aggression (Ag) (c), and altruism (A1) (d) across 100 interspecific pairs of 
strains from E. coli and S. aureus at three distinct phases of microbial growth (lag, log, and stationary). Dots represent observations of 
different interspecific strain pairs at each time point. Note that the mutualism dots are those strains whose abundance is larger in co- 
culture than monoculture for both species, whereas the antagonism dots are those strains whose abundance is larger in monoculture 
than co-culture for both species. The relationship between two variables is roughly fitted by a curve, with correlation coefficient (r) 
given within each plot.
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interaction type averaged over all hosts for each 
season (Figure 2). One important feature of each 
network is characterized by those so-called hub or 
keystone nodes that link with more nodes than 
a majority of other nodes, thus playing an especially 

critical role in maintaining network function. The 
four networks differ structurally in the pattern of 
social links and the number of hub microbes. In 
the mutualism network, 16 and 24 hub microbes, 
found in winter and summer, respectively, are 

Figure 2. Microbial Zmu-based mutualism (two-way arrowed line) networks (a), Zan-based antagonism (two-way T-shaped line) 
networks (b), Zag-based aggression (one-way T-shaped line) networks (c), and Zal-based altruism (one-way arrowed line) networks 
(d) at the genus level within the gut microbiota of the Hutterites in winter and summer. In each network, hub microbes are highlighted 
in dark circles. These hub microbes, expressed as leaders, antagonists, hawks, and beneficiaries in mutualism, antagonism, aggression, 
and altruism networks, respectively, are compared with other microbes from each network type, called followers, agonists, doves, and 
altruists, respectively, in bar graphs. The significance of the difference between each pair of these types was tested by a t-test statistic. 
The identity of each genus is labeled by a number (Table S1). The distribution of links owned by each genus within each network is 
given in the middle, separately for winter (w) and summer (s).
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regarded as being dominant because they are more 
abundant than the rest (called subordinates) (P < .05; 
Figure 2(a)). The antagonism network includes a few 
“public enemies” that are antagonistic to many more 
microbes than others. These antagonistic microbes 
were observed to be more abundant than the “ago-
nists” that are less combative (P < .05; Figure 2(b)). 
The aggression network is composed of three hier-
archical organizations, the hawk group (those 
aggressively repressing others), the dove group 
(those inhibited by others), and the hawk-dove 
group (those in which a microbe represses its coun-
terpart, but it is also restrained by others). The hawks 
are much abundant than the hawks-doves (P < .001), 
both being more abundant than the doves (P < .001) 
(Figure 2(c)). The hub microbes of the altruism net-
work act as altruists, which sacrifice their own 
growth by providing resources exploited by benefi-
ciaries (P < .01 for winter) (Figure 2(d)). The test of 
the distribution of link number by a power law 
suggests that all networks are scale- 
free, but show noticeable seasonal difference in 
each microbe’s link number. Taken together, we 
have identified remarkable architectural features for 
each type of interaction network, and microbial net-
works do not display dramatic season-dependent 
changes in the main network features. Networks 
change from season to season mainly in the type of 
hub microbes.

We calculated six centrality indices, connectivity 
(Con), closeness (C(u)), betweenness (B(u)), eccentri-
city (E(u)), eigencentrality (G(u)), and PageRank 
(P(u)), which describe emergent properties of 
a network from a different topological perspective 
for each host in both winter and summer. As can be 
seen, these indices exhibit pronounced differences 
among hosts for the same network type and, also, 
the same index varies dramatically among network 
types (Figure 3). All indices are highly season-specific, 
with the extent depending on network type. All these 
differences provide a basis for mapping microbial- 
network QTLs.

Mapping the genetic architecture of microbial 
interaction networks

By treating each network index as a phenotype, we 
performed association mapping for the interaction 
networks. We identified 61 significant host genetic 

variants throughout the human genome which are 
responsible for the centrality indices of each net-
work (Fig. S1). Because of their role in mediating 
microbial networks, we call these variants microbial 
network quantitative trait loci (mnQTLs). First, 
emergent properties that characterize the same net-
work are under the control of different sets of 
mnQTLs, suggesting that each property reflects 
a different topological aspect of a network. 
Second, in general, no overlapping loci were 
detected for the four types of networks, from 
which we conjecture that each type of microbial 
interactions possesses its own genetic basis. It 
appears that more mnQTLs control mutualism, 
antagonism, and altruism than aggression. Third, 
no common loci were detected between two sea-
sons for each network, indicating that the genetic 
control of microbial networks is season-dependent. 
We found that more loci are activated to affect 
mutualism and altruism in summer than winter, 
but no such difference was observed for antagonism 
and aggression mnQTLs.

