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Abstract: Chronic obstructive pulmonary disease (COPD) is an incurable and prevalent respiratory
disorder that is characterized by chronic inflammation and emphysema. COPD is primarily caused
by cigarette smoke (CS). CS alters numerous cellular processes, including the post-transcriptional
regulation of mRNAs. The identification of RNA-binding proteins (RBPs), microRNAs (miRNAs), and
long non-coding RNAs (lncRNAs) as main factors engaged in the regulation of RNA biology opens
the door to understanding their role in coordinating physiological cellular processes. Dysregulation
of post-transcriptional regulation by foreign particles in CS may lead to the development of diseases
such as COPD. Here we review current knowledge about post-transcriptional events that may be
involved in the pathogenesis of COPD.
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1. Introduction

Human organ systems rely on the dynamics of gene expression to regulate homeosta-
sis, cell survival, fate and differentiation, as well as responses to stress and environmental
signals [1]. Eukaryotic cells have developed sophisticated mechanisms to produce and use
the transcripts with optimum efficacy through their life cycle. When RNA is synthesized in
the nucleus, its biogenesis, translocation to the cytosol, and interaction with proteins and
other components are necessary to achieve their encoding function. All these steps undergo
post-transcriptional regulation of that initial messenger RNA (mRNA), and these steps
comprise an important part of overall gene and protein expression. Post-transcriptional
regulation is a coordinated process that takes place when the RNA is transcribed, but
before it is translated into protein. Factors that associate with and regulate target mRNAs at
the post-transcriptional level are RNA-binding proteins (RBPs), microRNA (miRNA), and
long non-coding RNA (lncRNA) [2,3]. In mammalian cells, the fate of mRNA is controlled
by almost 2000 RBPs [4] and ~2300 miRNAs [5]. In humans, there are approximately
172,216 lncRNAs [6], and 27,919 lncRNAs have been identified in a variety of human pri-
mary cells [7]. These factors dynamically modulate mRNAs during biological processes,
and their dysregulation is likely to be involved in pathological processes. Cigarette smoke
(CS) causes a variety of chronic lung disorders, including chronic obstructive pulmonary
disease (COPD) and lung cancer. CS is responsible for approximately 70% of COPD cases [8]
and 90% of lung cancer cases [9], and remains a major cause of morbidity and mortality
worldwide. The pathogenesis of diseases associated with smoking involves the dysregu-
lation of numerous cellular and physiological pathways, such as proliferation, apoptosis,
and inflammation [9–14]. These processes are controlled at the post-transcriptional level
via the regulation of mRNAs. In this review, we will discuss RBPs, miRNAs, and lncRNAs
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that regulate the post-transcriptional modifications of mRNAs, and their involvement in
normal physiology. We will then highlight post-transcriptional regulatory mechanisms that
are dysregulated in response to smoke, and, thus, may be implicated in the pathogenesis
of COPD.

2. Post-Transcriptional Regulation of mRNAs
2.1. RNA Binding Proteins (RBPs)

RBPs are a group of over 2000 proteins, each possessing multiple RNA binding
domains, and which are known to be involved in RNA decay [4]. RBPs associate with
RNA transcripts and form ribonucleoprotein (RNP) complexes after transcription. Some
RBPs bind early during RNA synthesis to precursor mRNA (pre-mRNA) and remain
bound to the pre-mRNA until its degradation or translation, whereas other RBPs recognize
and bind to pre-mRNA for specific processes, such as splicing, stability, transport, and
cellular localization [15]. The diversity of RBP functions suggest that several RNA-binding
domains (RBD) are responsible for RNA recognition and for recruitment to specific RNA
targets [16,17]. RBPs contain one or multiple RNA-binding domains, such as the RNA-
recognition motif (RRM), K-homology domain (KH), double-stranded RBD (dsRBD), zinc
fingers (Znf), DEAD box helicase domain, among others. There is diversity in the specificity
and affinity of RBD interaction with RNA [4,18,19]. Some RBPs with dsRBD interact with
the phosphate-sugar backbone of their RNA targets [4,18]. Other RBPs, such as those
with RRMs, interact in a sequence-specific manner with the nucleotide base and shape
complementarity of the RNA [4,18–20]. In this section, we will explore the role of RBPs in
different aspects of RNA biology.

2.1.1. Biological Functions of RBPs

RBP-mediated post-transcriptional regulation is essential for proper cellular function,
and its perturbation can lead to the development of disease. For example, the fragile
X syndrome of mental retardation is caused by a defect in the RBP fragile X mental
retardation protein, which is important for normal brain development [21]. The fate of RNA,
from transcription to translation, is highly dependent on RBP-mediated polyadenylation,
pre-mRNA splicing, as well as mRNA editing, turnover, subcellular localization, and
translation (Figure 1).
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Figure 1. Cellular functions of RBPs. RBPs are involved in post-transcriptional regulation of target mRNAs. Pre-mRNA 
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(2), and mRNA editing (3). RBPs can also regulate mRNA stability (4) and mRNA subcellular localization (5) within the 
cell in SGs or P-bodies, as well as mRNA translation into proteins (6). Pre-mRNA, precursor mRNA; SGs, stress granules; 
P-bodies, processing-bodies. Created with BioRender.com. 
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Polyadenylation of pre-mRNA is an essential processing event for RNA nuclear ex-
port, stability, and translation. Polyadenylation is a maturation step in which all pre-
mRNAs in eukaryotic cells, except mRNA encoding histones, receive poly(A) tails of 
around 200 adenine (A) nucleotides to their 3’ end by a multiprotein machinery complex 
[22,23]. This occurs in a coupled cleavage reaction whereby the pre-mRNA is first cleaved 
between AAUAAA sequences upstream and U/GU rich sequences downstream of the 
cleavage site, followed by the addition of a polyadenosine tail. The cleavage and polyad-
enylation machinery consists of four multi-subunit protein complexes: the cleavage and 
polyadenylation specificity factor (CPSF); the cleavage stimulation factor (CstF); and 
mammalian cleavage factors I and II (CFIm and CFIIm) [24]. The CPSF protein complex 
consists of six protein subunits that are vital for cleavage of pre-mRNA and interaction 
with AAUAAA sequences [23,24]. CstF consists of three subunits that interact with the 
downstream element and upstream site of the pre-mRNA [22,24,25]. CFIm and CFIIm are 
required for the cleavage step [25,26]. Then, poly (A) polymerase, stimulated by CPSF and 
the RBP nuclear poly(A) binding protein (PABPN1), adds the poly(A) tail to the cleavage 
product of the synthesized pre-mRNA molecule to produce mature mRNA [27,28]. The 
best-characterized mRNA-stabilizing factor, hu antigen R (HuR)/embryonic lethal abnor-
mal vision Drosophila-like (ELAVL1), is also involved in the polyadenylation step. HuR is 
a ubiquitously-expressed RBP which is predominantly nuclear, but shuttles between the 
nucleus and cytoplasm. HuR blocks polyadenylation of the simian virus 40 late (SVL) 
poly(A) site that has U-rich sequences both upstream and downstream of the cleavage 

Figure 1. Cellular functions of RBPs. RBPs are involved in post-transcriptional regulation of target
mRNAs. Pre-mRNA is first transcribed from the DNA. Then, RBPs regulate the production of mature
mRNA via polyadenylation (1), splicing (2), and mRNA editing (3). RBPs can also regulate mRNA
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stability (4) and mRNA subcellular localization (5) within the cell in SGs or P-bodies, as well as
mRNA translation into proteins (6). Pre-mRNA, precursor mRNA; SGs, stress granules; P-bodies,
processing-bodies. Created with BioRender.com.

