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Abstract

Background: According to structure-dependent function of proteins, two main challenging problems called
Protein Structure Prediction (PSP) and Inverse Protein Folding (IPF) are investigated. In spite of IPF essential
applications, it has not been investigated as much as PSP problem.
In fact, the ultimate goal of IPF problem or protein design is to create proteins with enhanced properties or even
novel functions. One of the major computational challenges in protein design is its large sequence space, namely
searching through all plausible sequences is impossible. Inasmuch as, protein secondary structure represents an
appropriate primary scaffold of the protein conformation, undoubtedly studying the Protein Secondary Structure
Inverse Folding (PSSIF) problem is a quantum leap forward in protein design, as it can reduce the search space.
In this paper, a novel genetic algorithm which uses native secondary sub-structures is proposed to solve PSSIF
problem. In essence, evolutionary information can lead the algorithm to design appropriate amino acid sequences
respective to the target secondary structures. Furthermore, they can be folded to tertiary structures almost similar
to their reference 3D structures.

Results: The proposed algorithm called GAPSSIF benefits from evolutionary information obtained by solved
proteins in the PDB. Therefore, we construct a repository of protein secondary sub-structures to accelerate
convergence of the algorithm.
The secondary structure of designed sequences by GAPSSIF is comparable with those obtained by Evolver and
EvoDesign. Although we do not explicitly consider tertiary structure features through the algorithm, the structural
similarity of native and designed sequences declares acceptable values.

Conclusions: Using the evolutionary information of native structures can significantly improve the quality of
designed sequences. In fact, the combination of this information and effective features such as solvent accessibility
and torsion angles leads IPF problem to an efficient solution. GAPSSIF can be downloaded at http://bioinformatics.
aut.ac.ir/GAPSSIF/.
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Background
Proteins are building blocks of life, serving main roles in
the body. Since the function of a protein is dependent
on its structure, some experimental methods are applied
for tertiary structure determination. Not only these
methods are time-consuming and expensive but also
they cannot build a proper atomic model for some pro-
teins. Thus, computational methods have been known as
favorable approaches for protein structure prediction
(PSP) within the last two decades.
In PSP problem, an amino acid sequence is given as an

input and the goal is to predict the best-adapted structure
respective to its function. In this regard, another essential
problem called protein design or inverse protein folding
(IPF) [1–3] is defined to identify a sequence of amino acids
whose tertiary structure corresponds to a given target struc-
ture. Indispensable applications of IPF in drug design,
medicine and advanced disease treatment evoked scientists
to develop methods for designing appropriate sequences.
Unfortunately, because of IPF NP-Hardness [4], it is impos-
sible to give an exact algorithm to solve this problem.
First attempts to solve this problem back to late 1980s

which mainly focused on amino acid compositions of de-
signed sequences [1]. In 1988 Ragan and Degrado had a
somewhat successful design for a 4-helix bundle structure
[5]. Later, Yue and Dill [2] developed a high simplified
model, called Hydrophobic-polar, embedded in a cubic lat-
tice. This model was developed according to the structural
pattern in globular proteins where hydrophobic and polar
residues, respectively form internal core and surface of the
protein. Many attempts have been done to extend lattice-
based methods such as approximation algorithms [6, 7].
In 1994, a multi-objective genetic algorithm was devel-

oped by Jones to solve IPF problem, in which the input of
algorithm is a protein secondary structure [8]. However,
improvements in proteomics including protein force fields
[10 9, 11] and rotamer libraries [12] enabled scientists to
solve this problem in the atomic level. In this era, several
algorithms were developed to find the best sequences
through the solution space using energy functions [13,
14]. Besides, they take into account the effects of amino
acid conformations, commonly in the form of “rotamer li-
braries”. The essence of IPF solutions, up to 2012, was to
find an amino acid sequence which folds to a low energy
structure by means of assigning more hydrophobic resi-
dues or minimizing a protein energy function.
Due to the simplifications of folding driving forces by

protein design models including discrete rotamer space
and approximate energy functions, IPF problem was in-
capable to reach its holy grail. Until 2012, the point which
had been ignored was the evolutionary information de-
rived from protein databases. Recently, EvoDesign [3, 15]
has been developed to take into account the evolutionary
information in form of profile collections obtained by

native structures of the PDB database. As it was men-
tioned in [3], several methods in the literature were devel-
oped to design specific proteins, but modern methods
should be able to design sequences for any protein scaf-
fold. Despite the abovementioned de novo protein design
algorithms, Evolver [16, 17] has another point of view
which evolves three different types of protein sequences
for each input target structure using simulated annealing.
The first one is the native sequence of input structure ex-
tracted from the PDB database. While, the second one is
obtained by shuffling the native sequence and the last one
is a random protein-like sequence.
Since IPF is the reverse procedure of protein folding, any

suitable method to solve this problem should employ fold-
ing driving forces. As the folding initially involves the estab-
lishment of regular structures, in particular alpha helices
and beta sheets, secondary sub-structures would be useful
in solving PSSIF problem. Actually, these regular structures
can make an appropriate scaffold of protein tertiary struc-
ture; furthermore, they can affect amino acid composition
in primary structure through evolution process. In general,
importance of PSSIF problem arises from the fact that sec-
ondary structure is one the most effective features in ter-
tiary structure and function of proteins.
This paper involves native secondary sub-structures as

