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Abstract: There is a growing interest worldwide in genetically selecting high-value cut carcass
weights, which allows for increased profitability in the beef cattle industry. Primal cut yields have
been proposed as a potential indicator of cutability and overall carcass merit, and it is worthwhile
to assess the prediction accuracies of genomic selection for these traits. This study was performed
to compare the prediction accuracy obtained from a conventional pedigree-based BLUP (PBLUP)
and a single-step genomic BLUP (ssGBLUP) method for 10 primal cut traits—bottom round, brisket,
chuck, flank, rib, shank, sirloin, striploin, tenderloin, and top round—in Hanwoo cattle with the
estimators of the linear regression method. The dataset comprised 3467 phenotypic observations
for the studied traits and 3745 genotyped individuals with 43,987 single-nucleotide polymorphisms.
In the partial dataset, the accuracies ranged from 0.22 to 0.30 and from 0.37 to 0.54 as evaluated using
the PBLUP and ssGBLUP models, respectively. The accuracies of PBLUP and ssGBLUP with the
whole dataset varied from 0.45 to 0.75 (average 0.62) and from 0.52 to 0.83 (average 0.71), respectively.
The results demonstrate that ssGBLUP performed better than PBLUP averaged over the 10 traits,
in terms of prediction accuracy, regardless of considering a partial or whole dataset. Moreover,
ssGBLUP generally showed less biased prediction and a value of dispersion closer to 1 than PBLUP
across the studied traits. Thus, the ssGBLUP seems to be more suitable for improving the accuracy
of predictions for primal cut yields, which can be considered a starting point in future genomic
evaluation for these traits in Hanwoo breeding practice.

Keywords: genomic prediction; accuracy; primal cut yields; single-step method; Hanwoo

1. Introduction

In beef production systems, carcass value is the main revenue source, and it is deter-
mined by both meat quantity and quality. Acceptable carcass and meat quality characteris-
tics are of great importance in the beef industry, as consumers are willing to pay more for
higher-quality products [1]. Hanwoo, the predominant beef cattle of Korea, is well known
for its rapid growth rate and quality features such as the bountiful marbling, tenderness,
texture, flavor, and juiciness of its beef [2]. Recently, there has been growing interest in
including not only traits directly related to profitability, like back fat thickness (BFT), carcass
weight (CW), eye muscle area (EMA), and marbling score (MS) [3], but also traits related
to the composition of the carcass in the Hanwoo breeding program. Thus, cattle breeders
need to address carcass composition and quality traits, which determine the attainability of
premium prices and consumer acceptance of meat. Primal cut traits have been proposed to
characterize the carcass composition in beef cattle [4]. These traits as a potential indicator of
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cutability have previously shown moderate-to-high heritability estimates in beef cattle [4,5]
and are known to be genetically associated with carcass merit [5,6]. Thus, the improvement
of primal cut yields is particularly important in Hanwoo because the evaluation of animals
via these traits can be an alternative to facilitate decision-making regarding selection for
desirable carcass characteristics. However, it is a challenge to improve these traits using
traditional breeding approaches, since they are expensive and difficult to measure or it
requires the selection candidates to be slaughtered.

The availability of genome-wide marker panels and an increased number of geno-
typed individuals have enabled improvements in the accuracy of the estimated breeding
value (EBV). Recently, the single-step genomic best linear unbiased prediction (ssGBLUP)
method has been widely applied in routine genomic evaluation [7–10]. Single-step genomic
BLUP provides the most comprehensive information for genomic evaluation where the
phenotypes of genotyped and non-genotyped individuals, pedigree, and genotype data
can be considered simultaneously in one step. Several studies have reported that the use of
ssGBLUP improves genomic prediction accuracy relative to pedigree-based BLUP or ge-
nomic BLUP (GBLUP) for carcass traits [11–15] and linear body measurements in Hanwoo
cattle [16], as well as in other beef cattle [17–19]. Nonetheless, utilizing primal cut traits to
further increase the accuracy of genomic prediction in breeding programs of Hanwoo cattle
has not yet been investigated. Therefore, the present study aimed to assess the accuracy,
bias, and dispersion of breeding values for primal cut traits using pedigree-based BLUP
(PBLUP) and single-step genomic BLUP (ssGBLUP) methods with a linear regression (LR)
method [20]; this can provide valuable information for further implementation of genomic
selection for the traits under study in Hanwoo cattle.