Polyadenylation

Polyadenylation of pre-mRNA is an essential processing event for RNA nuclear
export, stability, and translation. Polyadenylation is a maturation step in which all pre-
mRNAs in eukaryotic cells, except mRNA encoding histones, receive poly(A) tails of
around 200 adenine (A) nucleotides to their 3’ end by a multiprotein machinery com-
plex [22,23]. This occurs in a coupled cleavage reaction whereby the pre-mRNA is first
cleaved between AAUAAA sequences upstream and U/GU rich sequences downstream
of the cleavage site, followed by the addition of a polyadenosine tail. The cleavage and
polyadenylation machinery consists of four multi-subunit protein complexes: the cleavage
and polyadenylation specificity factor (CPSF); the cleavage stimulation factor (CstF); and
mammalian cleavage factors I and II (CFIm and CFIIm) [24]. The CPSF protein complex
consists of six protein subunits that are vital for cleavage of pre-mRNA and interaction
with AAUAAA sequences [23,24]. CstF consists of three subunits that interact with the
downstream element and upstream site of the pre-mRNA [22,24,25]. CFIm and CFIIm are
required for the cleavage step [25,26]. Then, poly (A) polymerase, stimulated by CPSF and
the RBP nuclear poly(A) binding protein (PABPN1), adds the poly(A) tail to the cleavage
product of the synthesized pre-mRNA molecule to produce mature mRNA [27,28]. The
best-characterized mRNA-stabilizing factor, hu antigen R (HuR)/embryonic lethal abnor-
mal vision Drosophila-like (ELAVL1), is also involved in the polyadenylation step. HuR
is a ubiquitously-expressed RBP which is predominantly nuclear, but shuttles between
the nucleus and cytoplasm. HuR blocks polyadenylation of the simian virus 40 late (SVL)
poly(A) site that has U-rich sequences both upstream and downstream of the cleavage
site. This leads to a decrease of SVL poly(A) site-containing mRNA, and an increase of
pre-mRNA levels [29].

Pre-mRNA Splicing

Splicing of pre-mRNA is a step of gene expression in which introns (noncoding se-
quences) are removed, and exons (coding sequences) are assembled by the spliceosome.
The spliceosome is a ribonucleoprotein complex composed of five small nuclear RNAs (snR-
NAs), U1, U2, U4, U5, and U6, and more than 50 protein factors, such as U2 auxiliary factor
and SR (serine-arginine rich) proteins [30,31]. Some exons are constitutively spliced [32].
However, many exons are alternatively spliced, in which more than one mRNA can be
generated from a single pre-mRNA. At least 74% of human multi-exon genes express
several mRNAs through alternative splicing (AS) [33]. Studies using high-throughput
sequencing showed that ~95% of multi-exon genes undergo AS [34,35]. RBPs also reg-
ulate this process, including SR proteins and heterogeneous nuclear ribonucleoproteins
(hnRNPs) [36]. In human cells, hnRNPs are the most abundant RBPs that regulate AS
of pre-mRNAs. Genome-wide analysis showed that more than half of all AS events are
regulated by six major hnRNP proteins: A1; A2/B1; H1; F; M; and U [37]. One of the
RBPs involved in this process is HuR, which can promote exon 6 skipping of the apoptosis
receptor Fas pre-mRNA through the inhibition of the U2 auxiliary factor 65 kDa association
with the upstream 3’ splice site—this leads to the production of the soluble isoform of Fas
that prevents apoptosis [38].

mRNA Editing

RNA editing is a type of RNA modification characterized by the alteration of site-
specific RNA sequences from that encoded in DNA [39]. The RNA codon and protein
sequence are changed if the editing occurs in the coding region [40]. When editing occurs in
the noncoding regions, it may affect splicing, stability, or translation of the mRNA [41,42].
RNA editing, mediated by adenosine deaminases acting on RNA (ADAR) proteins, in-
volves adenosine (A) deamination to inosine (I) that is then recognized as guanosine by the
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translational apparatus [39,41,43,44]. ADARs contain two or three RNA binding domains
(RBDs), and a highly conserved deaminase domain [45]. Three ADAR proteins, ADAR1,
ADAR2, and ADAR3, are present in humans [44–47]. A-to-I editing can occur in noncoding
regions of the RNA, in Alu repeats, which are good substrates for ADAR proteins [42,48,49].

mRNA Turnover

The translation of mRNA is coupled with its stability and decay. RBPs that regu-
late mRNA stability are either mRNA decay activators or mRNA stabilizers. Activators
of mRNA decay recognize the constitutive decay AU- and GU-rich elements of their
target mRNAs, and affect its cellular levels by several mechanisms [50]. For example,
tristetraprolin (TTP), also known as zinc finger protein 36, is an RBP that promotes
mRNA decay [51]. TTP promotes deadenylation of tumor necrosis factor alpha (TNF-
α) mRNA and its degradation upon exposure to lipopolysaccharide (LPS) [52–54]. TTP
also downregulates numerous inflammatory mRNAs, such as interleukin (IL)-6, IL-2, and
cyclooxygenase-2 (COX-2/ PTGS2) [55–57]. Other RNA-binding proteins implicated in
mRNA decay include KH-type splicing regulatory protein (KSRP) [58], Roquin [59], and
ARE/poly(U)-binding/degradation factor 1 (AUF1) [60–62]. Conversely, other RBPs act
as mRNA stabilizers, and impede mRNA degradation. One of the best known RBPs with
a regulatory influence on mRNA stability is HuR. Besides HuR regulation of pre-mRNA
polyadenylation and splicing, HuR also targets mRNAs which have U- or AU-rich ele-
ments (AREs) in the 3’-untranslated region (UTR)—these mRNA typically encode proteins
involved in cell proliferation, differentiation, migration, apoptosis, inflammation, and
fibrosis [63–70].

