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Abstract
Introduction: Tuberculosis is listed among the top 10 causes of deaths worldwide. The resistant strains causing this disease have been 
considered to be responsible for public health emergencies and health security threats. As stated by the World Health Organization (WHO), 
around 558,000 different cases coupled with resistance to rifampicin (the most operative first-line drug) have been estimated to date. 
Therefore, in order to detect the resistant strains using the genomes of Mycobacterium tuberculosis (MTB), we propose a new methodology 
for the analysis of genomic similarities that associate the different levels of decomposition of the genome (discrete non-decimated wavelet 
transform) and the Hurst exponent. Methods: The signals corresponding to the ten analyzed sequences were obtained by assessing 
GC content, and then these signals were decomposed using the discrete non-decimated wavelet transform along with the Daubechies 
wavelet with four null moments at five levels of decomposition. The Hurst exponent was calculated at each decomposition level using 
five different methods. The cluster analysis was performed using the results obtained for the Hurst exponent. Results: The aggregated 
variance, differenced aggregated variance, and aggregated absolute value methods presented the formation of three groups, whereas the 
Peng and R/S methods presented the formation of two groups. The aggregated variance method exhibited the best results with respect to the 
group formation between similar strains. Conclusion: The evaluation of Hurst exponent associated with discrete non-decimated wavelet 
transform can be used as a measure of similarity between genome sequences, thus leading to a refinement in the analysis.
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INTRODUCTION

The genus Mycobacterium encompasses a broad set of 
gram-positive, acid-fast, rod-shaped microorganisms that are 
normally aerobic bacteria, and is the only member of the family 
Mycobacteriaceae within the order Actinomycetales. Like 
other narrowly related Actinomycetales, such as Nocardia and 
Corynebacterium, mycobacteria exhibit remarkably high GC 
content in their genomic DNA. They are capable of producing 
mycolic acid, which is a significant constituent of their cell wall. 
Mycobacterium tuberculosis (MTB) is considered as an active agent 
that causes tuberculosis (TB), which is a chronic infectious disease 
with growing incidence rate worldwide. This species is accountable 

for the highest morbidity in humans compared to other bacterial 
diseases. It infects around 1.7 billion individuals per year (≈33 % 
of the whole world inhabitants), and causes more than 3 million 
deaths per year on an average. This bacterium does not form a 
polysaccharide capsule and is an extremely slow-growing, aerobic, 
and obligatory parasite. The slow growth rate is attributed to the 
presence of a sturdy cell wall that resists the intake of nutrients by 
the cell and inhibits the excretion of waste products outside of the 
cell. The specialized cell envelope of this organism resembles the 
modified cell wall of a gram-positive bacterium1.

Due to the rising concern regarding the growing rate of deaths 
due to TB, studies have being carried out in order to target the 
drug resistant strains. Since the launch of the Global Project on 
Anti-tuberculosis Drug Resistance Surveillance in 1994, data 
on drug resistance have been collected and scrutinized from 160 
countries worldwide (82 % of the 194 WHO Member States), which 
collectively have the data for over more than 97 % of the TB cases 
worldwide. Among with this, it includes 90 countries that have 
uninterrupted surveillance systems established on routine diagnostic 
drug susceptibility testing (DST) of all the TB patients, and 70 
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countries that depend on the epidemiological surveys carried out 
using the representative samples of TB patients. Surveys that are 
conducted every five years denote the most widespread approach 
for studying the burden of drug resistance in the resource-limited 
settings. Among the drug resistant strains, the most concerning 
are the multidrug resistant (MDR) and Extensively drug resistant 
(XDR) strains2.