2. Materials and Methods
2.1. Animals and Phenotypes

The dataset used in this study was derived from 3467 Hanwoo steers born between
2008 and 2017 at the Hanwoo Experiment Station, National Institute of Animal Science
(NIAS), Rural Development Administration, South Korea. All steers were slaughtered at
approximately 24 months of age. The pedigree data containing 18,809 animals was used.
The phenotypic data of the primal cut yields were recorded in kilograms and composed
of both unique and composite meat cuts from the forequarters and hindquarters. The
10 traits analyzed were bottom round, brisket, chuck, flank, rib, shank, sirloin, striploin,
tenderloin, and top round; the locations of each cut on the carcass are illustrated in Figure
S1. Summary statistics for each trait are given in Table 1.

Table 1. Summary statistics for the primal cut yields in Hanwoo cattle.

Trait (Unit) No. of Records Mean (SE) Min. Max. SD CV (%)

Bottom round (Kg) 3467 32.99 (0.07) 16.6 49.6 3.92 11.89
Brisket (Kg) 3466 23.76 (0.05) 12.6 38.6 3.01 12.67
Chuck (Kg) 3463 14.61 (0.06) 6.7 34.8 3.76 25.72
Flank (Kg) 3465 28.29 (0.08) 12.5 50.3 4.83 17.08
Rib (Kg) 3467 57.55 (0.13) 21.7 89.3 7.53 13.09

Shank (Kg) 3466 14.66 (0.03) 9 21.7 1.77 12.09
Sirloin (Kg) 3465 34.23 (0.07) 16.8 50.7 4.11 12.02

Striploin (Kg) 3465 7.85 (0.02) 4.3 12.4 1.17 14.96
Tenderloin (Kg) 3466 6.04 (0.01) 3 9 0.76 12.65
Top round (Kg) 3467 20.22 (0.04) 10.5 30.2 2.43 12

SE, standard error; SD, standard deviation; CV, coefficient of variation.

2.2. Genotypes and Quality Control

A total of 3745 animals (2957 steers and 788 bulls) were genotyped (animal and SNP
call rate of >90%) with the Illumina BovineSNP50K BeadChip (Illumina Inc., San Diego,
CA, USA), including 52,791 SNPs on the 29 chromosomes. SNPs were excluded if they
had a minor allele frequency less than 0.01 (8783 SNPs) and extreme deviation from the
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Hardy–Weinberg equilibrium (defined as the maximum difference between the observed
and expected heterozygosity) greater than 0.15 (21 SNPs). For the genotyped individuals,
SNPs with missing genotypes were imputed using FImpute V3 software [21], after which,
genotypes for 43,987 SNPs remained for subsequent analyses.

2.3. Statistical Analyses
2.3.1. Variance Components Estimation

The estimation of variance components and heritabilities were performed through clas-
sical Bayesian inference under a single-trait pedigree-based animal model in gibbsf90test
software [22] as follows:

y = Xb + Zu + e (1)

where y is the vector of observations for the trait of interest; b is the vector representing
the fixed effects that included the slaughter date (180 levels) and slaughter age (days from
birth to slaughter) as covariates for carcass traits; X is an incidence matrix related to the
fixed effects; Z is an incidence matrix related to the random genetic additive effects; u is
the vector of random genetic additive effects; and e is the vector of random residual effects.
Random effects were assumed to be distributed as u ~ N (0, Aσa

2) and e ~ N (0, Iσe
2),

where A is the numerator relationship matrix, I is the identity matrix, σa
2 is the additive

genetic variance, and σe
2 is the residual variance.

For this study, Markov Chain Monte Carlo (MCMC) chains comprising 550,000 cycles
with the first 50,000 iterations discarded as burn-in (with a thinning interval of 50) were
implemented to estimate variance components and heritability as the posterior means of
the corresponding sampled values. In addition to these criteria, the chain convergence was
assessed by visual inspection.

Moreover, the coefficient of genetic variation (CVg) for each trait was considered as
the genetic standard deviation divided by the mean value for the trait of interest [23].

2.3.2. Methods

The statistical methods used in this study to estimate breeding values were a tradi-
tional BLUP (PBLUP) method with pedigree-based relationship matrix and a single-step
GBLUP (ssGBLUP) method with a combined relationship matrix constructed from geno-
typed and non-genotyped individuals and pedigree information. The analyses were
performed using gibbsf90test software from BLUPF90 family [22]. The estimated breeding
value (EBV) was obtained through a traditional genetic evaluation performed without
genomic information using Equation (1). The ssGBLUP is a modification of the BLUP
model, in which the numerator relationship matrix A−1 is replaced by H−1 [7] as follows:

H−1 = A−1 +

[
0 0
0 (0.95G + 0.05A22)

−1 − A−1
22

]
(2)

where A22 is the numerator relationship matrix for genotyped animals and G is the genomic
relationship matrix [24], which was obtained using preGSf90 software [25].

