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Evaluating diabetes and hypertension disease
causality using mouse phenotypes
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Abstract

Background: Genome-wide association studies (GWAS) have found hundreds of single nucleotide polymorphisms
(SNPs) associated with common diseases. However, it is largely unknown what genes linked with the SNPs actually
implicate disease causality. A definitive proof for disease causality can be demonstration of disease-like phenotypes
through genetic perturbation of the genes or alleles, which is obviously a daunting task for complex diseases
where only mammalian models can be used.

Results: Here we tapped the rich resource of mouse phenotype data and developed a method to quantify the
probability that a gene perturbation causes the phenotypes of a disease. Using type II diabetes (T2D) and
hypertension (HT) as study cases, we found that the genes, when perturbed, having high probability to cause T2D
and HT phenotypes tend to be hubs in the interactome networks and are enriched for signaling pathways
regulating metabolism but not metabolic pathways, even though the genes in these metabolic pathways are often
the most significantly changed in expression levels in these diseases.

Conclusions: Compared to human genetic disease-based predictions, our mouse phenotype based predictors
greatly increased the coverage while keeping a similarly high specificity. The disease phenotype probabilities given
by our approach can be used to evaluate the likelihood of disease causality of disease-associated genes and genes
surrounding disease-associated SNPs.

Background
Common complex diseases, such as diabetes, cardiovas-
cular diseases, hypertension and cancers, have strong
genetic components, but their genetic risk loci are diffi-
cult to identify reliably until the recent development of
array-based genotyping technology. Wellcome Trust
Case Control Consortium (WTCCC) [1] and others
have used microarrays of commonly occurring single
nucleotide polymorphisms (SNPs) to map genome-wide
associations of SNP loci to common diseases and identi-
fied hundreds of association loci. However, this technol-
ogy was designed to efficiently cover common genetic
variations and was not designed to test rare SNPs or
coding polymorphisms. In only a few cases were coding
polymorphisms identified, suggesting that SNPs were
only associated and not causative. Assignment of the

nearest genes to these association signals as the asso-
ciated genes, although a common practice, has been
found to be not reliable [2]. The disease-associated
genes responsible for the SNP association signals can be
far away from the SNPs and are not readily mapped
[3,4]. Therefore, what genes and how they are responsi-
ble for the association signals remain an urgent post-
GWAS issue.
Although many network-based ranking strategies have

been developed [5-8], these approaches can only impli-
cate genes that are more functionally associated with
the disease genes, but not disease causal genes. Another
major drawback of these methods is that they are greatly
influenced by the overrepresentation of “hot genes” that
are much more studied than other genes, leading to a
biased evaluation. Therefore, an unbiased evaluation
method for disease causality of a gene is still lacking.
The ultimate proof that a gene or locus is causative to a
disease comes from replicating disease phenotypes in a
genetic model of the gene or allele. Human genetic
mutation and phenotypes have been well curated in the
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Online Mendelian Inheritance in Man (OMIM) database
[9] and have been used to evaluate phenotype similari-
ties between different gene perturbations [10]. However,
the coverage of the human genetic disease phenotypes is
very limited (only 3,259 genes are covered by OMIM
and the great majority of them are related to monogenic
diseases). In contrast, a plethora of mouse genetic phe-
notypes are available but have never been systematically
examined before. The Mouse Genome Informatics
(MGI) database [11] contains phenotypic descriptions
based on the controlled terms in ‘phenotype ontology’
(PO) for mutants of 12,302 genes (5,667 of which can
be directly mapped to human Entrez genes). Moreover,
the numbers of both genes and phenotypes in MGI are
growing rapidly.
Although not all genes in MGI are tested for all the

phenotypes, the appearance of partial or similar pheno-
types to a disease often implicate the existence of other
phenotypes of the disease. Complex diseases, such as
diabetes often display multiple co-appearing clinical
traits (phenotypes), which provide a better chance to
determine whether a gene perturbation may cause such
diseases than for simple genetic diseases consisting of
only one or two phenotypes. We therefore took advan-
tage of the well-organized tree-like structure of PO in
the MGI database and developed a decision tree-based
classifier to quantify, given the observed phenotypes, the
likelihood (expressed as weighted probabilities) that per-
turbation of a single gene would cause the common
metabolic diseases hypertension (HT) or type 2 diabetes
(T2D) phenotypes (Methods). We show that the pheno-
type probabilities given by our classifier can be used to
uncover the biological processes preferentially targeted
by these common metabolic diseases and to evaluate the
likelihood of disease causality of genes linked to GWAS
signals.