mRNA Subcellular Localization

Localization of mRNA is critical for protein synthesis. Stress granules (SGs) and
processing (P-) bodies are cytoplasmic RNA granules consisting of aggregates of ribonucle-
oprotein complexes. SGs and P-bodies are assembled in stressed and in unstressed cells,
respectively [71]. SGs sequester mRNAs for storage and translational silencing [72]. In this
context, HuR also regulates the subcellular localization of mRNAs. In human osteoarthritis
chondrocytes, for example, in response to IL-1β, PTGS2 mRNA is sequestered in SGs by
HuR, thereby decreasing protein levels due to a delay in translation [73]. SGs also contain
other RPBs involved in RNA metabolism, including poly(A)-binding protein (PABP), T-cell
intracellular antigen 1 (TIA-1), and TTP [74]. In contrast, P-bodies contain mRNAs targeted
for degradation, and the RBPs are involved in this process [75]. For instance, Roquin sup-
presses inducible co-stimulator (ICOS) expression, which prevents autoimmunity through
its association with P-bodies in T-helper cells [76].

mRNA Translation

The regulation of mRNA translation controls gene expression in the cytoplasm. Nu-
merous proteins, including RBPs, regulate mRNA location and assembly into ribosomes
for protein synthesis. For example, the RBP PABP that binds to stable mRNA also interacts
with eukaryotic initiation factors 4E (eIF4E), whereby the 48S and 80S ribosome initiation
complex are assembled and translation is initiated [77]. Another example is the RBP TIA-
1, which represses translation of various mRNAs, including PTGS2 mRNA [78]. Some
RBPs can inhibit or promote translation depending on the context. HuR promotes the
translation of prothymosin α, an enhancer of cell survival, in response to irradiation [79],
but can inhibit the translation of p27, a cyclin-dependent kinase inhibitor, and Wnt5a, a
non-transforming Wnt protein, during proliferation and oncogenesis, respectively [80,81].

2.2. miRNAs

miRNA are small non-coding RNAs (~22 nucleotides) that affect gene expression [82,83].
In the nucleus, miRNAs are synthesized from primary miRNA which are processed to
precursor miRNA (pre-miRNA) by ribonuclease III (RNase III), Drosha, and the RBP
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DiGeorge syndrome critical region 8 (DGCR8). The resulting pre-miRNA is exported to
the cytoplasm by the nuclear transport factor exportin-5. The pre-miRNA is then further
processed to ~22-nt miRNA by Dicer, another RNase III enzyme [83,84]. miRNAs pair to
the 3′ UTR of mRNA by partial sequence matching after being incorporated into the RNA-
induced silencing complex (RISC). This leads to direct post-transcriptional repression by
inhibiting translation and/or inducing mRNA decay [85,86]. In 1993, lin-4, a developmental
regulator, was the first miRNA identified in Caenorhabditis elegans [87,88]. At the present
time, about 2300 miRNAs have been discovered in humans, around half of which are
annotated in miRbase [5]. The importance of the RNA interference (RNAi) machinery in
mammals is highlighted in studies where Dicer or DGCR8 were knocked out, leading to
embryonic lethality [89,90].

Biological Function of miRNAs

The function of miRNAs has been explored in murine knockout models, which have re-
vealed important roles for miRNA in various biological processes, including development
and immunity. For example, targeted ablation of miRNA-1-2, a muscle-specific miRNA,
leads to cardiac morphogenetic and electrophysiologic defects [91]. Furthermore, the knock-
out of miRNA-155 causes defects in adaptive immunity [92]. miR-223 is a myeloid-specific
miRNA that targets Mef2c, a transcription factor which promotes myeloid progenitor
proliferation. miR-223 null mice have marked neutrophilia, and, consequently, develop
pulmonary inflammation and exaggerated tissue destruction in response to LPS [93]. Some
miRNAs have multiple essential functions. An example is miR-17~92: these knockout mice
die postnatally with heart defects and lung hypoplasia, but also exhibit defects in B cell
development [94].

2.3. LncRNA

LncRNA are a class of ncRNA that are more than 200 nucleotides in length and do not
translate into protein [95–97]. lncRNAs can be classified based on their genomic proximity
to protein-coding genes [97,98]. lncRNA are sub-grouped into five main classes, includ-
ing: (1) antisense lncRNAs or natural antisense transcripts (NATs); (2) sense lncRNAs;
(3) intronic lncRNAs; (4) long intergenic RNAs (lincRNAs); and (5) bidirectional lncR-
NAs [97,98]. The most common classes of lncRNAs in humans are antisense and intergenic
lncRNAs [98].

Biological Function of lncRNA

Based on the molecular mechanisms of action, lncRNA can also be categorized as
decoy, scaffold, and guide [97,99]. Decoy lncRNA bind and capture different molecules,
including proteins, transcription factors, and other regulatory RNA, which results in
inhibition of functions [97,99]. Decoy lncRNA can positively or negatively affect tran-
scription [97,99]. Decoy lncRNA can titrate and prevent transcription factors or repressors
from binding their target gene promoters [97,99]. Scaffold lncRNA have binding sites
that interact with distinct effector molecules, and, thus, can serve as a platform for con-
necting various protein complexes [97,99]. lncRNA can also guide chromatin to specific
genomic regions to regulate gene expression [100–102], increase DNA methylation by
binding with DNA methyltransferases [103], participate in AS by directly interacting with
splicing factors or proteins [104], or directly interact with either RNA polymerase II (Pol
II) or transcription factors [100,101,105]. lncRNA can also regulate post-transcriptional
events [100,101,105] to control mRNA function by changing its stability, splicing patterns,
and translation [105]. lncRNA can alter mRNA stability by interacting with a specific
sequence motif of an RBP, resulting in the formation of lncRNA-protein complexes [106].
As such, lncRNA have numerous cellular functions including regulating proliferation,
differentiation, and survival.
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3. Post-Transcriptional Regulation in COPD
3.1. COPD Pathogenesis

COPD is a leading cause of chronic morbidity and mortality worldwide [107]. The
World Health Organization (WHO) lists COPD as the third leading cause of death [108],
with its prevalence expected to increase by more than 30% in the coming decade. The
Global Initiative for Chronic Obstructive Lung Disease (GOLD) defines COPD as a lung
disease characterized by progressive and irreversible airflow limitation, which is usually
associated with an abnormal inflammatory response in the airways and lungs to noxious
particles or gases. The clinical presentation in COPD patients includes cough, sputum
production, and/or dyspnea [109]. Chronic airflow limitation is due to both emphysema,
which is the irreversible destruction of the gas-exchanging alveoli, and chronic bronchitis,
a disease entity characterized by the presence of a productive cough for at least three
consecutive months during the last two consecutive years [110]. The risk factors for the
development of COPD include a combination of genetic susceptibility and exposure to
environmental toxicants [111].