evolutionary information to improve designing process.
Thus, a novel genetic algorithm, named GAPSSIF, using
these sub-structures is proposed to solve PSSIF problem. In
other words, a precise protein repository is constructed by
extracting all possible protein secondary sub-structures
from PDB. In this algorithm, each individual takes advan-
tage of a knowledge-based procedure using the sub-
structure repository. In essence, evolutionary information
can lead the algorithm to design appropriate amino acid se-
quences respective to the target secondary structures. Fur-
thermore, they can be folded to tertiary structures almost
similar to their reference 3D structures. GAPSSIF is com-
pared with two well-known algorithms called EvoDesign
and Evolver. The assessment of proposed algorithm on 89
non-redundant proteins confirms the strong performance
in solving PSSIF. In addition, the predicted tertiary struc-
tures of designed sequences represent acceptable results.

Method
In this section, a genetic algorithm [18] called GAPSSIF
is presented to solve PSSIF problem. This algorithm
makes use of evolutionary information through PDB sec-
ondary structure elements. Thus, prior to explain the
proposed algorithm, constructing a repository of protein
secondary sub-structure elements is described.

Building up sub-structure repository
A collection of 102101 proteins was derived from the PDB
secondary structures file generated using DSSP [19]. It
contains all existing amino acid sequences as well their
secondary structures. Since PDB is highly redundant,
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proteins with more than 90 % sequence identity were
omitted to eschew bias of designed sequences to a speci-
fied group of proteins. Afterwards, corresponding amino
acid fragments were extracted for all helices (H), beta
sheets (E) and all other kinds of secondary structure ele-
ments (C).
Eventually, by fetching amino acid fragments for each

distinct sub-structure, an Amino Acid Fragment Reposi-
tory (AFR) which highly increases the precision of pro-
posed algorithm, is formed. This repository comprises
three main clusters including helix, beta sheet and coil.
Each sub-cluster contains non-identical amino acid frag-
ments with a specified length. For example, a sub-cluster
named “H11SC” includes some fragments with 11 amino
acids whose secondary structures are Helix. In essence, we
represent a sub-cluster with ekSC where e ∈ {E, H, C} and
k assigns the length of sub-structure e. There are totally
306 sub-clusters in the repository, 38 for Beta strands, 141
for Helices and 127 for Coils. Clearly, some lengths do not
exist among PDB peptides.

The proposed algorithm to solve PSSIF problem
In this subsection, we aim to describe the steps of
GAPSSIF for solving PSSIF problem to design appro-
priate amino acid sequences folded to target secondary
structures. The following mathematical definition out-
lines PSSIF problem:

Input : SS ¼ ss1…ssl; ssi∈Γ ¼ E;H ;Cf g;
Output : S ¼ s1…sl; si∈

X
¼ 20 standard amino acidsf g:

Algorithm 1 depicts an overview of the proposed
method. In the first step of GAPSSIF, the input second-
ary structure is split into a set of sub-structures, ele-
ments, as described below:

subss ¼ f< σ; k; e>jje∈Γ & ssσ−1; ssσþk≠e & σ; k ¼ 1;…; lg; ð1Þ
where σ, k and e indicate respectively, the start position,
length and type of jth element in the l-length target
structure.

Creating initial population
This subsection describes the second step of GAPSSIF
(algorithm 1) to make an appropriate initial population
where each individual of the population is a 2-tuple < Si,
Fiti > whose Si is made up of 20 standard amino acids as
follows:

Si ¼ F1…F subssj j;

where Fj shows the corresponding amino acid frag-
ment for jth element, <σ, k, e > j, of subss and it is built
up as follows:

Fj ¼
ExactFragmentðk; eÞ
Neighboringðk; eÞ
ChoFaGeneratorðk; eÞ

ekSC∈AFR ∧ r∈½0; 0:7Þ;
ðekSC∈AFR ∧ r∈½0:7; 0:95ÞÞ ∨ ðekSC ∉ AFR ∧ r∈½0; 0:9ÞÞ
Otherwise;

;

8>><
>>:

ð2Þ

where ekSC represents a sub-cluster in AFR (see
“Building up sub-structure repository”) and r ∈ [0,1)
is a random value. In equation (2), ExactFragment
procedure is applied if the intended sub-cluster exists
and the random value r ∈ [0,0.7). This procedure ran-
domly fetches an amino acid fragment from ekSC. In
contrast to the first case of equation (2), the second
case occurs if the intended ekSC exists and the ran-
dom value r ∈ [0.7,0.95) or intended ekSC does not
exist in AFR but the random value r ∈ [0,0.9). In gen-
eral, Neighboring procedure is employed to edit a
shorter or longer element of the repository, see algo-
rithm 2. Steps 1, 2 and 3 of this algorithm find ek′SC
sub-cluster with the lowest difference from k. After-
wards, in step 4, ExactFragment procedure is used to
fetch a fragment from ek′SC sub-cluster and then,
step 5 modifies the fetched fragment to length k.