Results
Disease phenotype classifier
As illustrated in Fig. 1A and 1B, we first trained deci-
sion trees to assign a probability score of whether a
gene perturbation causes a phenotype. For each target
phenotype PTt which is associated with a set of GSPt
and one of the 100 randomly selected GSNt gene sets,
we train a decision tree using the presence or absence
of all other testable phenotypes (Methods) to assign a
probability value of whether a gene has the phenotype
PTt. The training was done using the C4.5 algorithm
with details described in Methods. In the end each leaf
node represents the probability of a gene to be asso-
ciated with PTt given the gene has or does not have all
the phenotypes in its parent nodes, in other words, all
the nodes it traversed from the top node of the tree
(Fig. 1B).

Then to predict and calculate the probability for a
new test gene to have the phenotype, we search from
the top of the decision tree to locate the node by match-
ing all of its other phenotypes to the nodes in the tree
and assign the (GSP/GSP+GSN) value associated with
the node to the gene. Thus, genes traced to different
nodes will be assigned different probabilities. Then a
weight was introduced to correct (by punishing) the
abundance of different phenotypes. The sum of
weighted probabilities of a gene to cause all the different
phenotypes of the disease was assigned to the gene to
measure the likelihood of a gene perturbation to result
in HT or T2D phenotypes (Fig. 1A, Methods). In order
to evaluate the prediction accuracy first at the pheno-
type level, we examine the cross-validation results of the
decision trees based on 10 randomly selected pheno-
types and all the phenotypes associated with T2D and
HT (Fig. 1C). The ROCs in the cross-validations all
have area under curve (AUC) between 0.717 to 0.999 as
compared with the randomly expected AUC of 0.5, indi-
cative of high sensitivity and specificity of the decision
trees in predicting the phenotypes (Fig. 1C).