Recently, the procedure of wavelets has increasingly been 
used for the analysis of bacterial genomes, such as wavelet 
packet analysis of amino acid chain sequences in the proteins of 
mesophile and thermophile bacteria3, comparative genomics via 
wavelet analysis for closely related bacteria4, discovery functional 
genetic material expression patterns in the metabolic pathways 
of Escherichia coli using wavelets transforms5, wavelet analysis 
to rapidly determine the characteristic morphology of the spore 
coat of bacteria6, and the existence of wavelet symmetries in 
Archaea DNA7. In a previous study, the authors bearing in mind the 
sequences of the MTB genome showed that the clustering analysis 
using the energy (variance) obtained at each decomposition level 
employing the discrete non-decimated wavelet transform (NDWT) 
was essential to verify the similarity of the sequences8. In another 
study, the authors used the combination of the two methodologies, 
including NDWT and Elastic net, and applied them in the analysis 
of clustering of the same strains of the MTB genome9. In this 
proposal, through the visualization of the graphs obtained by using 
the Elastic net method at each decomposition level, it was possible 
to identify the groups of similar strains. The GC content assessment 
also corresponds to one of the forms of bacterial genome analysis10. 
As the genome is composed of nitrogenous bases to form the DNA 
or RNA molecules, the GC content analysis transforms these bases 
into percentage that represents the signal to be analyzed employing 
an accurate statistic. Theoretically, the wavelet transform is a 
technique of observing and thus represents a signal11. This signal 
is decomposed at various resolution levels, where each level brings 
a detail, which corresponds with the multiresolution analysis12. 
Mathematically, it is characterized by a function that oscillates in 
time or space. In principle, it has sliding windows that expand or 
compress to capture low and high frequency signals, respectively13. 

We considered the discrete non-decimated wavelet transform 
(NDWT), whose main attribute is that it can work with any size of 
signals/sequences14,15. Studies encompassing the Hurst exponent 
were initially established in the field of hydrology for the practical 
matter of determining optimum size determination of dam for 
the Nile river's volatile rain and drought conditions that had been 
observed over a long period. The term "Hurst exponent" or "Hurst 
coefficient" was coined by Harold Edwin Hurst16, who was the 
lead researcher in these studies. Thereafter, the use of the standard 
notation H for the coefficient was also related to his name17. Its 
applicability in bacterial genome analysis was later demonstrated 
in the many different studies18-21. In this study, we aimed to verify 
the grouping of the strains with similar MTB genomes through the 
interaction between the two techniques, including non-decimated 
wavelet transform and Hurst exponent, and by applying five 
methods for the estimation of the Hurst exponent at each level of 
signal decomposition.

METHODS

The sequences were chosen according to a previously described 
method22. Briefly, at the first instance of the analysis, it was 
important to obtain the signal referring to the strains of the genome 
of MTB. For this, the GC content was estimated with a sliding 
window of 10,000 base pairs (bp)22.

The GC content was determined as the ratio of the entirety of 
bases G and C, under the sum of the bases A, G, C, and T, according 
to the Equation 1:

(1)

where nA, nG, nC, and nT represents the number of nucleotide 
bases A, G, C, and T, respectively, in a particular nucleotide 
sequence.

In Table 1, we have provided the description of the 10 
analyzed sequences that were acquired from the National Center 
for Biotechnology Information database1, along with their 
corresponding total GC content estimates.

Once we obtained the signals of every single sequence, these 
signals were subjected to the phase of decomposition through 
the discrete non-decimated wavelet transform (NDWT), whose 
description is provided below23.

Considering ϕ and ψ as scaling and wavelet functions 
respectively, we here represent a data vector y=(y_0,y_1, …, y_m-1) 
of size m as a function f in terms of shifts of the scaling function at 
some multiresolution level J such that J-1<log_2 m≤J, as

where ϕ_J,k(x)=2^J/2ϕ(2^J(x-k)). The data interpolating function 
f can be re-expressed according to the Equation 2:

(2)

where

The coefficients c_(J_0,k) and d_j,k, j=J_0, …, J-1; k=0, …, 
m-1, represents the NDWT vector y.