Based on a gene enrichment analysis, we found 
that 43 mnQTLs (73%) are located in the regions 
of candidate genes and that each have specific 
molecular and developmental functions (Table 
1). For example, mutualism mnQTL for network 
connection acts like gene FBLN1 encoding fibu-
lin-1, an extracellular matrix and plasma 
protein,40 in winter, but it is more like 
GABRG241 and KDM4C42 that encode gamma- 
aminobutyric acid receptor subunit gamma-2 and 
Lysine-specific demethylase 4 C in humans, 
respectively, in summer. The altruism mnQTL 
for network connection in winter represents 
gene DIP2A encoding disco-interacting protein 
2 homolog A in humans,43 which functions dif-
ferently from the same season’s mutualism 
mnQTLs for network connection. mnQTL, 
rs6110241, is only pleiotropic QTL detected to 
influence multiple types of microbial networks. 
This QTL, residing in gene MACROD2 encoding 
the macrodomain containing 2/mono-ADP ribo-
sylhydrolase 2,44 which jointly controls the close-
ness of mutualism, antagonism, and aggression 
networks in winter (Table 1). Those mnQTLs 
that cannot be annotated may have some 
unknown functions, deserving of further 
investigations.
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Impact of network perturbation on 
genotype-phenotype relationship
Causal links from genotype to phenotype (e.g., 
SNPs to BMI) may involve the impact of the 
gut microbiota. We implemented path analysis 
to dissect how microbial networks influence 
genotype-phenotype link through their pertur-
bations. Davenport et al.’s6 data include 57 
hosts whose microbial abundance was measured 
in both winter and summer. The differences of 
property parameters for the same host between 
the two seasons can be used as a measure of the 

season-driven perturbation of microbial net-
works. Although the sample size is quite small, 
this data can well be used to demonstrate the 
usefulness of our method for investigating how 
the significant association between SNPs and 
BMI is affected by the perturbations of micro-
bial interaction networks. Our analysis is based 
on five significant SNPs or QTLs that were 
detected to be associated with BMI .6 By view-
ing a QTL, network perturbation, and BMI as 
a system, we conducted path analysis to dissect 
the roadmap from each of these QTLs to BMI 

Figure 3. Heatmaps of six indices (showing emergent network properties) constituting mutualism (a), antagonism (b), aggression (c), 
and altruism networks (d) among 101 genera for network properties for winter and summer.

e1820847-6 L. JIANG ET AL.



into two path: the direct path and the indirect 
path through microbial perturbations (Figure 
4). A QTL may link with six network proper-
ties, but we only chose and incorporated those 
links that are significant by correlation analysis 
at or beyond the 10% significance level into the 
path system. Although all QTLs display 
a sizable direct effect on BMI, they also affect 
BMI through the indirect effects of microbial 
perturbation as enophenotypes. For example, 
QTL3, residing in the genomic region of gene 
LINC01818, positively affects BMI in a direct 
way, but it also affects BMI through negative 
indirect effects of betweenness and eccentricity 
in the mutualism network (Figure 4(a)). The 
correlation observed between this QTL and 
BMI is the overall sum of these direct and 
indirect effects. In the antagonism network, 
the pattern of how this QTL affects BMI is 
determined indirectly by the negative effect of 
closeness (Figure 4(b)). A similar difference can 
be found for the aggression (Figure 4(c)) and 
altruism networks (Figure 4(d)). Taken 
together, how the perturbations of microbial 
networks determine the SNP-BMI relationship 
heavily relies on the network type, network 
property and QTL.