Phenotype scores reflect biological pathways perturbed
in HT or T2D
Using the Gene set enrichment analysis (GSEA) software
[12] to test for enriched pathways annotated in the
GSEA molecular signature database [12](Methods), we
found that the genes having high probability to cause
diabetes and hypertension phenotypes are enriched for
signaling pathways regulating carbohydrate, fat and
other aspects of energy metabolism but not the meta-
bolic pathways themselves (P < 0.0001 after multiple
testing correction, Fig. 2A, Additional File 1, Fig. S1).
This is in sharp contrast to the situation encountered
when analyzing the gene expression data for T2D,
where mostly metabolic pathways, such as the oxidative
phosphorylation and fat metabolism, have been found to
be the most significantly differentially expressed, but not
regulatory pathways, such as the insulin pathway,
despite abundant evidence supporting their role in dia-
betes [13,14]. To confirm our result was not due to the
bias in the GSEA molecular signature database or the
GSEA program, we applied the same method to the dif-
ferentially expressed genes between control and diabetic
cases (Methods). Indeed, we also found that metabolic
pathways are the most significantly changed in expres-
sion levels in muscle, pancreas or adipose tissue in T2D
cases (Fig. 2A, Additional File 1, Fig. S1). We also found
a similar situation for HT (Fig. 2A, Additional File 1,
Fig. S1). Accordingly, only marginal overlaps exist
between the genes with high HT or T2D phenotype
probabilities (> 95% specificity, see below) and the genes
significantly differentially expressed between cases and
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Figure 1 Flow chart of scoring each gene perturbation’s probability of causing disease phenotypes. (A) Decision tree-based phenotype
classifiers give the raw probability scores based on expanded and filtered phenotype descriptions (Phenotype Ontology terms) averaged over
100 trees using different random negative gene sets, penalized by the phenotype commonality, and finally summed over all the phenotypes for
a disease. See text and Additional File 1 for details. (B) An exemplary decision tree for the phenotype “MP00001556” learned from the MGI data.
Starting from the top root node, if one gene is annotated with the phenotype in each node (ellipse), it travels down to the branch of “Y";
otherwise to the branch of “N”. Leaf nodes (rectangle) represents the number of GSP(+) and GSN(-) in training set that located in this leaf node
through all the splits shown in its parent nodes. (C) ROCs of 10-fold cross-validation for decision tree-based phenotype classifiers on 10
randomly selected phenotypes (blue dot-dashed lines), HT phenotypes (green dotted lines) and T2D phenotypes (red dashed lines). The black
solid line indicates random expectation. Sensitivity = TP/(TP+FN) and false positive prediction rate (1-specificity = FP/(FP+TN)) were used as the
y-axis and x-axis variables, where TPs (true positives) are positive predictions which belong to gold standard positives (GSPs), FNs (false
negatives) are negative predictions which belong to GSPs.
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Figure 2 Pathways enriched among genes with high HT or T2D phenotype probabilities or differentially expressed genes. (A) Enriched
pathways are listed according to their HT and T2D phenotype probabilities. The color in the heat plot indicates the normalized enrichment
score given by the GSEA program. A black cell indicates that the pathway is not significantly changed in the analysis. For microarray expression
analysis, the significantly up-regulated and down-regulated pathways are colored red and green, respectively. (B) Number of links between
genes with high phenotype probabilities (> 95% specificity as determined in Fig. 4.) and those differentially expressed (RankProd pfp < 0.01) and
its significance determined by Monte Carlo simulations. The red line indicates the number of interactions between the genes that have high
phenotype probabilities (gene set A) and the genes only differentially expressed in various tissues combined (gene set B) as detected by
microarray experiments. The black, blue or green curves indicate the probability density distributions of the number of links if genes in both set
A and set B, either A (blue curve) or B (green curve) are replaced by randomly selected genes. Empirical P values are labeled on each graph. (C)
Distribution of interaction degree k of high disease phenotype probability (> 95% specificity) genes (red curve), differentially expressed genes
(green curve) and all genes in the interactome network (black curve). The Wilcoxon rank test P values of increase in k compared to the
background ‘all genes’ are indicated for each gene set.
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controls (RankProd pfp < 0.01) (Additional File 1,
Fig. S1). These are similar to a previous observation that
genes identified in genetic screens are enriched for regu-
latory pathways, whereas differentially expressed genes
identified by microarray analysis are enriched for meta-
bolic pathways [15]. Through network and experimental
analysis, Yeger-Lotem et al. found that the genetic
screens usually identify regulators and are critical
for the phenotypes whereas the differentially expressed
genes are modulated by these regulators and are
indirect reflections of genetic changes in the regulatory
network [15].
If this is also true in our case, we would expect genes

with high HT or T2D phenotype probabilities to be
more significantly linked to the metabolic pathways
found through gene expression analysis than random
expectation. To test this, we examined the interactions
between these two sets of genes using the annotated
functional interactions curated in the Human Protein
Reference Database (HPRD) and KEGG databases. We
measured the number of interactions between the two
sets of genes. Indeed, the two sets of genes were signifi-
cantly linked than randomly expected as shown by
Monte Carlo simulations (Fig. 2B, Additional File 1, Fig.
S2B). These results suggest that these complex diseases
are caused by dysregulation of metabolism rather than
metabolism per se.
Genes with high interaction degrees (k, number of

links) or hubs in the interactome networks often play
critical regulatory functions and are more likely to be
disease-associated [16]. Meanwhile disease-related genes
generally have higher degrees than non-disease related
genes [16]. Consistent with these previous findings, the
genes with high HT or T2D phenotype probabilities
(> 95% specificity, see below) also have significantly
higher interaction degrees (average k = 21.6 and 23.9 for
HT and T2D) than differentially expressed genes (aver-
age k = 16.8 and 15.0 for HT and T2D), which have
slightly higher degrees than the average genes in the
interactome network (average k = 11.5) (Fig. 2C). This
suggests that phenotype probabilities given by our pre-
dictors are indeed more likely to identify disease causal
genes than differential expression analysis.

