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dipstick assay for detection of
Acinetobacter baumannii in
spiked blood specimens
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1Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing
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Purpose: This study aimed to establish the multienzyme isothermal rapid

amplification with a lateral flow dipstick (MIRA-LFD) assay and evaluate its

performance in detection of A. baumannii in spiked blood specimens.

Methods: The study was divided into two stages: a pilot study to establish

the methodology and a clinical validation study to evaluate its performance.

In the first step, we designed primers specific to detect A. baumannii, optimized

the MIRA-LFD assay and analyzed its performance regarding limits of detection,

reproducibility, specificity, and efficiency of detection using real-time PCR

method. In the second step, we obtained 50 spiked blood isolates and detected

these pathogens by MIRA-LFD assay. The MIRA-LFD time was 15min fromDNA

sample amplification to complete pathogen detection.

Results: The developed MIRA-LFD assay displayed a detection limit of 6 CFU/

mL for detecting A. baumannii, which was significantly better than that of real-

time PCR method, and no cross-reactivity was observed in other non-A.

baumannii studied. The results obtained with 50 spiked blood isolates

suggested that the developed MIRA-LFD assay had high specificity and

sensitivity for identifying A. baumannii.

Conclusions: This study demonstrates that the established MIRA-LFD assay is

time-saving, more effective and sensitive, which may become a powerful tool

for rapid and reliable diagnosis of bloodstream infection caused by A.

baumannii in primary hospitals.

KEYWORDS

multienzyme isothermal rapid amplification, lateral flow dipstick, Acinetobacter
baumannii, bloodstream infection, spiked blood specimens
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Introduction

Acinetobacter baumannii is an opportunistic pathogen,

which is widely distributed in nature and can survive in

hospital environment for a long time (Zarrilli et al., 2009). It

has the characteristics of strong survivability and resistance, high

colonization rate and bacterial resistance rate (Perez et al., 2007).

A. baumannii is the main pathogen causing nosocomial

infection and bloodstream infection (BSI) (Chopra et al.,

2013). Compared with other pathogens, A. baumannii has a

more serious drug resistance situation (Kengkla et al., 2018; Tada

et al., 2020; Liu et al., 2021). Furthermore, the resistance rate of

A. baumannii to commonly used antibiotics was more than 70%

(Hu et al., 2019). Therefore, a rapid and accurate diagnostic

assay is required for the effective control the BSI caused by

A. baumannii.

To date, several approaches have been proposed for detecting

A. baumannii. The most sensitive and applicable for strain

discrimination are the well-known molecular detection method

(Schaad and Schuenzel, 2010). At first, a PCR assay have been

developed for A. baumannii based on the OXA-51 gene (Turton

et al., 2006; Abhari et al., 2021). While, the PCR assay for

identification of A. baumannii is time-consuming and the result

is not easy to read, as well as require complex thermal cycling

instrument, which are not suitable for low-resource areas.

Meanwhile, the isothermal amplification technology has been

gradually applied to bacterial detection (Li and Macdonald, 2015;

Lobato and O’sullivan, 2018). It has much lower requirements for

amplification instruments and faster reaction kinetics. The most

representative technologies are RPA (recombinase polymerase

amplification) and MIRA (multienzyme isothermal rapid

amplification) (Piepenburg et al., 2006; Lu et al., 2021). They can

amplify complex DNA targets at room temperature within 10min,

which is more advantageous than other isothermal amplification

methods (Shang et al., 2021; Sun et al., 2021; Tu et al., 2022). In the

detection format of MIRA amplifier, lateral flow dipstick (LFD)

based MIRA detection has been widely established for various

detection target (Li et al., 2019a; Li et al., 2021). In order tomeet the

needs of rapid detection of first aid and emergency treatment,

especially for laboratories with limited resources and poor

equipment, MIRA-LFD assay is an ideal choice. The aim of the

present studywas to establish theMIRA-LFD assay and evaluate its

performance in detection of A. baumannii in spiked

blood specimens.
Materials and methods

Bacterial strains and DNA preparation

The fifty spiked blood isolates used in verification assays

were as follows: thirty A. baumannii, four E. coli, four K.