In case 3 of equation (2), if none of the two first cases
is satisfied, the required fragment is generated by ChoFa-
Generator procedure using ChoFaWeight (CFW) func-
tion. According to Chou-Fasman [20] analysis on
secondary structure dependent propensities, amino acids
have various tendencies to participate in each secondary
sub-structure or element. Therefore, CFW function
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applies roulette wheel selection through 20 standard
amino acids in order to select an appropriate residue.
Accordingly, using evolutionary information in creating

amino acid sequences results in a better starting point to
search through the sequence space and substantially accel-
erates convergence of the algorithm. In order to calculate
the fitness value of generated amino acid sequence (Si),
two main steps should be taken. At first, the secondary
structure of Si called PSSi = pssi1…pssil is predicted by
Reprof [21]. Secondly, the similarity is computed between
the predicted secondary structure, PSSi, and target struc-
ture, SS, as described below:

Fiti ¼
Xl

j¼1

χssj ðpssijÞ;

χhðh′Þ ¼
(

1;

0;

h ¼ h′;

h≠h′:

Eventually, |subss| individuals are generated using afore-
mentioned processes to construct an initial population.

Enriching amino acid individuals
In the third step of proposed algorithm (algorithm 1),
each individual is enriched using Gibbs Sampling algo-
rithm. This method employs AFR Mutation (AFRM) op-
eration iteratively to fortify the individuals using
evolutionary information in AFR.
In the first step of Gibbs Sampling method, AFRM op-

eration takes individual Si and its predicted secondary
structure, PSSi, to generate P'SSi which specifies incor-
rectly predicted positions of PSSi as follows:

P′SSi ¼ p′ssi1…p′ssil;

where

p′ssij ¼
− χssj ðpssijÞ ¼ 1;

pssij else:

(

Then, pattern P'SSi is split into a set of secondary sub-
structures as described below:

subP′SSi ¼ f< σ; k; e>jje∈Γ & ssσ−1; ssσþ1≠e & σ; k
¼ 1;…; lg:

In the following, for each element in set subP′SSi , a
fragment is built according to the equation (2). At last,
these fragments are located on the corresponding frag-
ments in sequence Si to generate a new sequence called
newSi. Then, the fitness value of newSi is computed and
named newFiti.
In the second step, Gibbs Sampling method replaces

sequence Si with designed sequence newSi when newFiti

is greater than Fiti. The first and the second steps of
Gibbs Sampling are conducted |subss| times.

Constructing Hit Map Repository
In step 4 of GAPSSIF (algorithm 1), Hit Map Repository
(HMR) is constructed to contain all correctly designed
subsequences whose structures are identical to the cor-
responding elements of target structure. Each identical
element is represented as follows:

T ¼ < key; s >f g;

where “key” shows the structure of subsequence s in
structure PSS. For instance, <(B4, H3, C2), s > indicates
that there is a subsequence s in the designed sequence
whose structure consecutively contains a beta-sheet,
alpha helix and coil respectively with lengths four, three
and two.
In fact, hit map repository is the result of complemen-

tary collaboration between AFR and secondary predic-
tion algorithm. It means that HMR comprises those
fragments which are accepted by both evolution process
and the secondary structure predictor. In other words,
HMR consists of multi-structural fragments which are
simulated during the algorithm using both prediction al-
gorithm and AFR.

Mutation operations
GAPSSIF employs two mutation operations to mutate
individuals in step 5. Each individual is mutated ran-
domly using AFRM (see “Enriching amino acid indi-
viduals”) or HMR Mutation (HMRM) operations. The
first operation, AFRM, was described as a part of
Gibbs Sampling method in “Enriching amino acid in-
dividuals”. The second one, HMRM, employs hit map
repository to mutate a designed sequence, Si, to gen-
erate an offspring named newSi as described in algo-
rithm 3. HMRM operation tries to find a proper
multi-structural fragment from HMR to locate in Si.
Finally, the fitness values of mutated individuals are
computed and added as new individuals to the popu-
lation P.

Eventually, in step 6 of algorithm 1, the extended
population is sorted in descending order based on the
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fitness values of individuals. Afterwards, in step 7, extra
individuals are removed from the population till the new
generation reaches the size of initial population. GAPS-
SIF is repeated until a solution with identical secondary
structure to the target is found or goes on for 50 itera-
tions. According to the length of the largest sub-
structure in the benchmark, the maximum number of it-
erations is set to 50.

Results and discussion
GAPSSIF was implemented using Perl and all calcula-
tions were done on an Intel core i7-3770 processor (8M
Cache, 3.40GHz) with 16GB RAM in 64bit Ubuntu
Linux.
In this section, the quality of 2D and 3D structures of

designed sequences by GAPSSIF are evaluated. Thus, a
set of 89 non-redundant proteins is used with different
lengths vary from 52 to 196 amino acids [3]. According
to Structural Classification of Proteins (SCOP) [22], the
selected dataset includes 9 alpha (α), 18 beta (β), 26
alpha + beta (α + β), 11 alpha/beta (α/β) and 2 small
proteins.