The main cause of COPD is CS [111]. Globally, there are around 1.3 billion tobacco
smokers [112]. CS is a complex combination of thousands of chemicals (approximately
7000 individual components) of which at least 158 have known toxicological proper-
ties [113,114]. The components with the strongest correlations to disease development are
polycyclic aromatic hydrocarbons (PAHs) and N-nitrosamines. Other components that
are associated with pulmonary toxicity include free radicals, catechols, and aldehydes [9].
Beyond CS, additional risk factors for COPD include childhood asthma and respiratory
infections, exposure to ambient and biomass air pollution, exposure to second-hand smoke,
and occupational exposure to dust and fumes [8,110,111,115]. Genetic factors are associ-
ated with the development of COPD. The most notable of these is deficiency of alpha-1
antitrypsin (α1AT), which accounts for approximately 1–2% of COPD cases [111,115]. Clin-
ical symptoms can develop in patients many years after starting smoking, with COPD
commonly diagnosed in people over the age of 50 years, with the highest frequency at
approximately 70 years [116].

Mechanistically, the development of COPD is initiated by inflammation caused by
repeated exposure to CS, which induces a pulmonary inflammatory response in several cell
types, including epithelial cells, fibroblasts, and macrophages [10–12]. Repeated exposure
to CS leads to the additional recruitment of innate and adaptive immune cells, including
neutrophils, macrophages, and lymphocytes. This, in turn, amplifies the expression of in-
flammatory mediators, such as TNF-α, IL-6, C-C motif ligand 2 (CCL2), CCL7, C-X-C motif
ligand 1 (CXCL1), CXCL5, CXCL8 (IL-8), leukotriene (LT) B4, and COX-2 [11,117–122]. In
addition to inflammation, other pathogenic mechanisms involved in COPD include an
imbalance between proteases and antiproteases, as well as heightened oxidative stress in
the lungs [123]. Repeated exposure to CS causes the release of proteases. The increased
production of lung proteases, such as neutrophil elastase (NE), and the resulting apoptosis
of alveolar septal cells lead to the destruction of alveolar walls, causing emphysema [124].
Moreover, proteases, such as NE, cathepsin G, and proteinase-3 promote mucus secretion
by increasing the number of goblet cells, stimulating degranulation in these cells, and
causing the enlargement of submucosal glands. The combination of mucus hypersecretion,
inflammation in the airway walls and lumen, fibrosis formation around the small airways,
and loss of lung elastic recoil leads to the narrowing of these airways, leading to airflow
obstruction [118,124,125] (Figure 2). Finally, the inflammation in COPD further increases
during acute exacerbations, which are defined as a worsening of day-to-day symptoms,
and are predominantly caused by bacterial or viral infection [117]. Exacerbations in COPD
are strongly correlated with an increase in hospitalization and mortality, and a decrease in
lung function [116].
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tory cells, such as neutrophils, macrophages, and lymphocytes, to the site of exposure. This augments the expression of 
inflammatory mediators, such as TNF-α, IL-6, CCL2, CCL7, CXCL1, CXCL5, CXCL8 (IL-8), LTB4, and COX-2, and releases 
proteases, such as NE, cathepsins, and MMPs. This cascade of events can lead to chronic pulmonary inflammation, airflow 
obstruction, and alveolar wall destruction (emphysema) in a susceptible individual. Created with BioRender.com. 
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has emerged as an important factor in the overall regulation of gene and protein expres-
sion in response to environmental exposures. A better understanding of the mechanistic 
underpinnings of post-transcriptional regulation of mRNA could lead to the development 
of new targeted therapies for COPD. Here, we summarize the current state-of-knowledge 
of post-transcriptional regulation that is applicable to pathogenic mechanisms implicated 
in the response to CS and in the development of COPD.  

3.2. RBPs  
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RBPs appear to play a role in the cellular response to CS. We have previously shown 
that lung fibroblasts produce COX-2 in response to CS [11,121], and that the aryl hydro-
carbon receptor (AhR) destabilizes PTGS2 mRNA by preventing HuR translocation into 
the cytoplasm [127]. It is now well-described that COX-2, and other inflammatory media-
tors that are increased in COPD [11,117–122], are regulated by HuR [128]. Furthermore, 
HuR controls IL-8 secretion from human bronchial epithelial cells exposed to cigarette 
smoke extract (CSE) in combination with human rhinovirus (HRV) [129]. HRV infection 
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Figure 2. Overview of the etiology and pathogenesis of COPD. Risk factors for the development of COPD include:
cigarette smoke; air pollution; occupational exposures; childhood asthma; respiratory infections; and alpha 1-anti-trypsin
(α1AT) deficiency. Upon exposure to inhaled toxicants, lung structural cells, including epithelial cells and fibroblasts, as well
as alveolar macrophages, are activated. These cells produce inflammatory mediators to recruit additional inflammatory cells,
such as neutrophils, macrophages, and lymphocytes, to the site of exposure. This augments the expression of inflammatory
mediators, such as TNF-α, IL-6, CCL2, CCL7, CXCL1, CXCL5, CXCL8 (IL-8), LTB4, and COX-2, and releases proteases, such
as NE, cathepsins, and MMPs. This cascade of events can lead to chronic pulmonary inflammation, airflow obstruction, and
alveolar wall destruction (emphysema) in a susceptible individual. Created with BioRender.com.

No disease-modifying therapies exist for COPD. After smoke exposure and in COPD,
transcriptional regulation alters the expression of inflammatory mediators, such as IL-6,
COX-2, TNF-α, IL-1β, and IL-8 [126]. However, post-transcriptional regulation of mRNA
has emerged as an important factor in the overall regulation of gene and protein expres-
sion in response to environmental exposures. A better understanding of the mechanistic
underpinnings of post-transcriptional regulation of mRNA could lead to the development
of new targeted therapies for COPD. Here, we summarize the current state-of-knowledge
of post-transcriptional regulation that is applicable to pathogenic mechanisms implicated
in the response to CS and in the development of COPD.

3.2. RBPs
3.2.1. The Response of RBPs to CS

RBPs appear to play a role in the cellular response to CS. We have previously shown
that lung fibroblasts produce COX-2 in response to CS [11,121], and that the aryl hydrocar-
bon receptor (AhR) destabilizes PTGS2 mRNA by preventing HuR translocation into the
cytoplasm [127]. It is now well-described that COX-2, and other inflammatory mediators
that are increased in COPD [11,117–122], are regulated by HuR [128]. Furthermore, HuR
controls IL-8 secretion from human bronchial epithelial cells exposed to cigarette smoke ex-
tract (CSE) in combination with human rhinovirus (HRV) [129]. HRV infection is a common
trigger of virus-associated COPD exacerbations that are correlated with persistent lung
inflammation [130,131]. Thus, HuR may be involved in the early pathogenic events, such
as inflammation, that are associated with the development of COPD and/or exacerbations.