2.4. Validation and Method Comparison

The two methods were compared in terms of population accuracy, dispersion, and bias.
Validation was performed to evaluate these methods using the LR method as described
by Legarra and Reverter [20]. In brief, the LR method estimates the accuracy, bias, and
dispersion based on a comparison of EBV/GEBV obtained with less information (partial
dataset) and EBV/GEBV derived with more information (whole dataset) for the same
group of individuals. The focal individuals were defined as steers born in 2016 and
2017 (605 animals) in the validation data for primal cut traits. Hence, the EBV/GEBV
for focal animals in the whole and partial dataset with the two methods were estimated.
In the partial data, it was assumed that the phenotypes of focal animals are unknown,
and only the genotypes and pedigree information were available. The expectation of
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EBV/GEBV accuracy from the partial dataset is ρw,p =

√√√√ cov
(

^
uw,

^
up

)
(1+ F+2 f)σ2

u,∞
, where F is the

average inbreeding coefficient, 2 f is the average relationship between individuals,
^
uw(

^
up)

is the vector of estimated breeding values for focal animals using the whole (partial)
dataset [20], and σ2

u,∞ is the genetic variance at equilibrium in a population under selection,
which is estimated via the Gibbs sampling approach proposed by Sorensen et al. [26]. In
addition, the estimator that was also used in this study is 1

ρPBLUP,ssGBLUP
, which represents

the relative increase in accuracy from the PBLUP method to ssGBLUP in the whole or
partial dataset [20].

Thus, 1
ρPBLUP,ssGBLUP

− 1 is superior in accuracy when using ssGBLUP compared to
the PBLUP model for all the traits when the evaluation method changes from PBLUP
to ssGBLUP. It is expected that genomic methods increase the accuracy of predictions
as compared with pedigree-based evaluations for steers. Furthermore, the inverse of

correlation between
^
up and

^
uw (i.e., 1

ρp,w
) represents the gain in accuracy from a partial to

whole dataset by adding phenotypic information to genetic evaluations.
The expected bias was defined as the difference between the means of EBV/GEBV in

the partial and whole datasets, µw,p =
^
up − ^

uw. If the evaluation is unbiased, the expected
value of this estimator is zero. The estimator of dispersion of the breeding value was

measured as the regression coefficient of
^
uw on

^
up, bw,p =

cov
(

^
uw,

^
up

)
var
(

^
up

) . The expected value

of this estimator is 1 if there is no over- or under-dispersion of breeding values [20].

3. Results
3.1. Descriptive Analysis and Estimation of Variance Components

The descriptive statistics for the 10 primal cut yields are given in Table 1. The mean
values of these traits ranged from 6.04 to 57.55 kg with a standard deviation between 0.76
and 7.53. The coefficients of variation ranged from 11.89 to 25.72%, indicating considerable
phenotypic variation of the studied traits in the Hanwoo cattle. The heritability estimates
and variance components for all traits are shown in Table 2. The estimated variance
components display that the traits of interest are moderate to highly heritable, with the
highest (0.52 ± 0.06) and the lowest heritability (0.21 ± 0.04) found for top round and
chuck, respectively.

Table 2. Estimates of heritability (h2), additive genetic variance (σ2
a), residual variance (σ2

e), and
coefficient of genetic variation (CVg) for primal cut yields using the pedigree-based animal model in
Hanwoo cattle.

Trait h2 σ2
a σ2

e σ2
p CVg(%)

Bottom round 0.50 (0.06) 5.47 (0.73) 5.41 (0.59) 10.87 (0.30) 7.09
Brisket 0.51 (0.06) 3.17 (0.42) 3.08 (0.34) 6.25 (0.18) 7.49
Chuck 0.21 (0.04) 1.82 (0.38) 6.64 (0.36) 8.46 (0.22) 9.23
Flank 0.29 (0.05) 4.61 (0.86) 11.58 (0.77) 16.18 (0.42) 7.59
Rib 0.27 (0.05) 9.58 (1.93) 27.18 (1.75) 37.04 (0.96) 5.38

Shank 0.50 (0.06) 1.10 (0.15) 1.11 (0.12) 2.20 (0.06) 7.15
Sirloin 0.42 (0.06) 5.26 (0.78) 7.20 (0.65) 12.46 (0.34) 6.70