pneumoniae, four E. cloacae, two K. oxytoca , two P.
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aeruginosa, two S. maltophilia, and two B. cepacia isolates. For

the calculation of bacterial colony forming unit (CFU), the main

method was as follows: the bacterial solution with 0.5 McFarland

was continuously diluted 10 times, and 10 mL of the diluent (106,

107, 108) with appropriate concentration was dropped on the LB

plate. Each concentration was repeated three times, cultured at

37°C for 48 h, and CFU was counted. For spiked blood

specimens, 900 mL blood samples were added with 100 mL
different concentrations of bacterial strains. The spiked blood

specimens were firstly lysed using Red Blood Cell Lysis Buffer

(Sansure Biotech Inc., Hunan, China) before bacterial DNA was

extracted by TIANamp Bacteria DNA Kit (Tiangen Biotech Co.,

Ltd., Beijing, China) according to the manufacturer’s

instructions. The blood samples used in the experiment were

collected from 10 healthy individuals. The extracted DNA was

stored at -20°C until next use.
Identification of isolates by
MALDI-TOF MS

The identification of all isolates used in this study was

confirmed at the species level by MALDI-TOF MS (bioMerieux,

France). According to the manufacturer’s instructions, the mass

spectrometry identification results were matched at the highest

level by comparing with the In Vitro Diagnosis (IVD) database.
Primers and probes of MIRA-LFD assay

After a systematic literature search and sequence alignment

with DNAMAN software, OXA51 gene of A. baumannii was

identified. Primer sets and corresponding nfo probes were

designed. All primers and probes of MIRA assays were

synthesized and purified by BGI Tech Solutions Beijing Liuhe

Co., Lid using polyacrylamide gel electrophoresis (PAGE) and

high-performance liquid chromatography (HPLC) respectively.

The sequences of primers and probes were showed in Table 1.
Basic MIRA and MIRA-LFD reactions

A series of Basic MIRA reactions were achieved to screen out

the best efficiency primers for subsequent MIRA-LFD reactions.

For Basic MIRA kits (Amp-Future Biotech Co., Ltd., Weifang,

China), the reaction contained 29.4 mL A buffer, 12.1 mL double-

distilled water, 2 mL forward primer (10 mM), 2 mL reverse

primer (10 mM), 2 mL sample and 2.5 µL B buffer (280 mM). The

mixture was place in a metal heat block at 40°C for 20 min.

Finally, the Basic MIRA products were purified by phenol-

chloroform method (Solarbio, Beijing, China) and analyzed by

1.5% agarose gel electrophoresis. A total of 16 pairs of specific

primers were tested by of basic MIRA, and the best efficiency
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primers were chosen for MIRA-LFD. A FAM-labeled probe was

designed for MIRA-LFD according to the description of MIRA

nfo kit (Amp-Future Biotech Co., Ltd., Weifang, China). For

MIRA nfo kits (Amp-Future Biotech Co., Ltd., Weifang, China),

each reaction included 29.4 mL A buffer, 8.5 mL double-distilled

water, 2 mL forward primer (10 mM), 2 mL reverse primer (10 mM),

0.6 mL nfo probe (10 mM), 5 mL sample and 2.5 µL B buffer

(280 mM). As Figure S1 shows, the MIRA reactions were place in a

metal bath at 40°C for 10min. Thereafter, theMIRA products were

detected by lateral flow dipsticks (Amp-Future Biotech Co., Ltd.,

Weifang, China). The amplicons of MIRA were diluted 20-fold in

buffer (Milenia Biotec GmbH, Germany). Then lateral flow

dipsticks were placed vertically in tubes containing the diluted

MIRA products for 5 min.
Optimization of temperature and time
for MIRA-LFD assay

The optimal amplification reaction temperature and timewere

determined by various temperature settings ranging from 20 to 50°

C and examining different time (0-35 min). The MIRA-LFD assay

was performed using 3 ng genomic DNA of A. baumannii

(ATCC19606). In this study, we selected double-distilled water as

the negative control. The experiment was carried out in a single

reaction and repeated independently three times.
Specificity and sensitivity of
MIRA-LFD assay

To verify the specificity of MIRA-LFD assay, 3 ng genomic

DNA of E. coli, K. pneumoniae, E. cloacae, K. oxytoca, P.

aeruginosa, S. maltophilia, and B. cepacia from spiked blood
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specimens was examined to identify possible cross-reactions. To

evaluate the sensitivity of MIRA-LFD assay from spiked blood

specimens, 10-fold serial dilutions of A. baumannii ATCC19606,

ranging from 6×105 CFU/mL to 6×100 CFU/mL per reaction.