,

,

.
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We studied the Daubechies wavelet with 4 null moments and 5 
levels of details, and the coefficients of each level are represented 
by (d1, d2, d3, d4, d5), where d1 corresponds to the level with less 
details and d5 to the level with more details8. 

The Hurst exponent corresponds to the range (0, 1), wherein 
for 0.5<H<1, it is said that the process has long-range dependence, 
for H=0.5 it is uncorrelated, while for 0<H<0.5, the process has 
short-range dependence24-26. Another interpretation, for example, 
in accordance with virology details that H<0.5 represents that the 
virus is locally confined, H≈0.5 represents that the virus behaves 
randomly, whereas H>0.5 represents a directed movement27. For 
the estimation of the Hurst exponent five methods were used in this 
study that are detailed as follows:

Aggregated Variance Method

According to a previous study, one remarkable property of 
long-term memory processes is that the variance of the sample 
mean converges to zero slower than the rate  N^(-1), where N is 
the sample size28. Here we assumed that 

(3)

for large N, where c>0 and X¯_N represents the sample mean. This 
approach suggests the following method for estimating H, where 
the series is divided into N/m blocks of size m, and in every single 
block the sample mean is calculated according to the Equation 4:

(4)

and the sample variance is calculated according to the Equation 5:

(5)

where X¯_N denotes the overall mean. Upon plotting logs^2(m) 
versus log(m), it should yield points scattered along a straight line 
with slope equal to 2H-2.

Differenced Aggregated Variance Method

This is a method for discovering long-range dependence despite 
the presence of nonstationarity29. It is a variance-type estimator 
acquired by taking the logarithm of the first-order difference of 
Equation 4, which is presented as Equation 6:

(6)

On one hand,

(7)

Since the m values are logarithmically spaced, we further 
represent it as

Therefore,

(8)

Thus, in a log-log plot we would expect to obtain a straight line 
with a slope equal to 2H-2.

Aggregated Absolute Value Method

Considering the series defined in Equation 4, and by computing 
its n-th absolute moment30 

(9)

AM_n^(m) is found to be asymptotically proportional to 
m^n(H-1).

To find an estimate of H, we have to compute AM_n^(m)  for 
different values of m, and then generate a log-log plot against m. 
Here, we would expect that the points should be scattered along a 
straight line with slope n(H-1).

Peng Method

According to31 a previous study, this method constitutes of the 
following steps: compute the partial sum within each block of size 
m according to the Equation 10:

(10)

fit a regression line y=a+bk; compute the variance of the residual

Plot logs_r^(m) vs log m; and then the slope should be equal 
to 2H.

R/S Method

According to this method, R/S32 can be estimated as follows: 

First, consider X_1,X_2, …, X_N as the observations and let 

be the partial sums.   

Define the adjusted range

;

;
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(11)

Consider

(12)

where

The standardized ratio

(13)

is known as rescaled adjusted range or R/S - statistic.

For the River Nile data, Hurst (1951) observed that, for large k,

(14)

with H>1/2.

Based on Hurst’s empirical findings, we can perform the 
following steps: divide the series into k block of size N/k; compute 
the R/S statistics Q(t_i,k), as defined in Equation (13), with starting 
values t_i=iN/k+1 for all possible k such that t_i+k<N; plot its 
logarithm against the logarithm of k; and then the estimated slope 
of the regression plot will be the estimate of H.

TABLE 1: Description of the Mycobacterium tuberculosis genome derived from different strains.

Sequence
number

NCBI Access
number Resistance type Total Rate of GC content Infraspecific name

Seq1 CP002992.1 DS 0.6560 CTRI-2

Seq2 CP000717.1 DS 0.6562 F11

Seq3 CP001641.1 DS 0.6561 CCDC5079

Seq4 CP001642.1 DR 0.6559 CCDC5180

Seq5 CP001664.1 DR 0.6563 str. Haarlem

Seq6 CP001658.1 MDR 0.6561 KZN 1435

Seq7 CP001976.1 XDR 0.6561 KZN 605

Seq8 CP002884.1 DS 0.6561 CCDC5079

Seq9 AL123456.3 DS 0.6561 H37Rv

Seq10 CP000611.1 DS 0.6561 H37Ra

DS: drug susceptible; DR: drug resistant; MDR: multidrug resistant; XDR: extensively drug resistant.