Another RBP that has been studied in the context of smoking is RNA-binding mo-
tif protein 5 (RBM5). The gene of RBM5, also known as H37 or Luca15, located in
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chromosomal region 3p21.3, is frequently deleted in heavy smokers and lung cancer
patients [132,133]. Rbm5 loss-of-function (heterozygous) mice exposed to the tobacco car-
cinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) develop more aggressive
lung cancer [134]. In cells exposed to CSE, RBM5 mRNA and protein levels are decreased,
and β-catenin is increased. β-catenin is a key player in canonical Wnt signaling, whose
activation induces genes involved in cell differentiation [135]. β-catenin is increased in
proximal airway epithelium in COPD, with activation of Wnt/β-catenin signaling increas-
ing epithelial-to-mesenchymal transition (EMT) [136]. EMT is a process where epithelial
cells gradually lose cellular polarity and adhesiveness, and acquire migratory capacity
and invasiveness, like that in a mesenchymal phenotype. EMT is increased in bronchial
epithelial cells from COPD patients, which contributes to fibrosis formation around the
small airways, leading to airflow obstruction [137]. Although the evidence is indirect, these
studies raise the prospect that RBM5 could regulate EMT in COPD through the β-catenin
pathway. At this writing, the expression and function of RBM5 in COPD is unknown.

3.2.2. The Regulation of RBPs in COPD

Elucidation of changes in the expression and the function of RBPs may suggest puta-
tive pathogenetic roles for them. Targeting RBPs could also be a novel therapeutic strategy.
However, only a handful of studies directly investigate RBPs in COPD. One of these was a
genome-wide association study which identified iron-responsive element binding protein
2 (IRP2 or IREB2), an RNA-binding protein that regulates cellular iron homeostasis, as
a COPD susceptibility gene. IRP2 mRNA and protein levels are elevated in lungs from
COPD subjects [138–141], and IRP2 expression is increased in the lungs of mice chronically
exposed to CS. Furthermore, the knockout of IRP2 protected mice from CS-induced pul-
monary inflammation and impairment of airway mucociliary clearance. Mechanistically,
IRP2 in the lungs induces mitochondrial dysfunction by promoting mitochondrial iron
loading and cytochrome c oxidase [142]. Previous observations have shown that iron
deposition is increased in lungs from severe COPD patients, as well as in response to
CS [143,144], which may be regulated by the elevation of IRP2.

Another RBP studied in the context of COPD is HuR, where its expression is increased
in the airway epithelium from smokers with or without COPD [145]. This suggests that this
increase is likely due to smoking, a notion further supported by a separate study showing
that HuR expression is similar in the bronchial epithelium from both COPD subjects and
smokers without COPD [146]. Mechanistically, recent studies support a role for HuR in the
pathogenesis of COPD. For example, HuR stabilizes zinc finger E-box binding homeobox
1 (ZEB-1), a transcription factor involved in EMT. The expression of ZEB-1 is increased in
the airway epithelium from COPD [145]. This suggests the possibility that HuR may be
involved in the pathogenesis of COPD by regulating EMT.

Finally, the RBP AUF1, which participates in mRNA decay, is decreased in the
bronchial epithelium from COPD subjects compared to smokers without COPD. Analysis
of a microarray from a primary airway epithelium of COPD revealed that AUF1 target
genes are upregulated, including those associated with inflammation [146]. Although
this suggests that AUF1 may regulate the expression of inflammatory genes involved in
COPD, direct regulation by AUF1 of these downstream mRNA, and its implications for
the pathogenesis of COPD, remain to be investigated. Recently, a mapping profile of RBPs
indicated that most RBP genes are downregulated in the small airway epithelium of those
with COPD, comparing to non-smokers and smokers [147]. Overall, these studies raise
the possibility that RBPs may be involved in the development of COPD. As little is known
about the direct role of RBPs in COPD per se, below we summarize studies which have
examined related mechanisms associated with the development of this disease.

RBPs in Inflammation

CS causes direct damage to airway and alveolar epithelial cells, which leads to the
recruitment of inflammatory cells, and the release of numerous inflammatory mediators,
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including TNF-α [9,11,117–121,148], the overexpression of which induces pulmonary in-
flammation and airspace enlargement [149]. An RBP known to regulate TNF-α expression
is TTP. TTP is generally an anti-inflammatory RBP, as TTP knockout mice have a proin-
flammatory phenotype [150]. TTP promotes mRNA decay of TNF-α by binding to AREs
present within the 3’ UTR [52]. TTP also destabilizes other mRNAs associated with in-
flammation, including PTGS2, IL-6, CXCL8, and CCL2 [151,152]. Glucocorticoids, which
are used clinically in COPD, elevate mRNA and protein levels of TTP that are crucial for
glucocorticoid-mediated inhibition of TNF-α mRNA [153]. Glucocorticoid inhibition of
other inflammatory genes, including CCL2, CCL7, CXCL1, and CXCL5, is also abrogated in
TTP-knockout cells [154]. Overall, these studies suggest that TTP target mRNAs encode
proteins responsible for the inflammatory response associated with COPD.

AUF1 is another RBP that induces the decay of target mRNAs, including TNF-α. AUF1
knockout mice are susceptible to endotoxin challenge due to TNF-α and IL-1β overproduc-
tion [155]—these mice also exhibit chronic dermatitis with age, concomitant with TNF-α
and IL-1β overexpression [156]. Given that AUF1 expression is decreased in COPD [146],
and that many inflammatory mediators regulated by AUF1 are also upregulated in COPD,
it is possible that dysregulation of AUF1 may contribute to the inflammatory response
associated with this disease.

While AUF1 and TTP may be important in controlling inflammation by promoting
mRNA decay, other RBPs, such as HuR, stabilize mRNA associated with inflammation,
such as CCL2 and TNF-α, in pulmonary epithelial cells [69], as well as macrophages [157].
HuR itself is also activated by TNF-α, as evidenced by its translocation to the cytoplasm
following treatment with TNF-α and IL-4 to regulate CCL-11 (eotaxin) mRNA levels [158].
This may be relevant in the context of COPD, as eotaxin is an inflammatory chemokine
whose expression is elevated in blood from COPD patients [159]. Thus, these studies high-
light HuR as a key player in post-transcriptional gene regulation of inflammatory mRNAs.