The MIRA-LFD assay was prepared according to above MIRA-

LFD conditions. The experiment was repeated three times with

the same result.
Real-time PCR assay

To compare their sensitivities, the diluted DNA samples of

A. baumannii ATCC19606 (6×105 CFU/mL - 6×100 CFU/mL)

were tested in parallel by an established real-time PCR protocol

(Hamouda, 2017). The reaction included 2.0 µL of DNA

template, 12.5 µL of Premix Ex Taq (Probe qPCR) (2X), 8.5

µL of double-distilled water, 0.5 µL of forward primer (10 µM),

0.5 µL of reverse primer (10 µM), and 1.0 µL of the probe (10

µM). The reaction was performed on CFX96 real-time PCR

detection system (Bio-Rad, USA). A threshold cycle (Ct value) <

38 was determined as the positive sample. Distilled water was

used as negative control. A similar experiment was carried out

three times with the same result.
Evaluation of spiked blood specimens
with the MIRA-LFD assay

The feasibility of MIRA-LFD assay used for detecting A.

baumannii in spiked blood specimens was further investigated.

In order to perform the second step experiments, 50 spiked

blood isolates were collected to simulate spiked blood specimens

(6×104 CFU/mL). DNA extraction of such specimens and
TABLE 1 Primers and probe used in the present study.

Assay Name Sequence (5´-3´) and modification Length (bp)

Basic MIRA Aba-F1 CAACCACCACAGAAGTATTTAAGTGGGACGGGC 33

Aba-F2 CTATTCCCAGAATGGGAAAAGGACATGACC 30

Aba-F3 TAGGCGATGCTATGAAAGCTTCCGCTATTCCG 32

Aba-F4 TTTATCAAGATTTAGCTCGTCGTATTGGAC 30

Aba-R1 TGTAAGCAAACTGTGCCTCTTGCTGAGGAG 31

Aba-R2 TTGGGCTAAATGGAAGCGTTTTATTAGCTAG 31

Aba-R3 TGAATAACATGGATTGCACTTCATCTTGGAC 31

Aba-R4 CAGTTAACCAGCCTACTTGTGGGTCTACATC 31

LF-MIRA Aba-F1 CAACCACCACAGAAGTATTTAAGTGGGACGGGC 33

Aba-R2 [biotin]CGGCTGGGCCTGGGCCATGACCACGCTGAC 31

nfo-Aba [FAM]CCGGTAACCAGCTCAGCCACATGTCGCCGATC[THF]ACACCATCGAGATGG[C3spacer] 47

Real-time PCR OXA-51-F TTTAGCTCGTCGTATTGGACT 21

OXA-51-R CCTCTTGCTGAGGAGTAATTTT 22

OXA-51-P Cy5-TGGCAATGCAGATATCGGTACCCA-BHQ1 24
F, forward primer; R, reverse primer; P, probe; THF, tetrahydrofuran.
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MIRA-LFD assay were conducted as described above. The

performance of the newly developed MIRA-LFD assay was

compared to that of MALDI-TOF MS. The experiment was

repeated three times with the same result.
Results

Primer screening and identification

MIRA is a multienzyme-assisted isothermal amplification

technique (Ma et al., 2016; Xiong et al., 2020). As primers

playing an important role in the amplification process, the

combination of different primers will have various

amplification effects. Therefore, a series of primer screening

experiments before MIRA-LFD are necessary. According to

manufacturer’s instructions, we screened 16 pairs of forward

and reverse primers by using basic MIRA reaction. As shown in

Figure S2, the best primer set for A. baumannii was identified as

R2/F1 based on the recommendations for MIRA and the

brightness of the electrophoretic bands. Finally, the primer

and probe sequences for MIRA-LFD were determined

according to the selected primer sets.
Optimization of the reaction
temperature and time

In order to determine the optimal amplification

temperature, the MIRA-LFD assay was performed according

to the manufacturers. The best results are obtained between 25°C

and 45°C, and the test lines on the side lateral flow dipstick can

be observed in a wide temperature range (Figure 1A). To assess

the shortest amplification time, the test band can be observed

during the amplification time of 5 min (Figure 1B). Taking into

account the detection efficiency and sensitivity, the amplification

time might be sufficient for 10 min. Therefore, the whole test

including MIRA amplification and lateral flow dipsticks

detection is just 15 min or less.
Specificity determination of
MIRA-LFD assay

The specificity of the MIRA-LFD assay for A. baumannii

was confirmed by detecting E. coli, K. pneumoniae, E. cloacae, K.