The values of Hurst exponent obtained at each level are 
considered in the cluster analysis. The clustering analysis was 
performed using each method with the distance of Mahalanobis in 
a hierarchical method with the average linkage. 

All the analyses and the generation of figures were carried out 
using the free software R (version 3.4.0)33. The packages used were 
seqinr, waveslim, fArma, and cluster34-37. The number of groups 
to be included in each method were estimated using the package 
NbClust38. (Supplmentary Data).

RESULTS

In this section, we have mainly presented in detail the analysis 
of the aggregated variance method.

In Table 2, we have presented the values calculated for the Hurst 
exponent at each decomposition level. It is important to note that 
at each level of decomposition, the value of the Hurst exponent is 
less than 0.5, thereby indicating short-range dependence.

In Figure 1, the formation of three groups in accordance with the 
aggregated variance method is presented. The first group is formed 
only by the sequence Seq1_DS, a strain that was isolated from Russia 
affiliating to the AI family (consistent with the RFLP genotyping), 
and is susceptible to all the predicted drugs used in the treatment of 
tuberculosis. The sequences that appeared in the second group are as 
follows: Seq2_DS, a susceptible strain embodying majority of the part 
of patient’s diseased isolates that were recovered during an epidemic 
in the Western Cape of South Africa; Seq3_DS, a susceptible strain 
affiliated to the Beijing family that was  sequenced for comparative 
genomic studies; Seq5_DR, a drug-resistant strain, exhibiting 
accelerated rate of transmission between humans especially under 
agglomeration conditions; Seq4_DR, a resistant strain isolated in 
2004 from a patient with secondary pulmonary tuberculosis, and 
sequenced for comparative genomic studies; Seq10_DS, a virulent 
susceptible strain derived from its virulent parent strain H37Rv, which 
was isolated in 1905 and belongs to Edward R. Baldwin (19-year-

Ferreira LM et al. - Evaluation of genome similarities
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TABLE 2: Hurst exponents obtained in the aggregated variance method. 

Levels

Sequences Level 1 Level 2 Level 3 Level 4 Level 5

Seq1_DS -0.1764 0.0128 -0.1432 -0.0692 0.0723

Seq2_DS -0.0707 0.0251 -0.2434 0.0858 0.0513

Seq3_DS -0.1070 0.0170 -0.2113 0.0471 0.0705

Seq4_DR -0.1303 -0.0515 -0.1438 0.0648 0.0499

Seq5_DR -0.0362 -0.0401 -0.2597 0.0257 0.0771

Seq6_MDR -0.0167 0.0233 -0.1412 0.0400 0.1977

Seq7_XDR -0.0490 0.0176 -0.1443 0.0347 0.1979

Seq8_DS -0.1711 0.0331 -0.2831 0.0765 0.0595

Seq9_DS -0.1537 0.0068 -0.4009 0.0759 0.0604

Seq10_DS -0.2241 -0.0554 -0.1840 0.0714 0.0506

FIGURE 1: Clustering the sequences according to the aggregated variance method.

old), a patient diagnosed with chronic pulmonary tuberculosis (this 
strain was acquired over an aging and dissociation procedure of 
an in vitro culture in the year 1935); Seq8_DS, a susceptible strain 
used for comparative genomic studies; and Seq9_DS, a susceptible 
strain derived from the original human lung H37Rv, and was isolated 
in 1934 (this strain has been broadly used all over the world in 
biomedical research. In contract to some clinical isolates, it retains 
total virulence in animals with tuberculosis and is susceptible to drugs 
and is approachable for genetic manipulation). The sequences that 

appeared in the third group include Seq6_MDR and Seq7_XDR, 
and both these sequences correspond to a particular patient from 
KwaZulu-Natal, South Africa. The results obtained for the Hurst 
exponent at each level were analyzed according to the following 
methods: differenced aggregated variance, aggregated absolute value, 
Peng, and R/S, and the details are presented in Table 3. 