Evaluating various disease-association datasets for
disease causality
To see if the phenotype probabilities can serve as an
unbiased benchmark for evaluating various disease-asso-
ciation datasets, we examined the phenotype probabil-
ities of a few well-known collections of HT and T2D-
associated genes. The Online Mendelian Inheritance in
Man (OMIM) database and the Gene Association Data-
base (GAD) list many genes that have been found to be
associated with these diseases. However, some of the

genes had been selected by a candidate gene approach
and hence might be biased toward genes functionally
related to certain biological processes. Moreover, some
of the associations have been found in small sample sets
and have not been replicated in an independent study.
On the other hand, the GWAS signals are functionally
unbiased but have largely not been attributed to causal
or functional variants in genes. To another extreme, the
KEGG database has annotated T2D pathways based on
molecular functions.
We found that, as expected, genes listed by multiple

sources as disease-associated (the ‘Intersection’ genes,
Methods, Fig. 3A and Additional File 2) are the most
likely to cause disease-like phenotypes upon perturba-
tion, much more likely than the unfiltered genes in
GAD or OMIM, according to the disease phenotype
probabilities predicted from the MGI phenotypes (Fig.
3A and 3B). Although KEGG genes are the most func-
tionally connected genes, they are much less likely to
contribute to the disease phenotypes than the ‘Intersec-
tion’. In contrast, the genes nearest to the authentic
association signals identified by GWAS [1,17-24], do not
necessarily contribute to T2D phenotypes as shown by
the lowest HT- or T2D-phenotype probabilities com-
pared to other datasets (Fig. 3B). However, in both
GWAS and GAD datasets the genes replicated in more
than one study (R_GWAS and R_GAD) give higher phe-
notype probabilities than the unreplicated ones, except
R_GWAS for HT (Fig. 3B).
Furthermore, both the average phenotype probabilities

and the fold enriched over background (Methods) for
the genes with high HT or T2D phenotype probabilities
(> 95% specificity, see below) increase as the distance
gets closer to the genomic locations of GWAS SNPs
(Fig. 3C). In addition, the maximal T2D phenotype
probabilities among genes within ± 1 Mbp of T2D-asso-
ciated SNPs are significantly correlated with the case
versus control odds ratios (ORs) of the SNPs (Pearson
correlation coefficient = 0.480, linear regression slope P
= 0.03, Fig. 3D). In fact, the correlation can be observed
in a rather broad region surrounding the disease-asso-
ciated SNPs. While not correlated within 0.5 Mbp of the
SNP, it reaches the highest level around 0.9 Mbp (Fig.
3D). These results confirm that phenotypic probabilities
predicted from MGI phenotypes can indeed serve as an
unbiased benchmark for the quality of association sig-
nals, and suggest that they may also be used as indica-
tors for disease causality evaluation for genes linked to
the disease-associated SNPs.