GAPSSIF evaluation on a non-redundant dataset
This subsection presents GAPSSIF evaluation on 89 pro-
teins. With reference to heuristic nature of GAPSSIF, it
was executed ten times for each PDB ID of Additional
file 1: Table S1. It should be noted that the best designed
sequence in these 10 executions is the one with higher
accuracy (Q3) and less iterations.
An investigation over Additional file 1: Table S1 shows

significant success of GAPSSIF in designing amino acid
sequences for the target secondary structures. Column
(a), PSD-Q3, represents the percentage of similarity be-
tween target and predicted secondary structure of de-
signed sequence [23]. In addition, column (b), SOV,
illustrates the segment overlap score which is based on
the average overlap between the reference and designed
segments [23]. As it is shown by Q3 and SOV, the pro-
posed algorithm successfully designed appropriate se-
quences for 89 proteins with different lengths and
folding classes. In 88 samples, resultant sequences have
identical secondary structures to the target structure.
Even in 1NXM, there is just one residue with non-
identical secondary structure. Furthermore, the value of
column (c) which specifies the iteration number of the
algorithm demonstrates the high convergence of GAPS-
SIF. Even in 1NXM, the best possible sequence was de-
signed just through 7 iterations and it did not change till
termination condition. Meanwhile, column (d) shows the
execution time for making and enriching initial popula-
tion using AFR. Moreover, column (e) indicates the exe-
cution time to search through the solution space using
genetic algorithm operations. Thus, column (f ) refers to

the total time of proposed algorithm given by the sum-
mation of columns (d) and (e) plus one second for load-
ing AFR. Generally, the process of making initial
population is in the order of O(l2) and the time com-
plexity of iteration is O(l2) where l shows the length of
target secondary structure. Moreover, the space com-
plexity of this algorithm is also in the order of O(l2) to
save hit map repository and individuals in each
generation.
The values of column (g) illustrate normalized differ-

ence of amino acid compositions between designed se-
quence S = s1…sl and reference sequence R = r1…rl as
follows:

NDC ¼ 1
20

X
j∈Σ

jX
i¼1

l
χ jðriÞ−

X
i¼1

l
χ jðsiÞj:

The zero value of NDC shows that amino acids distri-
bution in designed sequences is typical of their refer-
ences. However, the rationale of having NDC value
greater than zero is the one behind PAM or BLOSUM
substitution matrices, namely some amino acids are
mutable to one another. In this regard, the low sequence
and fragment identities in columns (h) and (i) not only
mitigate the conjecture of using the reference sequence
from AFR in designing sequence for the corresponding
structure, but also show high diversity of designed se-
quences. As it is marked by “#” in Additional file 1:
Table S1, fortunately just five proteins have non-zero
fragment identity. In fact, high sequence identity cannot
validate the quality of designed sequences alone, since
PDB database has been completed from structural per-
spective not amino acid sequences. As we know many
amino acid sequences can be folded to one protein con-
formation. In addition, this high diversity could be more
useful for practical applications such as biological or
chemical purposes. Meanwhile, amino acid composition
variance in column (j) demonstrates that the designed
protein amino acid compositions are typical of the input
scaffold folding class [8]. The number of successful hits
in column (k) emphasizes that there is an appropriate
designed sequence in almost all ten independent runs of
the proposed algorithm. In column (l), the average value
of 99.59 for all 890 designed sequences (for each of 89
proteins, ten sequences are designed by GAPSSIF) con-
firms remarkable achievement of GAPSSIF in solving
PSSIF problem. The success of proposed algorithm is
due largely to the evolutionary information and the
simulation of multi-structural fragments. Column (m)
indicates that although in some executions the predicted
secondary structure of designed sequences is not identi-
cal to the target structure, the algorithm is able to design
sequences with few incorrect residues. It is clear that the
zero values in this column clarify a successful design in
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all ten executions. In order to better represent the simul-
taneous effect of AFR and HMR, the predicted second-
ary structure accuracy of reference sequences is shown
in the last column of Additional file 1: Table S1. In fact,
the limitations imposed by prediction algorithms
intentionally are used to enhance the performance of
GAPSSIF. To be more specific, for each secondary struc-
ture segment we have two possible repositories, the first
one is authorized by nature-evolved sequences and the
second includes common fragments which are accept-
able by both nature and predictor. In fact, GAPSSIF uses
a prediction algorithm not only to evaluate individuals
as a fitness assessor but also to play an effective role in
constructing amino acid sequences. Although, the pre-
diction accuracy of a reference sequence is restricted
(see column n) even in the best secondary structure pre-
dictors, threat can turn into opportunity by the comple-
mentary collaboration of evolutionary and simulated
data.
It should be mentioned that in order to cross-validate

evaluation procedure, PDB IDs in Additional file 1: Table
S1 marked with “*” were omitted while creating AFR.
Eliminating 1Y25, 1V5I, 2WLV, 2ERb and 3FIL does not
affect GAPSSIF good performance. Moreover, despite
the existence of 1NXM in AFR, it does not have any
exact hit.