The results of the formation of groups according to the 
Differenced Aggregated Variance, Aggregated Absolute Value, Peng, 
and R/S methods are presented in the Figure 2a-d, respectively.

Rev Soc Bras Med Trop | on line | Vol.:53:e20190470, 2020
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TABLE 3: Hurst exponents obtained in the methods: differenced aggregated variance, aggregated absolute value, Peng, and R/S.

	 Differenced aggregated variance method

Levels

Sequences Level 1 Level 2 Level 3 Level 4 Level 5

Seq1_DS 0.0856 0.2538 0.1420 0.4270 0.8014

Seq2_DS 0.1829 0.3861 0.0152 0.5178 0.7536

Seq3_DS 0.2079 0.2289 0.0406 0.5227 0.7516

Seq4_DR 0.1106 0.1875 0.2269 0.5156 0.7400

Seq5_DR 0.2563 0.2904 0.0615 0.4320 0.7598

Seq6_MDR 0.1837 -0.0118 0.0230 0.4316 0.7683

Seq7_XDR 0.2818 -0.0551 0.0289 0.4454 0.8397

Seq8_DS 0.0153 0.0968 0.0447 0.5061 0.7775

Seq9_DS -0.0902 0.1226 -0.0757 0.5057 0.8092

Seq10_DS -0.1168 0.2491 0.0808 0.5249 0.8382

Aggregated absolute value method

Seq1_DS -0.0812 0.1258 -0.0419 0.0219 0.1731

Seq2_DS 0.0584 0.1269 -0.1355 0.1846 0.1430

Seq3_DS -0.0061 0.1291 -0.0976 0.1442 0.1668

Seq4_DR -0.0064 0.0583 -0.0196 0.1615 0.1403

Seq5_DR 0.0804 0.0738 -0.1317 0.1101 0.1702

Seq6_MDR 0.0781 0.1282 -0.0354 0.1448 0.2949

Seq7_XDR 0.0588 0.1265 -0.0382 0.1398 0.2947

Seq8_DS -0.0432 0.1368 -0.1687 0.1731 0.1505

Seq9_DS -0.0592 0.0999 -0.2610 0.1796 0.1560

Seq10_DS -0.0900 0.0432 -0.0708 0.1713 0.1409

Peng method

Seq1_DS -0.0090  0.0088 0.2287 0.6945 1.1861

Seq2_DS -0.0164  0.0114 0.2075 0.6817 1.1802

Seq3_DS -0.0144  -0.0045 0.2109 0.6856 1.1813

Seq4_DR -0.0124  0.0010 0.2165 0.6849 1.1950

Seq5_DR -0.0149  0.0006 0.2049 0.6841 1.1862

Seq6_MDR -0.0124  0.0027 0.2189 0.6986 1.2021

Seq7_XDR -0.0111  0.0026 0.2202 0.6990 1.2016

Seq8_DS -0.0121  0.0015 0.2081 0.6839 1.1846

Seq9_DS -0.0126  -0.0059 0.1983 0.6811 1.1868

Seq10_DS -0.0128  0.0078 0.1951 0.6813 1.1786

R/S method

Seq1_DS       0.2208  0.2773 0.3641  0.6241 0.8847

Seq2_DS       0.1870  0.2087 0.3635  0.6892 0.8398

Seq3_DS       0.1756  0.2646 0.3427  0.6955 0.8417

Seq4_DR       0.1638  0.1951 0.3211  0.7044 0.8407

Seq5_DR       0.2018  0.2610 0.3736  0.6772 0.8609

Seq6_MDR       0.2329  0.2768 0.3811  0.6395 0.8985

Seq7_XDR       0.2234  0.2669 0.3785  0.6362 0.9009

Seq8_DS       0.1620  0.1987 0.3167  0.7042 0.8440

Seq9_DS       0.2055  0.2214 0.3207  0.6935 0.8420

Seq10_DS       0.2258  0.2530 0.3315  0.6953 0.8404

Ferreira LM et al. - Evaluation of genome similarities
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FIGURE 2: Clustering the sequences by using (a) the differenced aggregated variance method, (b) the aggregated absolute value method, (c) the Peng method, 
and (d) the R/S method.

It is important to note that for aggregated variance and 
aggregated absolute value/moment methods, all the decomposition 
levels exhibited H less than 0.5, while the R/S, Peng, and differenced 
aggregated variance methods exhibited H less than 0.5 for the first 
three levels and more than 0.5 for the last two levels indicating 
long-range dependence. The negative values of H obtained in some 
methods were mainly because the estimated H was empirical, and 
this attributed to a negative or above 1 value of H39. The above 1 