Striploin 0.39 (0.06) 0.31 (0.05) 0.50 (0.04) 0.81 (0.02) 7.09
Tenderloin 0.34 (0.05) 0.14 (0.02) 0.27 (0.02) 0.42 (0.01) 6.19
Top round 0.52 (0.06) 2.22 (0.29) 2.07 (0.23) 4.29 (0.12) 7.37

The numbers in parentheses are the standard deviations of posterior densities.
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3.2. Comparisons of Prediction Accuracy, Bias, and Dispersion between Pedigree-Based BLUP
and ssGBLUP

The population accuracies for the primal cut yields obtained via the PBLUP and
ssGBLUP methods using the partial and whole datasets are presented in Figures 1 and 2.
The results show that the accuracies of breeding values from the ssGBLUP method were
considerably higher than those from PBLUP for the analyzed traits, regardless of con-
sidering a partial or whole dataset. The accuracies for PBLUP ranged from 0.22 to 0.30
and those for ssGBLUP ranged from 0.37 to 0.54 using the partial dataset. The average
predictive accuracies were 0.26 for PBLUP and 0.46 for the ssGBLUP method across all
traits. In addition, the estimator 1

ρPBLUP,ssGBLUP
− 1, indicating the average value of improved

accuracy by switching from PBLUP to ssGBLUP, was 65% across the 10 traits due to the
addition of genomic information when a partial dataset was used (Figure 1).
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When the whole dataset for the prediction of breeding values was added in the
analyses, accuracies ranged from 0.45 to 0.75 (average 0.62) for PBLUP and from 0.52 to
0.83 (average 0.71) for the ssGBLUP model, indicating an improvement in accuracy with
ssGBLUP compared with PBLUP for the studied traits (Figure 2). In other words, the
ssGBLUP was superior to PBLUP, with an average relative gain of 7% across all traits when
using the whole dataset (Figure 2).

The results obtained with a partial dataset were compared with those from the whole
dataset in terms of accuracy in both the pedigree and genomic methods. The results show
that the population accuracies using the whole dataset were higher than those derived
from a partial dataset. Figure 3 shows that the accuracy across the studied traits using the
whole dataset was two times than those with the partial dataset in the PBLUP method,
while the accuracy was improved by 46% on average for the ssGBLUP method from the
partial to the whole dataset.
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Regarding the bias, predictions from the ssGBLUP method displayed less bias than
predictions from the PBLUP method for the traits under study, except for rib. The average
values varied from −0.12 to −0.01 for PBLUP and from −0.05 to 0 for the ssGBLUP method
across all traits (Figure 4). Among the primal cut traits, the predictions from ssGBLUP were
unbiased for tenderloin; following that, chuck, flank, shank, and striploin were slightly less
biased or closer to zero compared to the other remaining traits. Moreover, the value for the
estimator of dispersion for all traits ranged from 0.78 to 1.23 (average absolute deviation
from 1 equal to 0.12) for PBLUP and from 1.02 to 1.18 (average absolute deviation from
1 equal to 0.10) for the ssGBLUP method (Figure 4). Generally, these results indicate that
ssGBLUP leads to less over- or under-dispersion compared with PBLUP in the analyzed
dataset.
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4. Discussion

The current study is the first attempt to compare pedigree-based BLUP (PBLUP) and
single-step genomic BLUP (ssGBLUP) methods for prediction accuracy regarding primal
cut yields in Hanwoo cattle. To maximize the profitability of the beef cattle industry, se-
lection based on genomic information has become an effective tool in breeding programs.
According to our results, primal cut yields are moderately to highly heritable traits, compa-
rable to those estimated in Hanwoo cattle [5], Simmental cattle [27], Chianina cattle [28],
Irish cattle [4,6], and U.K. beef cattle [29]. For instance, compared to our results, Choi
et al. [5] estimated higher heritability for bottom round (0.66), rib (0.35), sirloin (0.60),
striploin (0.64), tenderloin (0.41), and top round (0.62); lower heritability for brisket (0.21),
flank (0.21), and shank (0.35); and slightly similar heritability for chuck (0.19) in Hanwoo
cattle. This difference might result from the discrepancy in the number of records mea-
sured (3467 vs. 920 records) and the units of measurement data (kilograms vs. percent of
carcass weight). Furthermore, the existence of sufficient genetic variation indicates that
improvements in these traits through genetic selection are feasible. In a recent study, we
observed the favorable and moderate to high genetic correlations between the primal cut
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yields and three composite traits of primal cuts based on their retail value (high-value
cuts, medium-value cuts, and low-value cuts) with carcass traits available in the Hanwoo
selection index, indicate that these traits can be considered as a selection objective in the
Hanwoo breeding scheme [30]. A similar conclusion was drawn by Pabiou et al. [31], who
reported that four groups of wholesale cut weights predicted using video image analyses
(i.e., very high value cuts, high value cuts, medium value cuts, and low value cuts) had
moderate genetic correlations with carcass weight in Irish steers. Given that primal cuts
yields in beef cattle are known to be heritable traits, evidence exists, although based on a
limited study population [4,6], which shows that these traits could be useful in multi-trait
genetic evaluations targeting the improvement in the accuracy of selection for primal
carcass cut weights and, by extension, overall carcass merit.