Monte Carlo simulation
We performed a computer simulation study to 
examine the statistical power of our model. We 
mimicked the sampling design of Davenport et al.’s6 

study by simulating host QTLs that affect the abun-
dance of microbes in the gut. We assume eight 
microbes that are interact with each other through 
cooperation or competition. As an example, we focus 
on two types of interactions, mutualisms and aggres-
sion. Three schemes were used to define QTLs in 
terms of the proportion of its genetic variance to the 
total phenotypic variance: big QTL (proportion = 0.-
10–0.20), moderate QTL (proportion = 0.05–0.10), 
and small QTL (proportion = 0.01–0.05). Traditional 
GWAS models can only detect the QTLs responsible 
for the abundance of each microbe, whereas our new 
model can identify QTLs that regulate how different 
microbes interact with one another to determine 
microbial communities using the same data. Based 
on 1,000 simulation replicates, we calculated and 
compared the detection power of significant QTLs 
from both the traditional and the new models (Table 
2). We found that the power of detecting mutualism 
or aggression QTLs by the new model is strikingly 
larger than the power of detecting abundance QTLs 
by the traditional model, especially when the QTLs 
have small effects. For example, the traditional 

Table 1. Numbers of mutualism, antagonism, aggression, and altruism mnQTLs that affect the emergent properties of ecological 
networks. The names of genes to which QTLs are annotated are given below.

Emergent Property

Con C(u) B(u) E(u) G(u) P(u)

Mutualism mnQTL Winter 1 2 1 0 5 0
FBLN1 MACROD2 PDXK - RTN4R -

TNRC6B
BIK

Summer 8 2 0 1 0 4
GABRG2 LOC107987043 - ATP10B - DOCK10
KDM4C TNRC6B LOC105375132

Antagonism mnQTL Winter 0 2 0 4 0 1
- - MACROD2 - OAS3 - SOCS3

DNAH10
Summer 0 0 0 2 2 2

- - - IQSEC3 LOC339166 SCN1A-AS1
Aggression mnQTL Winter 0 1 0 0 1 0
- - MACROD2 - - - -

Summer 1 0 1 0 0 1
LOC101929231 - IQCE - - FCRL3

Altruism mnQTL Winter 1 0 0 1 1 3
DIP2A - - PTPRN2 BTBD9 SH3GL2

Summer 0 0 4 0 0 9
- - - ADAMTS12 - - DROSHA

GABRG2
TMPRSS6
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model has the power of only about 0.20 to detect 
a small QTL, whereas the new model increases the 
power of QTL detection to approximately 0.70. We 

also found that the new model shows reasonably 
good precision in parameter estimate and relatively 
low false positive rates for QTL detection (< 0.08).

Discussion

Despite a vast amount of data increasingly available 
to explore the associations of the gut microbiota and 
human health risk, we are faced with the big chal-
lenge of identifying a complete picture of these asso-
ciations and interpreting their underlying biological 

Figure 4. Path analysis revealing how QTLs (outer) affect BMI as a final phenotype (inner) through the season-driven perturbation of 
microbial networks as an “endophenotype” (middle) (described by differences of six emergent property indices between winter and 
summer). Path coefficients are denoted by directed lines from QTLs to BMI (gray) and from networks to BMI (blue). Arrowed line and 
T-shaped line represent a positive and negative impact of path, respectively. Correlation coefficients between QTLs and networks are 
denoted by non-directed lines. In all cases, the magnitudes of path and correlation coefficients are proportional to the thickness of 
lines.

Table 2. Power comparison of host QTL detection by a traditional 
model (aimed to detect abundance QTLs) and our new model 
(aimed to identify microbial interactions including mutualism or 
aggression).

Traditional Model

New Model

Mutualism Aggression

Big QTL 0.89 ± 0.032 0.99 ± 0.003 0.99 ± 0.005
Moderate QTL 0.42 ± 0.051 0.92 ± 0.024 0.89 ± 0.031
Small QTL 0.19 ± 0.046 0.72 ± 0.046 0.67 ± 0.047
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mechanisms. As the gut microbiota is an ecosystem 
inhabited by highly dense and highly diverse micro-
organisms, no constituent members function in iso-
lation. Rather, different members affect host health 
through a complex network of microbial interactions 
.45 As such, community ecology concerned with the 
composition and structure of biotic assemblages on 
our planet is believed to be useful for dissecting 
microbial interactions, and some analytical tools, 
such as network reconstruction, have been intro-
duced to the microbiome community .15,17 

However, the traditional theory and corresponding 
tools may be inadequate to capture the mechanistic 
details of how ecological interactions are generated 
and how they are at play within the gut microbiota 
existing as a heterogeneous biological community.