Secondary structure assessment of designed sequences
To assess the quality of designed sequences, a comparison
is held between GAPSSIF and the most recent protein de-
sign algorithms, Evolver [16, 17] and EvoDesign [3, 15]. In
this analysis, five protein structures are extracted from [15]
to evaluate the aforementioned algorithms. For each input
structure, EvoDesign announces ten amino acid sequences
in ten independent runs. Each run comprises a population
of 29000 sequences and 30000 iterations. Also, Evolver is
executed on three different types of sequences for each pro-
tein of this benchmark as it was mentioned in Background.
In addition, GAPSSIF runs ten independent times on the
benchmark. For each protein, the size of population is de-
fined based on the number of sub-structures in target

structure, and the algorithm is repeated almost 50
iterations.
EvoDesign benefits from a secondary structure pre-

dictor in its fitness function with comparable results to
PSS-Pred [24] while GAPSSIF uses a development ver-
sion of PHD [21] called Reprof. In order to have a fair
comparison between GAPSSIF and EvoDesign, PSI-Pred
[25] is used to have an impartial secondary structure
prediction. For this, PSI-Pred, PSS-Pred and Reprof pre-
diction results are compared on five proteins in Table 1.
Since GAPSSIF uses Reprof as its fitness function, better
performance of GAPSSIF draws on Reprof prediction re-
sults would be doubtful. Therefore, secondary structures
of designed sequences from GAPSSIF, Evolver and Evo-
Design are predicted by PSS-Pred, PSI-Pred and Reprof
predictors. Since Evolver does not use any prediction al-
gorithm, the results of PSS-Pred and Reprof are suffi-
cient to compare the accuracy of designed sequences.
Table 1 illustrates secondary structure assessment of

three abovementioned designers, GAPSSIF, EvoDesign
and Evolver; such that each designed sequence of each
protein is evaluated using three different secondary
structure predictors. In other words, the secondary
structures of designed sequences obtained by independ-
ent executions were predicted by Reprof, PSS-Pred, and
PSI-Pred. Thus, columns (B) and (Ave) in Table 1 re-
spectively indicate maximum and average Q3 among all
independent runs. For each protein in Table 1, ten inde-
pendent runs of EvoDesign and GAPSSIF as well as
three different executions of Evolver were used. Com-
parison in this table firmly corroborates strong perform-
ance of the proposed method in PSSIF problem.
Undoubtedly, studying the PSSIF problem is a quantum

leap forward in solving protein design, since protein sec-
ondary structure represents a primary scaffold of the pro-
tein conformation. Successful solution for PSSIF problem
by GAPSSIF demonstrates that evolutionary information
from naturally occurring proteins can lead IPF problem to
an efficient solution. Recent studies have demonstrated
that PDB database has reached its completeness [26–28]
which means that there are few structures outside PDB.

Table 1 Secondary structure assessment of designed sequences. The predicted secondary structure accuracies of designed
sequences by GAPSSIF, EvoDesign and Evolver on five proteins are estimated. PSS-Pred, PSI-Pred and Reprof are used as secondary
structure prediction algorithms

PDB
ID_Chain

GAPSSIF EvoDesign Evolver

Reprof% PSS% PSI% Reprof% PSS% PSI% Reprof% PSS%

B Ave B Ave B Ave B Ave B Ave B Ave B Ave B Ave

1ZZK_A 100 100 87.5 80.75 87.5 81.37 82 66.5 83 70.55 83 66.3 88.75 88.33 91.25 87.91

1XTE_A 100 99.74 92.24 86.81 93.96 85.94 69 61.9 85 74.7 81 69.6 88.79 89.22 90.51 89.65

2VOU_A 100 99.93 92.46 89.45 92.46 89.17 78 58.8 84 70.1 84 70.1 90.41 55.58 86.30 83.78

3I4O_A 100 100 91.17 87.20 97.05 89.26 73 59.1 82 60.6 75 64 75 70.58 77.94 68.62

1R26_A 100 100 96.15 91.24 92.30 87.49 84 68.2 95 77.6 95 76.5 91.34 91.02 93.26 92.30
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Tertiary structure assessment of designed sequences
In this subsection, predicted tertiary structure accuracy
of designed sequences is evaluated using I-TASSER
[29]. Actually, the ultimate goal of IPF problem is to
create proteins with enhanced properties or even novel
functions. Inasmuch as, protein structure determines
its function, understanding the functional architecture
enables us to study this macromolecule more practical.
Thus, five designed sequences by GAPSSIF ex-

tracted from [15] are folded by I-TASSER [29] where
tertiary structure results are evaluated using TM-Score
[30, 31], Assigned SS and RMSD [32]. TM-Score rep-
resents structural alignment score obtained from TM-
align [30] and Assigned SS shows the similarity be-
tween target and secondary structures taken from
DSSP, as well Root Mean Square Deviation, RMSD,
measures the average distance among atoms of super-
imposed proteins. In Table 2, TM-Score greater than
0.3 indicates that the structural similarity is not ran-
dom. Moreover, TM-Score greater than 0.5 means that
1ZZKA, 1R26A, 1XTE, 3I4O and 2VOU are in the
same folding class with the input scaffold which
means a relative success in solving IPF problem. The
value of mean ± standard deviation (0.77 ± 0.13) for
TM-Score indicates that all of the predicted tertiary
structures of proteins are in the same fold with their
respective native structures. In addition, the value of
mean ± standard deviation of the RMSD is 2.15 ± 0.79.
Moreover, the average value of Q3, 79 %, is accept-
able because finding appropriate templates highly af-
fects the precision of template-based algorithms such
as I-TASSER while the sequence identity of designed
sequences is low.
Despite the simplicity of fitness function of GAPSSIF