RBPs in Apoptosis and Protease Expression

Emphysema is characterized by the loss of lung structural cells, including alveolar
epithelial cells and fibroblasts [109,160]. Mechanistically, emphysema is thought to develop
because of CS-induced apoptotic cell death [13,14]. Evidence for this comes from studies
where intra-tracheal administration of active caspase-3 induced epithelial cell apoptosis,
elastolytic activity in bronchoalveolar lavage (BAL), and airspace enlargement in mouse
lungs [161]. Other proteins, such as vascular endothelial growth factor (VEGF), help
alveolar cells withstand damage by CS. Experimentally, the blocking of VEGF receptors
stimulates apoptosis of alveolar cells, and induces an emphysema-like pathology [162,163].
In COPD, the level of VEGF is decreased, which may be a contributing factor to the
development of emphysema in people [164]. Many of the RPBs mentioned above that
regulate inflammation also have roles in apoptosis. For example, TTP destabilizes VEGF
mRNA [165]. In contrast, hnRNP L stabilizes VEGF expression [166]. hnRNP L is a multi-
functional splicing factor that is involved in the regulation of alternate splicing and mRNA
stability [166,167]. Interestingly, the knockout of hnRNP L in hematopoietic stem cells
causes cell death through caspase-dependent pathways [168], raising the possibility that
the downregulation of VEGF and upregulation of cell death in COPD could be regulated
by hnRNP L.

In addition to aberrant cell death, lung tissue destruction in COPD is mediated by
proteases. Activated neutrophils are a potent source of proteases, such as NE, cathepsin G,
proteinase-3, MMP-8, and MMP-9, all of which can contribute to the destruction of alveolar
walls [169,170]. Macrophages also secrete MMP-9 and MMP-12, as well as cathepsins L
and S [171]. RBPs implicated in the regulation of proteases include TTP, which destabilizes
MMP-9 and MMP-2 mRNAs [172], and HuR, which binds to MMP-9 mRNA to stabilize
its expression [173]. Changes in the expression of RBPs can greatly impact their function
and, thus, regulation of protease expression. For example, nitric oxide and IL-10 can both
reduce HuR expression and its subsequent binding to MMP-9 mRNA [174,175].



Int. J. Mol. Sci. 2021, 22, 11963 10 of 24

3.2.3. Interplay of RBPs

Dynamic interactions between RBPs may fine-tune post-transcriptional modifications
of common mRNAs. RBPs can either cooperate or compete to bind target mRNAs. For
example, ADAR1 cooperates with HuR, and forms an RNA-dependent complex, which
regulates the stability of ADAR1 targets in human B cells [176]. ADAR1 mediates A-to-
I editing of cathepsin S (CTSS) [177], a cysteine protease associated with the remodel-
ing/degradation of connective tissue and basement membrane [178]. HuR also binds to the
3′ UTR of CTSS mRNA, and controls its stability and expression [177]. Interestingly, CTSS
is elevated in smokers and COPD patients [179]. HuR and TIA-1 can also interact to impact
mRNA encoding programmed cell death 4 (PDCD4), a tumor suppressor that induces apop-
tosis. Here, increasing TIA-1 prevents HuR from binding to the PDCD4 mRNA, whereas
decreasing TIA-1 induces HuR binding to the PDCD4 mRNA [180]. Furthermore, TTP
interacts with PABP1 in activated primary mouse bone-marrow-derived-macrophages, and
represses the translation of TTP target mRNAs involved in the inflammatory response [181].
Together, these studies illustrate the interplay of RBPs in the regulation of various post-
transcriptional processes involved in physiological and pathological mechanisms.

3.3. miRNA

Another aspect of post-transcriptional regulatory mechanisms of relevance for smoke-
induced lung disease are miRNAs. Thus, miRNAs are being pursued as therapeutic targets
or, through their utility, as a diagnostic tool. For example, let-7, miR-206, and miR-16 are
downregulated in lung cancer. The observation of miR-16 is of interest, as overexpression
of miR-16 prevents cell proliferation and invasion [182–185]. Interestingly, a miR-16 mimic
(the TargomiR drug, MesomiR-1) is in a phase 1 trial for patients with malignant pleural
mesothelioma and lung cancer. Thus far, this trial has shown safety, as well as initial
signs of response [186,187]. These studies suggest that miRNAs play a key role in the
progression of diseases, and that targeting miRNAs as a diagnostic or as a therapeutic
target for disease is attractive. Numerous studies have now comprehensively interrogated
changes in miRNA expression caused by smoking and/or in COPD [188–206]. Smoking
alters miRNA expression, as shown by observations in human smokers, as well as in lungs
of mice and rats exposed to CS [190,191]. One such study showed that 34 miRNAs are
differentially expressed between never-smokers, smokers, and COPD subjects, including
8 miRNAs that were downregulated when compared with never-smokers [197]. Some
miRNAs are altered in the context of COPD itself, and the nature of this dysregulation
may be cell-type specific, as observed for miR-199a-5p. Though miR-199a-5p expression is
reduced in T-cells from COPD patients [198], miR-199a-5p expression is elevated in lung
tissue [199].

As the severity of COPD increases, miRNA expression changes. For example, miR-
206, miR-133a-5p, and miR-133a-3p are upregulated in extracellular vesicles of plasma
from moderate COPD patients compared to mild and severe patients—these miRNAs are
involved in hundreds of biological processes that are associated with COPD features [196].
miRNAs are differentially expressed based on emphysema severity, and these changes
correlate with the changes in the expression of their predicted mRNA targets [205]. Some
of the miRNAs altered by emphysema severity include miR-34c, miR-34b, miR-133b, and
miR-149, which are reduced in lung tissue from COPD patients with moderate emphysema
compared to mild disease [206]. Thus, there is differential expression of miRNAs in COPD
and/or in response to CS [188–206], which may, in turn, perturb downstream pathways
controlling pathological processes, such as inflammation and cell survival.

3.3.1. miRNA and Pathogenic Mechanisms of COPD

Experimental studies profiling miRNA expression have shed light on the possible
biological significance of dysregulated miRNA to COPD pathogenesis, including their
ability to regulate smoke-induced inflammation. In one such study of miRNA expression
in current and never-smokers’ bronchial airway epithelium, it was found that 28 miRNAs
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are differentially expressed. The most downregulated miRNA in smokers was miR-218—
its expression is also decreased in primary bronchial epithelial cells exposed to cigarette
smoke condensate [188]. The mature form of miR-218 is generated from two separate
loci, miR-218-1 and miR-218-2 [207]. miR-218 targets MAFG, a transcription factor that is
elevated in smokers and in response to CS [188], and induces pro-inflammatory gene tran-
scription [208]. miR-218-5p (miR-218-2) is also significantly downregulated in lung tissue
from smokers and COPD patients, as well as in response to experimental smoke exposure.
Overexpression of miR-218-5p in normal human bronchial epithelial cells exposed to CSE
reduces the mRNA and the protein levels of CCL20 and CXCL8 [200], chemokines that
are involved in the pathogenesis of COPD [118,209]. Furthermore, inhibiting miR-218-5p
in mice exposed to smoke worsens smoke-induced inflammation [200]. These findings
indicate an important role of miR-218-5p in the CS-induced inflammatory response.