To quantify internal workings within the gut that 
contains a typical highly-dense microbial commu-
nity, we proposed simple mathematical descriptors 
of pairwise interactions .38 While there is substan-
tial debate as to the role of higher-order interactions 
in microbial communities,46 we believe our pair-
wise interaction results provide a critical starting 
point to investigate these higher order interactions 
more deeply. In this study, we performed a large- 
scale cultural experiment using diverse strains of 
two bacterial species to validate the biological rele-
vance of these descriptors. We further integrated 
these mathematical descriptors into a mapping or 
GWAS setting to unveil the genetic and molecular 
mechanisms underlying microbial interactions in 
the host gut. In a well-designed GWAS study, 
Davenport et al.6 found a few significant QTLs 
associated with the abundance of eight bacterial 
taxa. To show how our new model can be used in 
practice, we reanalyzed this data, identifying many 
more QTLs that participate in the mediation of 
microbial interactions. Results from simulation stu-
dies show that our model outperforms traditional 
approaches for GWAS data analysis in several key 
statistical criteria, including power, estimation pre-
cision, and false discovery rate. Most of these so- 
called microbial interaction QTLs (mnQTLs) (70%) 
can be annotated to candidate genes with known 
biological functions (Table 1). One of the mnQTL 
at candidate gene, MACROD2, which exerts 
a pleiotropic effect on an emergent property of 
mutualism, antagonism, and aggression networks, 
deserves further investigation. Recent studies show 

that MACROD2 is related to neurodevelopmental 
disorder47 and cancer .48 For example, Mohseni 
et al.44 identified the overexpression of this gene 
in metastatic tamoxifen-resistant breast cancer. 
Other studies show that microbial composition 
has a tight link with autism disorders49 and breast 
cancer .50 As such, although our discoveries should 
be interpreted with caution because of use of 
imputed SNP data (see the Methods), it may be 
reasonable to formulate and test a novel hypothesis 
regarding the paper-rock-scissors game of 
MACROD2, microbes, and diseases.

Compared to the QTLs detected by a traditional 
model, those by our model affords biologically 
more meaningful interpretations of microbial net-
works. Our model can discern the ecological dis-
crepancies of genetic effects exerted by specific 
mnQTLs; for example, mutualism mnQTLs play 
a role in controlling how microbes cooperate with 
each other through secreted chemicals or quorum 
sensing,22,23 whereas antagonism mnQTLs are 
responsible for how different microbes choose to 
compete for resources in limited space. Aggression 
mnQTLs determine whether and how those aggres-
sive microbes maximize their growth by exploiting 
the resources of other submissive microbes. 
Altruism mnQTLs guide how microbes sacrifice 
themselves to benefit other microbes. Further com-
putational and experimental approaches are needed 
to infer the casual effects of these mnQTLs on 
microbial community network structure. With 
such information, we can better understand how 
mnQTLs determine the stability and dynamics of 
microbial community assemble through affecting 
the emergent properties of networks. Also, by alter-
ing the function of some mnQTLs, gut-microbial 
communities may be driven toward a direction 
desirable to human wellness.

As an increasingly recognized determinant of 
human phenotype, the gut microbiota can be 
viewed as the “endophenotypes” that bridge the 
link of genotype to phenotype. By integrating our 
model and path analysis, we can characterize how 
QTLs affect host phenotypes through perturbing 
gut-microbial networks. Through the structural 
dissection of genotype-phenotype relationship, 
path analysis can identify how QTLs determine 
host phenotype through their direct effects or the 
indirect effect of endophenotypic microbial 
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networks. Using Davenport et al.’s6 data, we iden-
tified these two different paths for the BMI QTLs. 
We found that indirect genetic effects related to 
these QTLs are mediated through multiple micro-
bial interaction types. Although our results should 
be interpreted with caution because of the use of 
a small sample size, our model does show its use-
fulness to dissect the microbe-driven roadmap 
from genotype to phenotype. Taken together, 
a holistic, systems-oriented approach is needed to 
comprehend the mechanistic basis for QTL- 
microbiota-phenotype systems, generating useful 
information for practical translational medicine.

Obviously, the application of our theory is not 
limited to the human microbiota. It may find its 
immediate implications for understanding ecolo-
gical interactions of other biofilms, such as soil 
microbiota, ocean microbiota, and atmosphere 
microbiota .51 The framework can identify com-
mon principles that guide the structure and func-
tion of these biofilms and build predictive models 
for linking microbial compositions to the func-
tion of various ecosystems. As pinpointed by 
a group of microbiologists, despite our remark-
able capacity to identify species compositions of 
microbial communities, we are not yet able to 
precisely predict and manipulate the function of 
microbiota because of the lack of fundamental 
knowledge about their inner workings .51 Our 
integrative theory of behavioral ecology, network 
science, and, a mapping model provides a novel 
attempt to advance toward the goals of predicting 
the behavior and properties of microbiota and 
thus possibly engineering synthetic microbial 
consortia with novel function.