in comparison to EvoDesign and Evolver, the proposed
method shows a good performance in designing amino
acid sequences. Evolutionary information in both GAPS-
SIF and EvoDesign can significantly affect designing
appropriate sequences for a target scaffold. While,
EvoDesign creates a position specific scoring matrix of
divergent sequences taken from homolog structures to

the target structure, GAPSSIF employs fragments of sec-
ondary sub-structures which explicitly participate in
building up amino acid sequences. The procedure of as-
sembling amino acid fragments respective to the second-
ary sub-structures of the target generates protein-like
sequences with high diversity. On account of not expli-
citly considering structural features and the simplicity of
the fitness function in proposed method, GAPSSIF
shows strong performance in solving PSSIF problem and
acceptable results for IPF problem. Furthermore, unfair
evaluation of GAPSSIF by homology-based folding algo-
rithms due to low sequence identity negatively affects
the evaluation designed sequences. In other words, evo-
lutionary information lends GAPSSIF an ability that im-
proves the designing process in this approach by
imposing implicitly tertiary structure constrains which
implied by natural data.

Statistical assessment of designed sequences
In this subsection, two statistical tests are applied to
confirm that designed sequences share common charac-
teristics with reference sequences. For this, Pot statistic
and Pearson’s chi square tests are employed respectively
to measure bunching and inconsistency of the observed
amino acid distribution in a designed sequence.

Bunching assessment
One of the possible issues in designing artificial se-
quences is bunching or grouping of a particular amino
acid based on the secondary structure state, e.g. β struc-
tures are populated by Isoleucine and Valine. Thus, to
exclude this possibility, a Pot statistic [16, 33] test is
employed to penalize the short-range bunching of par-
ticular amino acid in sequence S = s1…sl, as follows:

Epot ¼ 1
l

X
j∈Σ

0:5
potj− potj
�
σ j

� �
−ln

1

σ j
ffiffiffi
2

p ;

where for each amino acid j, potj and σj assigns to the
mean and the corresponding standard deviation calcu-
lated for a set of non-redundant PDB native sequences
(Brylinski, personal communication). In addition, potj is
computed as below:

potj ¼
pot1j −pot

0
j

σ0j
;

with

pot0j ¼
Oj Oj−1
� �
l l−1ð Þ � r

1−r
� l−

1
1−r

� �
;

and

Table 2 Tertiary structure assessment of designed sequences.
TM-Score, RMSD and Assigned SS measure the predicted tertiary
structure accuracy of designed sequences by I-TASSER

TM-Score RMSD Assigned SS Q3 (%)

B Ave B Ave B Ave

1ZZK_A 0.81 0.58 1.71 2.89 86 78

1XTE_A 0.79 0.54 2.26 3.29 88 71

2VOU_A 0.78 0.40 2.98 3.90 71 66

3I4O_A 0.54 0.43 2.95 3.63 73 66

1R26_A 0.95 0.82 0.88 1.71 81 75

Mean 0.77 2.15 79
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Table 3 Statistical assessment of designed sequences.

PDB ID_Chain Epot (a) χ2statistic (b)