Other miRNA implicated in regulating inflammation are miR-181c, miR-145, miR146a, and
miR-16, all of which are downregulated in response to CS and/or in COPD [190,201,202,210].
Overexpression of miR-181c in mice exposed to CS reduces neutrophil infiltration, in con-
junction with IL-6 and CXCL8 expression in the lungs. Overexpression of miR-181c in
primary human bronchial epithelial cells treated with CSE also decreases IL-6 and CXCL8
expression [201]. miR-145 is also downregulated in the lungs of mice exposed to CS [190].
Outside the lungs, miR-145 overexpression represses the release of IL-6 and CXCL8 [211],
as well as VEGF and MMP-9 [212]. Finally, miR-146a is downregulated in the serum of
COPD patients with acute exacerbations when compared with stable COPD patients and
healthy controls, which, in turn, is negatively correlated with inflammatory cytokines [202].
Mechanistically, we found that miR-146a suppresses cigarette smoke-induced COX-2 pro-
tein expression in murine lung fibroblasts [203]. miR-146a also suppresses COX-2 in lung
fibroblasts from COPD subjects upon IL-1β/TNF-α stimulation, and, therefore, reduces
prostaglandin (PG)E2 production [204]. miR-16 is another miRNA whose expression is
decreased in lung fibroblasts from heavy smokers and COPD patients compared to those
from non-smokers [210]—miR-16 also silences COX-2 [213]. These findings suggest that
the loss of this miRNA can eventually enhance COX-2 expression in response to smoke.

Other miRNAs are increased by smoking, include miR-101, miR-144 [192], miR-
135b [193,194], and miR-223. miR-223 leads to a decrease in histone deacetylase 2 (HDAC2)
expression, which alters the expression of pro-inflammatory chemokines [195]. miR-101
and miR-144 are higher in human bronchial epithelial cells exposed to CS, and suppresses
expression of the cystic fibrosis transmembrane regulator (CFTR), a chloride channel which
maintains airway surface fluid homeostasis [192]. miR-101 is also upregulated in lungs of
mice exposed to CS [192].

Alveolar macrophages are among the first cell types to respond to smoke inhalation, as
these innate immune cells patrol the luminal surface of alveoli [171]. Alveolar macrophages
are implicated in the development of COPD, and show impaired phagocytosis of pathogens
and efferocytosis of apoptotic cells, a feature that might contribute to worsening inflamma-
tion [171,214]. Smoking also changes miRNA expression in alveolar macrophages [189]. In
alveolar macrophages from current and never smokers, 43 miRNAs are downregulated in
smokers. One of these miRNAs is miR-452. Mechanistically, inhibition of miR-452 induces
the expression of MMP-12 [189], a protease that is upregulated in alveolar macrophages
from smokers [189,215].

In addition to miRNA playing fundamental roles in inflammation, many miRNAs are
also implicated in regulating cell survival. Both miR-23a and miR-421, for example, repress
caspase-9 and caspase-3, respectively [216,217]. miR-421 is downregulated in response
to smoke [191], whereas the activity of caspase-3 is increased by smoke exposure [218].
This raises the possibility that downregulation of miR-421 in response to smoke may
upregulate apoptosis.
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3.3.2. Interplay of RBPs with miRNAs

miRNAs and RBPs interact to further fine-tune post-transcriptional regulatory mech-
anisms. For example, hnRNP K increases PTGS2 mRNA stability by reducing miR-16
binding to the 3′UTR of PTGS2 mRNA [219], and overexpression of HuR suppresses the
ability of miR-16 to promote PTGS2 mRNA decay [220]. HuR also promotes the translation
of STAT3 mRNA in myotubes exposed to IFN-γ and TNF-α by binding to its 3′UTR—this
binding interferes with miR-330–mediated translation inhibition [221]. HuR could also
work cooperatively with miRNA to downregulate gene expression. An example of this is
the ability of HuR to promote the interaction of let-7- loaded RISC with the 3′UTR of the
proto-oncogene MYC mRNA to repress its expression [222]. Other examples include the
ability of the RBP Pumilio-1 to bind to 3′UTR of p27 (CDKN1B; cyclin dependent kinase
inhibitor 1b) mRNA, and facilitate its association with miR-221/222 to destabilize p27
expression [223]. While these examples are outside the context of COPD, the discovery of
crosstalk between RBPs and miRNAs provides support for their dynamic regulation of
gene expression associated with cellular mechanisms whose dysregulation contributes to
the pathogenesis of chronic lung disease development.

3.4. LncRNA in COPD

Altered expression of lncRNA is now thought to be involved in the pathogenesis of
COPD. For example, a previous study found that 109 lncRNA are differentially expressed in
the lungs of mice exposed to CS, of which 51 lncRNAs were significantly upregulated, and
58 were significantly downregulated. Gene ontology analysis of potential lncRNA target
protein-coding genes showed enrichment in pathways involved in the cellular response
to interferon-beta [224]. Furthermore, genome-wide expression analysis of lncRNAs in
lung tissue from non-smokers and smokers with/without COPD showed differential
expression of hundreds of lncRNAs in COPD, independent of smoking [225]. Another
study found that 8376 lncRNAs are differentially expressed in COPD lung, of which 3939
are upregulated, and 4437 are downregulated [226]. However, the mechanism of how
lncRNA affect the pathogenesis of COPD is not fully understood.

3.4.1. LncRNA and Pathogenic Mechanisms of COPD

Dysregulation of lncRNA expression suggests they have roles in the pathogenesis
of CS-related diseases. For example, lncRNA are upregulated by smoking: this includes
smoke- and cancer–associated lncRNA–1 (SCAL1) [227], and lung cancer progression–
association transcript 1 (LCPAT1) [228]. LCPAT1 is involved in smoke-induced DNA
damage [228], and SCAL1 protects against CS–induced toxicity [227], suggesting that
SCAL1 serves as a protective mechanism against smoke. Metastasis-associated in lung
adenocarcinoma transcript 1 (MALAT1) [229] and HOX transcript antisense RNA (HO-
TAIR) [230] are also upregulated in response to CS, and involved in CS-induced EMT.

LncRNAs that are involved in EMT are also increased in COPD, including MALAT1 [231]
and taurine-upregulated gene 1 (TUG1) [226]. The knockdown of MALAT1 in human lung
fibroblasts reduces the expression of fibronectin and α-smooth muscle actin, proteins that
are involved in fibrogenesis, in response to transforming growth factor β (TGF-β) [231].
The knockdown of TUG1 also decreases the expression of fibronectin and α-smooth muscle
actin in human lung epithelial cells and lung fibroblasts exposed to TGF-β [226]. These
data suggest that lncRNAs may regulate fibrosis formation around the small airways in
COPD, in part, via the regulation of EMT.