Predicting HT or T2D causal genes for GWAS signals
To test the possibility of using phenotype probabilities
to predict disease causal genes linked to GWAS SNPs,
we need a Gold Standard Positive (GSP) dataset to
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Figure 3 Evaluation of different HT- and T2D-associated gene sets to cause disease phenotypes when perturbed. (A) The Venn
diagrams of different HT- and T2D-associated gene sets. ‘GWAS’ refers genes nearest to GWAS SNPs. ‘R_GAD’ are genes in GAD that have
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quantify its performance. As shown above, among var-
ious sets of HT- or T2D-associated genes, the ‘Intersec-
tion’ genes are mostly likely to cause diseases, followed
by a larger gene set of replicated GAD genes (Fig. 3A
and 3B, Methods). Using either one of these datasets
(Additional File 2) as GSP genes and all the genes that
are not labeled as associated genes in GAD, OMIM or
ref. [19,20] as the Gold Standard Negative (GSN) genes,
we measured the coverage of the total GSP genes versus
the specificities of predicting the GSP genes (Methods).
The Receiver Operator Curves (ROCs) of the MGI phe-
notype probabilities are very similar using these two dif-
ferent GSP datasets (Fig. 4), indicating the performance
evaluation results are rather robust against variations in
the choice of GSP gene sets, and that the similar ROCs
might be extrapolated if the GSP genes include only HT
or T2D causal genes.
We also compared the prediction power of the MGI

(mouse) phenotype probabilities to OMIM (human)
phenotype similarities, which are the sum of pair-wise
similarity scores between HT/T2D and each of the dis-
eases described for a candidate gene in the OMIM

database (Methods). To do this, we used the GSP genes
shown in Fig. 3A and treated all the other genes as GSN
to plot ROCs by scoring all the human genes using the
MGI or OMIM phenotype-base predictors. Because over
80% of the Intersection genes are present in OMIM,
using the Intersection genes as GSPs will greatly overes-
timate the accuracy of the OMIM-based phenotype
scoring. Therefore, we only used the replicated GAD
gene set to fairly compare MGI phenotype probabilities
to OMIM phenotype similarities. The prediction cover-
age of the MGI phenotype probabilities is obviously
much higher than the OMIM phenotype similarities,
while their specificities are similar (Fig. 4). The useful
coverage of MGI phenotype probabilities is 2.78- and
3.00-fold of that of OMIM phenotype similarities for
HT and T2D, respectively (comparing the second to last
points on the ROCs in Fig. 4), suggesting it as a valuable
resource for phenotype quantification and disease causal
gene prediction. The control ROCs, where GSPs were
replaced by the same number of randomly selected
genes, all appear to be straight diagonal lines from the
start point of zero coverage and zero specificity to the

A

1-Specificity

C
ov

er
ag

e

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

B

1-Specificity

C
ov

er
ag

e

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

MGI (Replicated GAD)
MGI (Intersection)
OMIM (Replicated GAD)
MGI random
OMIM random

HT T2D

Figure 4 Performance of phenotype scores in predicting HT- and T2D-associated disease causal genes. ROCs for HT (A) and T2D (B).
Replicated GAD genes or ‘Intersection’ genes shown in Fig. 3A were used as GSPs, and all the other genes were treated as GSNs to score all
human genes using MGI or OMIM-phenotype-based predictors. For a given phenotype predictor, each gene in the genome was rank-ordered by
the phenotype scores. Then at various rank cutoffs, the coverage, or the percentage of the total gold standard positives (GSPs) recovered, and
the false positive prediction rate (1-specificity = FP/(FP+TN)) were calculated and plotted as the y- and x-axis variables on an ROC. FPs (false
positives) are positive predictions which belong to gold standard negatives (GSNs). TNs (true negatives) are negative predictions which belong
to GSNs. For control ROCs, the GSPs were replaced by the same number of randomly selected genes from the total 16023 genes we probed in
this study.

Yu et al. BMC Systems Biology 2010, 4:97
http://www.biomedcentral.com/1752-0509/4/97

Page 7 of 11



end point of zero specificity and maximal coverage for a
particular dataset (Fig. 4). This confirms that the pheno-
type predictors are not biased to give GSPs higher
scores, and that it is the phenotypic correlations of dis-
ease-associated genes that allow identification of disease
genes.
The GWAS by WTCCC has reported association loci

at various significance levels. Although the study
reported a P value < 10-7 as the most confident criteria
for disease association, a P value < 10-4 might also
indicate real association with a relatively higher false
discovery rate [1]. Together with the signals that have
been identified in other GWAS [17-24], at 95% specifi-
city level, we have predicted 22 and 18 genes mostly
likely to be the causal genes for HT and T2D GWAS
signals (Additional File 3). These genes are again
enriched for signaling pathways regulating metabolism,
but not enriched for metabolic pathways (data not
shown).