Designed Reference Protein-like Bunched Designed Reference Uniprot-distributed

1ZZK_A 21.90 33.03 24.24 295.21 11.06 37.00 27.08

1XTE_A 41.57 42.78 32.98 429.21 23.28 26.14 15.31

1T3Y_A 46.15 40.46 43.67 652.03 22.07 21.70 8.88

1VQS_A 40.54 44.20 29.42 356.21 39.51 29.21 18.77

1OH0_A 45.88 29.85 34.79 438.79 37.73 25.73 12.06

1A2P_A 30.72 27.89 29.88 309.62 29.50 20.66 9.93

1EW4_A 28.98 35.20 37.23 347.37 17.05 36.39 10.05

1HZT_A 38.60 41.60 37.11 604.35 22.24 19.61 12.79

1IDP_A 46.38 37.74 43.54 634.46 50.10 36.94 17.01

1IUJ_A 38.96 31.30 34.49 402.85 32.30 30.23 21.15

1MG4_A 28.03 38.06 36.36 300.93 38.60 13.89 9.59

1NZ0_A 35.95 51.58 48.39 850.27 30.91 55.66 8.16

1URR_A 30.18 28.02 23.55 192.76 21.58 18.81 18.08

1VH5_A 43.58 33.43 37.03 595.33 27.32 15.73 30.65

1VKK_A 40.07 42.42 38.21 612.99 24.51 22.78 13.62

1WLU_A 38.57 40.23 36.69 613.45 40.15 25.25 13.47

1X6Z_A 32.58 44.50 35.98 642.98 27.93 28.63 29.13

1ZHV_A 38.18 67.38 47.61 722.31 22.84 23.84 17.15

2BWF_A 23.42 16.12 21.48 155.17 27.59 18.33 11.07

2FTR_A 49.27 21.01 36.12 290.87 77.06 34.49 15.43

2GPI_A 21.97 26.50 30.76 327.01 17.54 39.97 16.05

2PV2_A 30.48 32.50 32.56 318.45 24.16 13.83 13.01

3EBT_A 63.24 41.44 52.13 643.93 31.17 29.77 22.43

3EF8_A 56.73 46.87 43.06 704.12 36.44 23.44 19.55

3FEA_A 18.96 26.99 25.63 221.59 21.73 28.18 15.01

1GBS_A 72.44 56.16 46.31 1135.2 44.03 31.58 10.53

1R26_A 34.94 23.04 29.40 248.86 17.64 13.40 16.07

1Y25_A 48.29 53.31 52.55 1134.5 26.18 26.00 19.10

2PTH_A 66.33 77.51 58.86 1671.6 33.55 23.49 20.73

1ABA_A 22.67 18.05 19.76 166.69 15.93 16.75 11.94

1DBW_A 35.58 41.21 36.24 526.48 16.34 22.71 16.45

1I2T_A 34.03 34.00 23.55 182.00 20.22 20.07 10.84

1JF8_A 50.42 41.48 31.59 538.69 28.52 22.40 19.64

1KNG_A 47.69 47.33 39.62 777.74 20.34 24.70 13.16

2CAR_A 78.57 71.70 70.30 1603.3 31.39 26.90 13.87

1MF7_A 64.18 63.88 71.41 1550.0 29.86 20.98 16.92

1SHU_X 66.39 52.18 55.33 1426.0 16.93 19.34 15.08

1BKR_A 25.63 30.22 25.95 308.33 14.10 29.46 19.09

2GMY_A 37.04 34.64 35.70 604.25 29.84 16.53 8.61

1OAI_A 21.36 14.58 14.37 76.785 15.64 23.19 12.30

1UTG_A 23.59 22.73 20.83 142.38 33.41 18.75 16.26

1TQG_A 39.34 35.46 44.32 372.97 25.16 22.52 29.04

1TUK_A 15.96 21.39 25.78 190.00 8.20 73.94 26.47
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Table 3 Statistical assessment of designed sequences. (Continued)