value of H obtained in the Peng Method was also reported in a 
previous study40.

The Aggregated Variance, Differenced Aggregated Variance, 
and Aggregated Absolute Value methods presented the formation of 
three groups, but the Peng and R/S methods presented the formation 
of two groups.

DISCUSSION

In Figure 1, the sequence Seq1_DS appears to be isolated from 
the other two groups. However, in a previous study, the sequence 
Seq1_DS was found to be present in the same group as that of the 
sequences Seq6_MDR and Seq7_XDR. Moreover, upon plotting the 
last decomposition level (not showed here), the sequence Seq1_DS 
was found to exhibit completely different behavior than that of the 
sequences Seq6_MDR and Seq7_XDR. Therefore, the interaction 
between the discrete non-decimated wavelet transform and the Hurst 
exponent could effectively detect this difference.

Upon analyzing the formation of the second group in Figure 1, 
we noticed that the results of our study are in accordance with the 
results obtained in a previous study9. This is because in each level 
of decomposition, the group formation is very similar between the 
previous study and our methods.

The Aggregated Absolute Value method presented the most 
similar pattern of the formation of groups to the aggregated variance 
method; however the formation of their larger group with similar 
sequences, as represented in the Figure 2b, does not match with 
the results obtained in the previous studies8,9.

The differenced aggregated variance, Peng, and R/S methods, 
as presented in the Figures 2a, 2c and 2d, respectively, also do not 
present coherence in the formation of groups with similar sequences 
with the results obtained in the previous studies8,9. 

Among the five methods that were used for the estimation of the 
Hurst exponent, the results of the aggregated variance method for the 
formation of groups with similar sequences of the MTB genome were 
more closely related to the results obtained in the previous studies8,9. Even 
though each method presented different patterns of group formation, in 
all the methods the sequences Seq6_MDR and Seq7_XDR were found 
to occur in the same group, which represents the most resistant strains.

The proposed methodology applied for the analysis of clustering 
of the strains with MTB genome exhibited relevant results. 

Rev Soc Bras Med Trop | on line | Vol.:53:e20190470, 2020
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Therefore, this methodology can be applied to any type of genome. 
The use of the discrete non-decimated wavelet transform allows 
the utilization of the entire genome sequence without taking into 
consideration the length as the power of two. Also, there is no loss 
of information.

When compared to other methods that were tested in this 
work, the aggregated variance method presented the best results 
with respect to the group formation for the similar strains. The 
results of this study indicate that the Hurst exponent associated 
with the discrete non-decimated wavelet transform may be used 
appropriately as a measure of similarity between the genome 
sequences. This may further help in obtaining refinement in the 
analysis and detecting details that remain unnoticed.
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