Conclusions

The gut microbiota determine human health 
through their complex inner interactions, 
a process encoded by the human genome. 
However, modeling microbial interactions within 
such highly dense community assemblies repre-
sents a major challenge. We integrate behavioral 
ecology and network science to develop a rule of 
thumbs for defining and quantifying the networks 
of various interaction types for microbial commu-
nities. We map the host genetic architecture of how 
microbes interact and work together to determine 

microbial community behavior. We implement 
path analysis to reveal the direct effects of the 
genotype, as well as its indirect effects through 
microbial networks as the “endophenotype,” on 
host phenotype. Our model provides a tool that 
potentially can be used to understand the mechan-
istic basis of structural-functional relationships 
within the gut microbiota.

Methods

Calculating microbial interactions

Suppose there is a genome-wide association study 
(GWAS) in which a sample of n human subjects are 
randomly drawn from a natural population. To 
study how an environmental factor influences the 
gut microbiota, stool samples are collected under 
different conditions. For each sample, 16S rRNA 
gene sequencing is used to monitor the abundance 
of bacteria at different levels of taxa from genus, 
families, orders, and classes to phyla. Meanwhile, all 
sampled subjects are measured for health- or dis-
ease-related phenotypes, such as body mass index 
(BMI), diabetes, gastroenteritis, or Crohn’s disease, 
under the conditions considered. To investigate the 
genetic control of the gut microbiota, all hosts are 
genotyped for SNPs by a high-throughput genotyp-
ing technique for subsequent genome-wide associa-
tion studies (GWAS).

A linear mixed model is used to correct for 
microbial abundance and host phenotypic data 
due to the relatedness between individual subjects 
and other demographical effects resulting from age 
and sex among others. We use the corrected micro-
bial abundance data to identify interaction net-
works at a particular taxonomical level. Let xu and 
xv (xu > xv) denote the abundance levels of two 
microbes u and v (u, v = 1, . . ., m; u ≠ v) from 
a total of m microbes, respectively. Based on animal 
behavioral ecology theory, Wang et al.11 argue that 
the edges of the networks reconstructed 
by m microbes can be calculated as 

Zmu ¼
xuxv

xu� xv
Mutualism

Zan ¼
1

xuxvð Þ xu� xvð Þ
Antagonism

Zag ¼
xu
xv

Aggresion
Zal ¼ 1 � xv

xu
Altrusim

8
>><

>>:

(1) 
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with u, v = 1, . . ., m (u ≠ v). Based one equation (1), 
we can use Zmu to quantify the extent to which two 
microbes u and v cooperate with each other (mutu-
alism), Zan to quantify the extent to which these two 
microbes compete against each other (antagonism), 
Zag to quantify the extent to which the more abun-
dant microbe u parasitizes or exploits the less abun-
dant microbe v (aggression from u to v), and Zal to 
quantify the extent to which the more abundant 
microbe u is parasitized to benefit the less abundant 
microbe v (altruism from u to v).

Experimental validation of interaction descriptors

We designed an experiment to validate equation 
(1)’s descriptors. Consider a pair of microbes that 
are cultured separately and jointly in different bea-
kers but with the same growth condition. In the 
shared environment, organisms need to interact 
with each other by choosing either cooperation or 
competition .31–38 We denote the more abundant 
microbe in co-culture as u and the less abundant 
microbe as v. Let xu and xv as well as wu and wv 
denote the abundance levels of microbes u and v in 
co-culture as well as monoculture, respectively. If 
two microbes cooperate with each other, then the 
relative abundance of each microbe should be lar-
ger in co-culture than in monoculture, i.e., xu/wu > 
1 and xv/wv > 1. The magnitude of the product of 
these two ratio (xu/wu)(xv/wv), adjusted by |xu/wu – 
xv/wv|, is positively proportional to the degree of 
mutualism between the two microbes. If two 
microbes compete against each other, then the 
relative abundance of each microbe should be lar-
ger in monoculture than in co-culture, i.e., wu/xu > 
1 and wv/xv > 1. Then, the size of (wu/xu)(wv/xv), 
adjusted by |wu/xu – wv/xv|, is positively propor-
tional to the degree of antagonism between the 
two microbes. If one microbe is aggressive on the 
other, i.e., the former grows at a cost of the latter, 
then the relative abundance of the former over the 
latter should be greater when the two microbes 
grow in the common environment than when 
they grow alone. Accordingly, if one microbe is 
functionally altruistic toward the other, i.e. the for-
mer grows poorly while the other benefits from 
this, then the relative abundance of the latter in co- 
culture over monoculture should be larger than the 
relative abundance of the former in co-culture over 

monoculture. Based on these lines of reasoning, the 
actual strength of interactions can be quantified 
using the following equations: 