LncRNAs are also involved in inflammation, such as maternally expressed gene
3 (MEG3) [232], MALAT1 [233], and HOTAIR [234]. Silencing of MEG3 inhibits apopto-
sis, and reduces inflammatory mediators in human bronchial epithelial cells exposed to
CSE [232]. Interestingly, MEG3 is elevated in blood samples from COPD patients and smok-
ers [232], suggesting that MEG3 may regulate CS-induced inflammation and apoptosis.
Additionally, in macrophages exposed to LPS, the expression of MALAT1 is upregulated,
which, in turn, interacts with nuclear factor kappa B (NF-κB) in the nucleus, and reduces the
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expression of inflammatory cytokines [233]. The expression of HOTAIR is also upregulated
in in cardiomyocytes exposed to LPS. Conversely, HOTAIR induces inflammatory response
by activating NF-κB [234], and regulates oxidative stress and apoptosis [235]. It is currently
not known whether the increase in MALAT1 and HOTAIR expression from CS [229,230]
regulates inflammation and/or apoptosis in COPD pathogenesis.

3.4.2. Interplay of RBPs with lncRNA

LncRNA are known to interact with RBPs, a feature which might be important in un-
derstanding the functional role of RBPs and lncRNAs in the development of lung diseases.
For example, the lncRNA c-Myc-upregulated (MYU) associates with hnRNP K to stabilize
the mRNA of cyclin-dependent kinase 6 (CDK6), which promotes G1/S transition of the
cell cycle. HnRNP K also inhibits miR-16 binding to the 3′UTR of CDK6 [236]. Although
hnRNP K stabilizes PTGS2 mRNA by reducing the association of miR-16 to the PTGS2
3′UTR [219], hnRNP K may collaborate with MYU to regulate the stability of PTGS2 mRNA.
Another example of such an association is the lncRNA functional intergenic repeating RNA
element (FIRRE), which interacts with hnRNP U to stabilize vascular cell adhesion molecule
1 (VCAM1), a cell adhesion molecule that is involved in inflammation [237]. Finally, the
lncRNA lincRNA regulator of reprogramming (Linc-RoR) stabilizes the proto-oncogene
MYC mRNA by interacting with two RBPs. Linc-RoR interacts with hnRNP I to stabilize
MYC mRNA, and interacts with the destabilizing RBP AUF1 to inhibit its binding to MYC
mRNA [238]. This suggests that Linc-RoR may control the competition of the two RBPs for
MYC mRNA. The discovery of the interplay between RBPs and lncRNAs highlights their
regulation of post-transcriptional mechanisms of target mRNAs. This would be another
step in understanding the landscape of genes that are involved in the pathogenesis of
chronic lung disease.

4. Conclusions

RBPs, miRNA, and lncRNA are examples of post-transcriptional regulons that may
be involved in COPD pathogenesis. To date, many studies have largely focused on tran-
scriptional regulatory pathways implicated in the development of COPD. However, it
is increasingly apparent that post-transcriptional regulation of gene expression adds a
dynamic layer of complexity to chronic diseases, as RBPs regulate polyadenylation, pre-
mRNA splicing, RNA modification, nuclear export, localization, and turnover of target
mRNAs. Similarly, miRNA and lncRNA typically regulate post-transcriptional repression
of target mRNAs. RBPs, miRNA, and lncRNA function independently, or may operate
cooperatively or competitively, adding complexity to the system. Altered function of
post-transcriptional regulation may contribute to the development of chronic diseases,
particularly those caused by environmental exposures, such as COPD, and future work
should address these mechanisms. In this regard, both RBPs and miRNAs represent poten-
tial therapeutic targets. For instance, MS-444 is a small molecule inhibitor that interferes
with the RNA binding activity of HuR [239], and has been shown to exhibit antitumor
activity in vitro and in vivo [240]. miRNAs are also targeted as disease treatment, such as
let-7, whose exogenous delivery reduces tumor development in a mouse model of lung
cancer [241]. Therefore, post-transcriptional regulation of protein expression deserves
serious consideration in therapeutic strategies for smoke-related diseases, such as COPD.

Author Contributions: Manuscript writing, review and editing: N.A., D.H.E. and C.J.B.; writing:
A.A. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Canada Foundation for Innovation (CFI), the Canadian
Institutes for Health Research (CIHR; Project Grants PJT-168836 and PJT-162273), and the Natural
Sciences and Engineering Research Council of Canada (NSERC). C.J.B. was supported by a salary
award from the Fonds de recherche du Quebec-Sante (FRQ-S). N.A. was supported by a scholarship
from Taibah University, Saudi Arabia. A.A. was supported by a scholarship from the Ministry of
Education, Saudi Arabia.



Int. J. Mol. Sci. 2021, 22, 11963 14 of 24

Conflicts of Interest: The authors declare that they have no conflict of interests.

Abbreviations

α1AT Alpha 1-anti-trypsin
ADAR Adenosine deaminases acting on RNA
AhR Aryl hydrocarbon receptor
AUF1 AU-binding factor 1
ARE AU-rich elements
AS Alternative splicing
BAL Bronchoalveolar lavage
CCL C-C motif ligand
COPD Chronic obstructive pulmonary disease
COX-2/PTGS2 Cyclooxygenase-2
CS Cigarette smoke
CSE Cigarette smoke extract
CXCL C-X-C motif ligand
EMT Epithelial-to-mesenchymal transition
GOLD Global initiative for chronic obstructive lung disease
GR Glucocorticoid receptors
hnRNP Heterogeneous nuclear ribonucleoprotein
HOTAIR HOX transcript antisense RNA
HuR Hu antigen R
IL Interleukin
IRP2 Iron-responsive element binding protein 2
LCPAT1 Lung cancer progression–association transcript 1
Linc-RoR LincRNA regulator of reprogramming
LncRNA Long non-coding RNAs
LPS Lipopolysaccharide
MALAT1 Metastasis-associated in lung adenocarcinoma transcript 1
MEG3 Maternally expressed gene 3
MiRNA/MiR MicroRNA
MMP Matrix metalloproteinase
NE Neutrophil Elastase
NF-κB Nuclear Factor Kappa B
PABP Poly(A)-binding protein
RBD RNA-binding domain
RBM5 RNA-binding motif protein 5
RBP RNA-binding protein
RISC RNA-induced silencing complex
RNP Ribonucleoprotein
SCAL1 Smoke and cancer–associated lncRNA–1
SGs Stress granules
TIA-1 T-cell Intracellular Antigen 1
TNF-α Tumor necrosis factor α
TTP Tristetraprolin
UTR Untranslated region
VEGF Vascular endothelial growth factor
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