Discussion
The higher than average phenotype probabilities and the
enrichment for high probability genes at the vicinity of
GWAS SNPs (Fig. 3C) support the reliability of our phe-
notype predictors as well as the quality of association
data. These were further reinforced by the correlation of
the maximal predicted probability to generate T2D phe-
notypes surrounding T2D-associated SNPs with the OR
of the T2D-associated SNPs. The lack of such a correla-
tion for HT might be due to the inhomogeneity of the
case populations, as reflected by the drastic differences
in allele frequencies: 44% of the HT OR values of are
< 1, in which case the major alleles, but not the minor
alleles, are associated with the disease, which has never
occurred for T2D and most other complex diseases [1].
This may suggest that HT is associated with a broad
spectrum of disease etiologies. Thus, in some cases the
most common major alleles may cause disease and are
detrimental, whereas the minor allele counter-intuitively
can offer protection, while in other cases the scenarios
are exactly the opposite.
As the more strongly a gene perturbation near a SNP

influences the disease phenotype, the higher the SNP’s
odds ratio (OR), in Fig. 3D we calculated the correlation
(PCC) between the maximal phenotype probability of
genes within x Mbp of SNPs and the T2D association
OR of the nearby GWAS SNP to identify the optimal
region where a causal gene is identified for a causal
SNP. When x is small, the real disease causal gene is
not yet included in the region very close to the SNPs,
which leads to the low correlation between phenotype
probability and OR as both are at the background level.
With the increase of x, some real disease related genes
are included, which increase the PCC. The PCC reaches

its peak when x = 1, indicating the region of 1 Mbp
around the majority of SNPs covered the most (in num-
ber and in probability) causal genes. After that, while x
is increasing, more false-positive genes are included
which either may or may not decrease the correlation
depending on whether the highest phenotype probability
gene within the region changes, which apparently does
not change from 1 Mbp to 3 Mbp and changes only
farther than 3 Mbp away.
Many of the genes that we predicted to be the cau-

sal genes surrounding the GWAS SNPs have already
been shown to be functionally or phenotypically asso-
ciated with HT or T2D. For T2D, these genes include
LEPR, PPARg, insulin, WFS1, IDE, PPARa, KCNJ11,
AQP2, GHRL and ABCC8 (Additional File 3). Most
notably, defects in the insulin gene and the insulin
degrading enzyme directly affect insulin signaling [25].
The leptin receptor (LEPR) and ghrelin (GHRL) genes
balance the regulation of food intake and adiposity
[26,27], a risk factor for T2D. PPARg activation pro-
motes adipocyte differentiation and storage of excess
circulating carbohydrates as triacylglyceride [28].
Additionally, KCNJ11 and ABCC8 form the subunits
for the ATP-sensitive potassium channel that is
required for glucose-stimulated insulin secretion from
pancreatic b-cells [29].
Only five out of the 18 predicted T2D causal genes

are not found to be co-cited with diabetes by automated
co-citation search in the PubMed abstracts as described
in [30] (Additional File 3). However, full gene name
searches show all genes have functionally relevant roles
in diabetes. Loss of histamine receptor H1 (HRH1)
impairs leptin control of food intake, leading to obesity
[31]. PPARg-mediated differentiation is directly
repressed by the transcriptional modulator WWTR1
[32], whereas PPARg-mediated lipid storage is indirectly
affected by loss of acetyl-CoA carboxylase 1 (ACACA)
or mitochondrial glycerol-3-phosphate acyltransferase
(GPAM). Although the mechanism is unknown, muta-
tions in the SOX4 gene result in diminished glucose-sti-
mulated insulin secretion [33]. Together, these findings
for T2D causal genes further demonstrate the reliability
and significance of this methodology.
We focused on hypertension and diabetes due to their

commonality, the relatively well-defined phenotypic
descriptions of the diseases, and the sufficient number
of known disease-associated genes. Conceivably, the
methods described here will be applicable to other dis-
eases, given well-defined phenotypic descriptions and a
large enough validated gene set for the diseases.