Mu ¼
ðxu=wuÞðxv=wvÞ

jxu=wu� xv=wvj

An ¼
ðwu=xuÞðwv=xvÞ

jwu=xu� wv=xvj

Ag ¼
xu=xv
wu=wv

Al ¼
xv=wv
xu=wu

MutualismðsymmetricalÞ
AntagonismðsymmetricalÞ
AggresionðuaggresivetovÞ
AltrusimðualtruistictovÞ

8
>>>>><

>>>>>:

(2) 

where we use the first two letters to represent 
each type of interactions. By analyzing the abun-
dance data from co-culture and monoculture, we 
use equation (2) to calculate the strength of each 
interaction type and compare it with the descriptor 
estimated by equation (1). If they are positively 
significantly correlated by statistical testing, we 
conclude that the descriptors can be used as proxies 
to measure the strength of interactions.

Emergent properties of microbial networks

By calculating mathematical descriptors for each 
pair from m microbes in each host gut using equa-
tion (1), we reconstructed an m-node network for 
mutualism, antagonism, aggression, and altruism, 
respectively. Network science methods use six 
indices to describe these host-specific networks: 

C uð Þ ¼ 1=
X

1�v;v�u
D u; vð Þ; (3) 

(i) Connectivity is the average number of nodes 
(microbes) with which a microbe links52 and 
describe the density of links within 
a network;

(ii) Closeness describes the degree of linkage 
between one microbe and others, calculated 
as

where m is the number of microbes, D(u,v) is the 
minimum distance between microbes u and v ;53 

B uð Þ ¼
X

1�v< u

gvw uð Þ
gvw 4ð Þ

(4) 

(i) Betweenness reflects the importance of 
a microbe as a bridge across the network, 
calculated as
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where gvw is the number of the shortest paths 
between microbes v and w, gvw(u) is the number 
of the shortest paths of microbe u on gvw ;54 

E uð Þ ¼
1

max D u; vð Þð Þ
(5) 

(i) Eccentricity is the longest distance of one 
microbe to others,55 expressed as

where u = 1, . . ., v – 1, v + 1, . . ., m; 

G uð Þ ¼
1
λ

� �
X

1�v
auvG vð Þ (6) 

(i) Eigenvector describes the importance of 
a microbe to its neighboring microbes,56 cal-
culated as

where λ is a constant solving the equation AG = λG, 
auv describes whether microbes are linked with 
each other in the network; 

P uð Þ ¼ 1 � d þ d
X

1�v;u�v
auvP vð Þ=Ku (7) 

(i) PageRank is a node ranking method, recur-
sively defined by the equation

: where d is the damping coefficient, usually set as 
0.85, and Ku is the number of outbound links for 
microbe v .57

Of these property parameters, connectivity 
describes the overall structure of a network, 
whereas the other five are microbe-specific. To 
reflect how the latter characterize the global net-
work, we may take their average over all microbes.

Mapping microbial network properties

To study how host genes affect the gut micro-
biota, we genotype the n samples at p genome- 
wide distributed polymorphic loci. Consider 
a SNP whose three genotypes are denoted as 
AA (coded as 1), Aa (coded as 0), and aa 
(coded as – 1), with observations n1, n2, and 
n3, respectively. We use a linear mixed model 
to correct network property values for any pos-
sible covariates. Let yi denote the corrected value 
of a network property on individual i (i = 1, . . ., 
n). The association between the SNP and the 

network variable can be tested by formulating 
a likelihood, expressed as 

L yð Þ ¼
XnAA

i¼1
fAA yi : μAA; σ

2� �

XnAa

i¼1
fAa yi : μAa; σ

2� �Xnaa

i¼1
faa yi : μaa; σ

2� �
(8) 

where f: �ð Þ is the distribution density function of 
the network property variable, assumed to follow 
a normal distribution with genotype-dependent 
means μ: and variance σ2. By estimating μAA, μAA, 
and μaa and testing their difference based on a log- 
likelihood ratio via genome-wide permutation 
resampling, we can assess whether and how the 
SNP influences the network property.