oxytoca, P. aeruginosa, S. maltophilia, and B. cepacia. As can be

seen in Figure 2, only A. baumannii showed both control and

test lines, while no test lines were obtained from the other

dipsticks, demonstrating that established MIRA-LFD assay have

good specificity and no cross-reactions occurred.
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Sensitivity determination of
MIRA-LFD assay

The sensitivity of the MIRA-LFD assay was determined

using a concentration of 6×105 CFU/mL to 6×100 CFU/mL of

bacterial DNA extracted from spiked blood specimens. The

results showed that the developed MIRA-LFD assay displayed

a detection limit of 6 CFU/mL for detecting A. baumannii

(Figure 3A), which was significantly better than that of real-

time PCR method (Figure 3B).
Evaluating spiked blood specimens for
the MIRA-LFD assay

To determine the diagnostic validity of MIRA-LFD assay, 50

spiked blood specimens were used for the second step. From the

Table 2, it can be seen that the newly MIRA-LFD assay had high

specifcity and sensitivity for identifying A. baumannii in spiked

blood specimens, which may become a powerful tool for rapid

and reliable diagnosis of BSI caused by A. baumannii in

primary hospitals.
Discussion

Compared with other rapid molecular detection methods,

MIRA-LFD assay has exhibited several advantages, such as high

sensitivity, rapid detection time, convenient operation, and less

requirement for specialized equipment. In addition, the MIRA

amplification products can be detected by the naked eye with a

lateral flow dipstick. Therefore, MIRA-LFD is superior to other

rapid molecular detection methods. In this study, we report the

development and validation of a MIRA-LFD assay for detection

of A. baumannii in spiked blood specimens. The whole process

from MIRA amplification to LFD detection takes about 15 min

or less. The main results are as follows. First, the MIRA-LFD

assay is more sensitive and specific than real-time PCR. Second,

the MIRA-LFD assay is time-saving, easy to use, and has the

lowest energy consumption. Third, the MIRA-LFD assay can

meet the needs for rapid detection on first aid and emergency

treatment, especially for resource-limited settings and poorly

equipped laboratories.

In order to develop a set of experimental platforms capable

of detecting A. baumannii for timely treatment of BSI, 16 pairs

of primers and their corresponding probes were designed for A.

baumannii. The best primer set was identified by forward and

reverse screening experiments using agarose gel electrophoresis

and used for subsequent MIRA-LFD experiments. To determine

the optimum amplification temperature, we found that the
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A

B

FIGURE 1

Optimization of the temperature (A) and time (B) for the MIRA-LFD assay. (A) The optimal amplification reaction time was determined by
examining various temperature settings ranging from 20 to 50°C; (B) The optimal amplification temperature was determined by examining
different time (0-35 min). NC, negative control; C, control line; T, test line. These experiments were repeated three times.
FIGURE 2

Specificity of the MIRA-LFD assay. Results showed that only the positive control sample and A. baumannii isolates produced amplification signals,
whereas other non-A. baumannii isolates and negative control produced no amplification signals. NC, negative control; C, control line; T, test line.
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MIRA-LFD assay worked well over a wide temperature range of

25-45°C, indicating that there was no significant impact on

reaction performance over this temperature range.

Furthermore, we also found that the positive results appeared
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after the amplification occurred for 5 min. In order to shorten

the whole detection time and ensure the detection efficiency

and sensitivity, the amplification time of MIRA-LFD was 10 min

(Li et al., 2021).
A B

FIGURE 3

Sensitivity of the MIRA-LFD assay and the real-time PCR assay. (A) Serially diluted gDNA of targeted bacteria (6×105 CFU/mL, 6×104 CFU/mL, 6×103

CFU/mL, 6×102 CFU/mL, 6×101 CFU/mL and 6×100 CFU/mL per reaction) was tested by MIRA-LFD at 40°C for 10 min. This experiment was
repeated four times for low-concentrated samples (6 CFU/mL). NC, negative control; C, control line; T, test line. (B) The quantity of genomic DNA
of A baumannii was tested by real-time PCR at 95°C for 5 min, followed by 40 cycles of 95°C for 10 seconds and 60°C for 30 seconds.
TABLE 2 Characteristics of the Fifty isolates used for validation of the newly MIRA-LF assay.