Conclusions
Despite the enormous advances on GWAS of common
disease susceptibility loci, determining causal genetic
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loci is still a pressing issue to address. We for the first
time tapped the rich resource of mouse phenotype data
to quantify the probability of gene perturbation to induce
phenotypes of a common disease. Our phenotype predic-
tors were indeed able to identify the important regulatory
pathways whose deregulation may lead to these meta-
bolic diseases, instead of genes or pathways simply asso-
ciated with or changed by the diseases. This type of
causality inference is a unique feature of genes identified
by genetic perturbation and phenotypic analysis and can
only be indirectly reflected to a certain degree by some
other type of analysis, such as gene-expression analysis.
Therefore, genetic perturbation leading to phenotype
alteration indeed can serve as a general rule for disease/
phenotype causality evaluation. Furthermore, our intro-
duction of mouse phenotype as disease causal effects eva-
luation criteria and developing it as quantitative criteria
allows objective evaluation of various association data-
sets, and the disease phenotype probabilities given by our
approach can be used to evaluate the likelihood of disease
causality of disease-associated genes and genes surround-
ing disease-associated SNPs.

Methods
An ethics statement is not required for this work.

Datasets
Phenotypes of mouse gene knock-out or transgenic
mutants, together with the mouse gene to human ortho-
log mapping were downloaded from the Mouse Genome
Information (MGI) database http://www.informatics.jax.
org/ on Oct. 20, 2009. OMIM data was downloaded
from http://www.ncbi.nlm.nih.gov/omim/ on March 24,
2009.
The HT and T2D associated entries in the genetic

association database (GAD) [34]http://geneticassocia-
tiondb.nih.gov/ were downloaded on Dec 27, 2007. We
kept only the genes that have the value ‘Y’ or ‘P’ for the
attribute ‘associated to disease’. This resulted in 89 and
138 genes for HT and T2D, respectively.
We downloaded the HT- or T2D-associated SNPs

from the WTCCC website [1] and selected all the SNPs
with association P < 0.0001. Other GWAS datasets on
HT or T2D were obtained from individual GWAS pub-
lications [17-24]. SNP signals that have been replicated
in multiple large-scale association or GWAS were
obtained from ref. [19,20].
Gene expression microarray datasets were obtained

from GSE8051, GSE703, and GSE4707 for HT,
GSE16415 and ref. [13,14,35] for T2D.

Compilation of HT and T2D phenotypes
HT and T2D phenotypes were manually selected and
mapped to the phenotype ontology terms in MGI based

on diagnosis descriptions on Wikipedia and literature
[36,37] as follows.

For T2D:
MP:0000182 increased circulating LDL cholesterol
level
MP:0000231 hypertension
MP:0001261 obese
MP:0001433 polyphagia
MP:0001556 increased circulating HDL cholesterol
level
MP:0001559 hyperglycemia
MP:0001759 increased urine glucose level
MP:0001762 polyuria
MP:0002079 increased circulating insulin level
MP:0005293 impaired glucose tolerance
For HT:
MP:0001776 abnormal circulating sodium level
MP:0004217 salt-sensitive hypertension
MP:0006143 increased diastolic blood pressure
MP:0006144 increased systolic blood pressure