1ZKE_A 52.57 26.50 39.81 282.41 56.29 24.02 16.89

2J5Y_A 19.41 18.76 23.69 156.59 23.08 19.26 22.90

2P5K_A 15.82 20.15 15.64 87.718 12.72 13.78 31.03

1GUT_A 20.80 34.68 33.24 276.11 24.02 18.78 11.73

2O1Q_A 42.20 35.61 42.15 634.86 33.39 35.21 14.52

3I4O_A 16.56 17.85 21.53 151.22 20.91 18.08 22.34

1EAQ_A 35.55 36.74 38.15 525.38 53.59 18.46 17.31

1JB3_A 35.90 38.39 33.32 444.65 25.70 21.64 14.12

1KMT_A 40.62 50.03 36.15 598.09 33.67 15.22 24.35

1KQ1_A 14.84 13.58 18.51 71.494 21.90 15.49 22.93

1NXM_A 61.59 60.02 60.89 1582.6 42.49 29.20 22.84

1O7I_A 35.83 38.47 43.29 571.87 20.76 21.11 19.77

1OK0_A 21.76 20.51 23.92 151.96 36.62 29.67 22.49

1QHQ_A 41.56 66.12 48.61 1052.2 19.43 59.80 15.67

1R6J_A 13.76 22.35 21.93 234.14 7.06 23.50 27.16

1UCS_A 12.26 20.15 19.60 150.73 21.99 29.24 16.83

2C9Q_A 34.82 31.49 33.78 416.12 22.62 33.69 16.02

2F01_A 33.91 32.49 41.94 632.93 44.30 69.50 17.83

2J2J_A 56.97 53.80 54.79 1232.2 29.27 44.44 14.14

2VMH_A 52.37 48.25 65.53 1022.4 48.85 31.09 23.27

3VUB_A 44.39 27.49 24.28 283.47 31.45 19.60 18.99

1M9Z_A 24.13 32.38 39.90 431.24 34.22 100.74 19.58

2J8B_A 22.71 21.00 24.56 264.71 28.96 105.67 14.13

2VOU_A 36.64 45.43 54.36 937.67 35.35 28.20 22.98

1V5I_B 28.93 20.44 28.45 145.74 31.51 11.70 15.60

2WLV_A 40.35 36.52 41.68 586.89 52.72 31.57 10.40

1F46_A 58.98 43.65 38.99 541.85 36.50 14.21 17.10

1VZI_A 33.33 37.45 42.36 578.66 63.84 39.32 18.86

2ANX_A 49.41 53.04 52.31 744.32 20.30 10.30 14.17

2CMP_A 25.96 25.58 31.02 154.14 19.60 18.92 10.19

2CVI_A 27.21 47.82 37.24 298.96 39.62 39.01 23.82

2D3D_A 27.45 28.78 35.66 306.37 18.22 22.52 15.46

2ERB_A 36.41 36.63 36.23 504.87 17.94 52.38 16.72

2O9S_A 16.01 13.43 15.44 100.61 59.57 14.03 9.57

2PR7_A 40.92 48.59 39.60 857.73 28.04 30.25 24.34

2QCP_X 19.48 19.43 22.94 150.64 25.94 18.24 15.44

2V1Q_A 14.77 19.23 19.72 98.525 20.10 18.11 16.45

2VPB_A 23.28 17.56 22.49 121.38 16.62 65.12 9.10

2VZC_A 40.47 40.82 51.30 660.83 16.20 33.51 20.36

2ZXY_A 31.88 25.72 31.14 312.36 24.89 22.00 21.61

3CTG_A 32.67 31.39 40.23 407.36 27.96 11.53 16.02

3E9T_A 29.23 38.88 39.61 488.97 21.08 28.89 21.48

3FIL_A 18.22 24.39 24.34 126.78 21.55 14.81 17.17

3G21_A 25.86 19.68 18.65 156.69 30.02 17.41 17.60

3G36_A 13.81 14.90 11.31 108.60 21.10 11.57 7.88
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pot1j ¼
Xi;k¼1;…;l

i<k
χ j sið Þ�χ j skð Þr i−kj j;

and

σ0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1−r2
� O2

j

l
� 1−

Oj

l

� �2
s

;

where Oj shows the frequency of amino acid j in se-
quence S as well r ¼ e−Oj=l.
For each protein in Additional file 1: Table S1, the Epot

value of designed, reference, bunched and random protein-
like sequences are illustrated in Table 3. In fact, the Epot

score of reference sequences are assessed to demonstrate
that the bunching of designed sequences is typical of the
native protein sequences. Moreover, in order to compare
the obtained results, the maximum and minimum bunch-
ing are assessed by calculating the Epot score respectively
for bunched and random protein-like sequences. To ac-
quire the maximum bunching, the reference sequences are
bunched, e.g. the bunched sequence of DCADCDA is
AACCDDD. In addition, the reference sequences are shuf-
fled to generate random protein-like sequence to obtain
minimum bunching value.
Finally, mean, standard deviation, median, quartile 1

and quartile 3 of Table 3 indicate that the amino acid
bunching of designed sequences is typical of the refer-
ence and random protein-like sequences as well much
lower than the bunched sequences.

Pearson’s chi-square assessment
Pearson’s chi-square test [34] is applied to sets of categor-
ical data to determine if there is any significant difference
between the background (Uniprot [35]) and observed dis-
tributions of amino acids in a protein sequence. For each
protein i with length l, we define a random l-length se-
quence according to the amino acid distribution in Uni-
prot. In the following, chi-square test is calculated on
designed, reference and uniprot-distributed sequences ver-
sus background:

χ2j ¼
X

j∈Σ

Oj−Ej

Ej
;

where Oj and Ej are the frequency of amino acid j in a
protein sequence and Uniprot database, respectively.
Table 3 illustrates the obtained chi-square for each de-
signed, reference and uniprot-distributed sequences of a
protein. The mean, standard deviation, median, quartile
1 and quartile 3 indicate that the distribution of the de-
signed sequences versus background is as significant as
the reference sequences.

Conclusion
GAPSSIF algorithm performs successful design for its input
secondary structure scaffold. Interestingly, the acceptable
results for 3D structure in lack of crucial tertiary structure
features arise from the effect of evolutionary information.
On the other hand, taking into account extra important fea-
tures such as solvent accessibility and torsion angles, can
significantly enhance tertiary structure results.
Using the evolutionary information from proteins with

known structures significantly improves the quality of de-
signed sequences. In fact, IPF problem would be solved by
applying this information for both 2D and 3D structures.
Evidently, in order to have better results in 3D, some effect-
ive features such as solvent accessibility and torsion angles
should be considered. Therefore, the simple fitness function
of GAPSSIF would be improved by a multi-featured one to
search through the sequence space more precisely.

Additional file

Additional file 1: Table S1. GAPSSIF evaluation on a non-redundant
dataset. (DOCX 39 kb)
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Table 3 Statistical assessment of designed sequences. (Continued)

3IV4_A 35.41 25.83 31.88 388.37 31.85 26.41 9.82

Mean 35.64 35.30 35.58 498.34 28.71 28.16 17.08

Standard deviation 14.56 14.00 12.58 374.65 12.36 16.88 5.43

Quartile 1 23.59 24.39 24.56 221.59 20.76 18.75 13.47

Median 35.41 34.64 35.98 407.36 26.18 23.49 16.45

Quartile 3 42.20 42.78 42.15 634.46 33.55 30.25 20.36

(a) Pot statistic test penalizes short-range bunching of amino acids. The Epot value of reference and protein-like sequences give the minimal bunching. On the
other hand, the maximal bunching is obtained from bunched sequences. The Epot values of designed sequences confirm that their bunching is typical of the na-
tive sequences. (b) Chi-square test is applied to determine if there is any significant difference between two sets of categorical data. The χ2 values indicate that
the distribution of designed sequences versus Uniprot database is as significant as reference sequences
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