Most of the current GWAS characterize the asso-
ciation between genotype and high-order pheno-
types, such as complex traits or diseases. However, 
this association may be determined by a certain 
“black box” behind the causal link from genotype 
to phenotype. Such a black box is widely recognized 
as a series of regulatory processes that drive DNA to 
genes to proteins to metabolites. We argue that the 
black box may involve the mediation of the gut 
microbiota because of increasing evidence that the 
gut microbiota is associated with human pheno-
types. Here, we can test whether microbial net-
works serves as a black box to modulate genotype- 
phenotype relationship. Let zi denote the high- 
order phenotypic value of a quantitative trait on 
individual i. We calculate the Pearson correlation 
between y and z across individuals, denoted as ryz, 
to quantify and test the association between the 
network property and host phenotype. 
Meanwhile, we use Huo et al.’s58 mutual informa-
tion approach to calculate the correlations between 
(discrete) genotype (g) and (continuous) network 
variable (y) and high-order phenotypic trait (z), 
denoted as rgy and rgz, respectively.

We use path analysis59 to dissect rgz into the 
direct effect of SNP on z and its indirect effect on 
z through y. Let Pz←g and Pz←y denote the path 
coefficients of SNP and microbial network toward 
host phenotype. Thus, we have 

rgz ¼ Pz:g þ Pz:yrgy (9) 
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where Pz←g is the direct path from SNP to pheno-
type, and Pz←y rgy is the indirect path through 
microbial network. In the system constituted by 
SNP, microbial network, and phenotype, SNP is 
a fixed variable, which is unchanged with other 
variables. Thus, the correlation between microbial 
network and phenotype can only include a single 
direct path, which implies ryz = Pz←y. To character-
ize how well phenotypic variation is determined by 
SNP and the microbial network, we calculate the 
coefficient of determination, 

R2 ¼ P2
z g þ P2

z y þ 2rgyPz gPz y (10) 

and the path coefficient of all unknown variables (e) 
that contribute to host phenotype, 

Pz e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � R2
p

(11) 

We will use R2 and Pz e to evaluate the effect of the 
microbial network as a black box to determine host 
phenotype.

Data collection

To validate the mathematical descriptors of equa-
tion (1), we performed a microbial experiment by 
cultivating 100 interspecific pairs of strains from 
Escherichia coli and Staphylococcus aureus in 
monoculture and co-culture. These strains were 
sampled from the National Infrastructure of 
Microbial Resources, China. Both cultural experi-
ments used the same two-times diluted brain heart 
infusion medium (OXOID, Basingstoke, England). 
In co-culture, two strains were mixed with a 1:1 
ratio. We measured the abundance of each strain in 
each culture once every 0.5 h during the first 2 h of 
cultivation, followed by once every 2 h till 12 h and 
once every 4 h till 36 h. Quantitative PCR (qPCR) 
measurements of strains were detailed in Jiang et al. 
.38 We used three commonly used growth equa-
tions, Gompertz, logistic, and Richards,39 to fit the 
growth data of each strain and then chose an opti-
mal one that suits this strain by statistical reasoning 
.38 We divided growth trajectories into lag, log, and 
stationary phases for each strain based on the optimal 
growth equation.

To justify our mapping model, we used it to 
reanalyze a published GWAS data for the human 
gut microbiota. In this GWAS study, the fecal 

microbiome from the Hutterites, a religious isolate 
living in North America, were examined by 16S 
rRNA gene sequencing in a winter and the next 
summer. To compare the seasonal difference of 
microbial interactions, we used 127 subjects (79 
females and 48 males) who had data in both seasons. 
The abundance of microbes was read at the genus, 
family, order, class and phylum levels. Prior to any 
analysis, the abundance data were corrected for age 
and sex. We retrieved the BMI data of the Hutterite 
samples based on the correlation coefficient (0.51) of 
BMI with the relative abundance of the genus 
Akkermansia, and used BMI to test how microbial 
interactions are associated with human health. We 
were not able to obtain human SNP data, but 
imputed SNP genotypes based on significant associa-
tions reported in the original study. Because of this 
limitation, this data analysis was better used as the 
proof of concept for our new theory, whose results 
should be interpreted with caution.
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