Training decision trees to score probability of exhibiting
disease phenotypes by mouse mutants
In the phenotype ontology tree, all the other leaf node
phenotypes that are not phenotype PTi or a child of
PTi were used as classification attributes in the deci-
sion tree to predict the probability of a gene’s pertur-
bation to give phenotype PTi. We used the Weka J48
classifier http://www.cs.waikato.ac.nz/ml/weka/ which
implements the C4.5 algorithm to build decision trees.
To train a decision tree for target phenotype PTi, the
algorithm starts with all genes in the training set in a
single root node and then recursively splits each node
N by testing for the presence or absence of the pheno-
type k that gives rise to the maximal information gain,
which is defined as H(N)-H(N0)-H(N1) when splitting
N into N0 and N1 by judging whether gene g has
been annotated with phenotype k. Here, H(N) is the
entropy of genes at node N, defined as -PGSP
(logPGSP)-(1-PGSP)*log(1-PGSP), where PGSP is the
percentage of GSP genes at node N. When no test at
a node N gives a positive information gain, the node is
not further split and becomes a leaf node with a prob-
ability value associated with it. For each disease phe-
notype (PTi), we used the genes associated with PTi as
positive training data and randomly chosen genes (five
times the number of the positive instances) that are
not associated with PTi as negative training data. Due
to the unevenness of the number of genes associated
at different levels of the phenotype ontology tree, we
selected the lowest-level phenotypes with > = 10 genes
as testable phenotypes to ensure enough training cases
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and branch points for the decision tree (using > = 20,
30 or 40 genes yielded similar results, Additional
File 1). We repeated the negative set selection and
decision tree training 100 times and used the average
probability given by the 100 decision trees as the final
probability for a gene to have the phenotype PTi. Our
settings resulted in a range of 5 to 15 phenotype
nodes per decision tree used for each phenotype
prediction.

Likelihood of a gene perturbation to result in the
phenotypes of a disease
We trained decision trees to assign a probability (the
proportion of true positives (TP) in the leaf of a decision
tree) of whether a gene in MGI phenotype database has
a disease phenotype (see above), inspired by the method
described for assigning gene functions [38]. To account
for the abundance of different phenotypes, a weight of
-log10(f) of each phenotype is used to adjust the prob-
ability, where f is the frequency of the phenotype
appearing among all the genes. The sum of weighted
probabilities (-∑log10(f)P) of a gene to all the different
phenotypes of the disease is assigned to the gene to
measure the likelihood of a gene perturbation to result
in phenotypes of a disease. Finally, these summed prob-
abilities were normalized against their possible maximal
value within each disease, to maintain their values
between 0 - 1.

Scoring disease similarity
Phenotype similarities between diseases were calculated
as previously described [10]. All the OMIM diseases
whose description contain the word “hypertension” for
HT and “diabetes” or “diabetic” for T2D were used as
the collection of reference nodes R in the disease simi-
larity network. For a gene a in OMIM, its disease phe-
notype similarity to R is defined as S(a) = ∑i∑j(sij),
where i is a disease associated with a and ∉ R, disease
j Î R, and sij is the similarity score between diseases
i and j.

Enrichment of GSEA pathways
Pathways were downloaded from the Gene Set Enrich-
ment Analysis (GSEA) molecular signature database [12]
on Oct. 9, 2009. The significance of enrichment was cal-
culated using the Gene Set Enrichment Analysis (GSEA)
software [12].

Differentially expressed genes in microarray experiments
Significantly differentially expressed genes between dis-
ease and control groups were determined using the
RankProd program [39] at proportion of false positive
(pfp) < 0.01 based on log2 fold changes in gene expres-
sion over the controls.

Empirical P values for observed number of interactions
The significance of the observed number of interactions
between two sets of genes was determined by an empiri-
cal P value, which is the frequency for two randomly
selected gene sets to have the same or greater number
of interactions than what was observed.

Fold enrichment
Fold enriched over background is defined as (m/n)/(M/
N), where M genes out of total N genes are disease
related, and within a given gene set with n genes, there
are m genes that are disease related.

Additional material

Additional file 1: Supplemental Materials for Evaluating diabetes
and hypertension disease causality using mouse phenotypes.
Supplemental methods and figures.

Additional file 2: Supplemental Table 1. List of curated HT- and T2D
associated gene sets. List of curated HT- and T2D associated gene sets

Additional file 3: Supplemental Table 2. List of predicted potential
causal genes associated HT and T2D GWAS SNPs. List of predicted
potential causal genes associated HT and T2D GWAS SNPs
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