No. Bacterial strain Location Concentration (ng/µL) MIRA-LF assay

1 A. baumannii ICU 0.5 +

2 A. baumannii ICU 0.5 +

3 A. baumannii ICU 0.6 +

4 A. baumannii ICU 0.7 +

5 A. baumannii ICU 0.6 +

6 A. baumannii ICU 0.8 +

7 A. baumannii ICU 0.9 +

8 A. baumannii ICU 0.8 +

9 A. baumannii ICU 1.6 +

10 A. baumannii ICU 1.2 +

11 A. baumannii ICU 0.6 +

12 A. baumannii GICU 0.8 +

13 A. baumannii GICU 1.2 +

14 A. baumannii GICU 1.8 +

15 A. baumannii NICU 2.0 +

16 A. baumannii NICU 0.6 +

17 A. baumannii NICU 0.6 +

18 A. baumannii NICU 0.9 +

19 A. baumannii NICU 0.5 +

20 A. baumannii CCU 0.6 +

21 A. baumannii CCU 0.7 +

22 A. baumannii CCU 0.6 +

23 A. baumannii CCU 0.6 +

24 A. baumannii CCU 0.8 +

25 A. baumannii CCU 1.0 +

(Continued)
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The MIRA-LFD assay had a high species specificity that could

detect all theA. baumannii isolates. In addition, there was no cross-

reactivity with other non-A. baumannii bacteria species under the

experimental conditions used, which indicates that MIRA-LFD has

good specificity (Zhuo et al., 2022). Further studies should focus on

verifying the potential cross-reactivity of DNA using the MIRA-

LFD assay with other non-A. baumannii isolates. The bacterial

DNA from spiked blood specimens was tested for MIRA-LFD

assay’s sensitivity. Our results showed the sensitivity of established

MIRA-LFD assay can up to 6 CFU/mL, which was better than that

of real-time PCR. Next, we used the MIRA-LFD assay to detect

clinical spiked blood specimens, and the results showed that 30

clinicalA. baumannii isolates were retrospectively confirmed by the

MIRA-LFD assay, and 20 clinical non-A. baumannii isolates

showed negative results for OXA51 gene detection. Therefore, the

positive detection rate of the MIRA-LFD assay was 100%. There

were no false positive results, indicating that the MIRA-LFD assay

is very practical (Preston et al., 2016).

However, the limitation of this study is that the validation

strains were limited in this study. To ensure the accuracy and
Frontiers in Cellular and Infection Microbiology 07
reliability of the identification results, we need to further expand

the number and types of validation strains to obtain better

identification results (Li et al., 2019b; Vergara et al., 2020).

Further studies are required to test the specificity and sensitivity

of the present method on clinical blood culture samples that

resulted positive for Gram negative bacteria at the Gram stain.

In summary, the MIRA-LFD assay is time-saving, more

effective and sensitive than conventional identification

methods, which has the potential to be applied in primary

hospitals (Yin et al., 2017). Moreover, this method will become

the mainstream of quantitative molecular detection of bacteria in

the future (Schuler et al., 2015).
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TABLE 2 Continued

No. Bacterial strain Location Concentration (ng/µL) MIRA-LF assay

26 A. baumannii RICU 0.6 +

27 A. baumannii RICU 0.8 +

28 A. baumannii RICU 0.6 +

29 A. baumannii RICU 0.8 +

30 A. baumannii RICU 1.6 +

31 E. coli ICU 1.6 –

32 E. coli ICU 0.9 –

33 E. coli CCU 0.8 –

34 E. coli CCU 0.6 –

35 K. pneumoniae ICU 0.6 –

36 K. pneumoniae ICU 1.6 –

37 K. pneumoniae CCU 1.2 –

38 K. pneumoniae CCU 0.8 –

39 E. cloacae ICU 0.6 –

40 E. cloacae ICU 0.8 –

41 E. cloacae CCU 1.2 –

42 E. cloacae CCU 1.5 –

43 K. oxytoca CCU 0.6 –

44 K. oxytoca ICU 0.8 –

45 P. aeruginosa ICU 0.6 –

46 P. aeruginosa ICU 0.9 –

47 S. maltophilia ICU 1.6 –

48 S. maltophilia ICU 1.2 –

49 B. cepacia ICU 1.3 –

50 B. cepacia ICU 0.8 –
+, positive.
-, negative.
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