In this study, estimates of the accuracy, bias, and dispersion of primal cut yields were
obtained via evaluation models that used only pedigree or a combination of pedigree
and genomic relationship matrices using the LR method. Our results demonstrated that
the ssGBLUP model outperformed PBLUP for all 10 traits in either a partial or whole
dataset. A shift in the average accuracy from 0.26 to 0.46 was obtained by changing from a
PBLUP to ssGBLUP method across the studied traits using the partial dataset. Similarly,
the use of the whole dataset in analyses led to an average increase in accuracy from
0.62 to 0.71 by moving the model from PBLUP to ssGBLUP for all the primal cut yields.
In other words, when genomic information was included in the analyses, the average
improvements in the accuracy were + 20 and + 9 percentage points using partial and whole
datasets, respectively, compared with pedigree-based BLUP due to the capture of variation
in Mendelian sampling [32,33]. Furthermore, the increase in accuracy in genomic prediction
depends upon the quality and veracity of the available information, complete or incorrect
pedigree, number of phenotyped/genotyped animals, and heritability of traits [34]. It has
also been shown that the use of all phenotyped animals, pedigree, and genomic information
simultaneously in the ssGBLUP model provides better predictability compared to the
pedigree-based model, which could also be explained by better relationships [24,35]. Hence,
our results showed that using genomic prediction is relatively more beneficial for all
evaluated traits, thereby enabling a significant increase in the rate of genetic gain [36].

Among the studied traits, ssGBLUP provided a substantially higher prediction accu-
racy than the PBLUP method for bottom round, shank, top round, and brisket compared
with the other traits. It is reasonable to assume that this higher accuracy could be due to the
heritability of the traits of interest, which were 0.50, 0.50, 0.52, and 0.51 herein for bottom
round, shank, top round, and brisket, respectively (Table 2). The importance of heritability
on the accuracies of estimated breeding values is shown in Figure S2, where the regression
coefficients of accuracy (in the partial data) on the heritabilities were significantly positive
regardless of the method. As expected, the superiority of ssGBLUP over PBLUP was more
obvious for the traits with higher heritability, suggesting that heritability can be used as a
measure to evaluate the accuracy of the target traits in genomic evaluation for a breeding
program. Similar findings were found by Bolormaa et al. [37], who reported that the most
accurate predictions were observed for the traits with highest heritability. In addition,
another study showed that higher prediction accuracies were obtained for ADG and DMI,
which had the highest heritabilities (h2 = 0.39 and h2 = 0.43, respectively) among the feed
efficiency traits in Nellore cattle [38].

Concerning the ratio of the superiority of ssGBLUP over the pedigree-based method,
the performance of the estimation of the ratio was improved by the added genomic infor-
mation in ssGBLUP compared with the PBLUP method across all traits. The estimated
value of the ratio indicates the increase in accuracy from pedigree to genomic predictions in
both partial and whole datasets. The results indicate that the relative gain in the accuracy
of GEBV with ssGBLUP was 65% using the partial dataset, whereas the ssGBLUP method
was superior to PBLUP when the whole dataset was used, with an average increase or
relative gain of 7% across all traits. In fact, these findings indicate the positive impact of
genomic information on the genetic evaluations when no phenotypic data are available for
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the candidate animals or even when phenotypes are available on individuals; the addition
of genomic information in the analysis can considerably improve the accuracy of prediction
relative to pedigree-based models.

According to our results, the increase in accuracy from partial to whole dataset ( 1
ρp,w

)
was over two times for the pedigree-based evaluation compared to the genomic-based
method (Figure 3). This indicates that the accuracy of predictions for the genomic method
compared with the pedigree-based method is less affected by the use of the whole dataset,
which is in agreement with the literature [20,39–41]. For instance, Granado-Tajada et al. [40]
showed that adding phenotypes increased accuracy by double and 81% using the pedigree
evaluation for two strains of dairy sheep, namely Latxa Cara Rubia (LCR) and Latxa
Cara Negra from Euskadi (LCNEUS), respectively, while this estimator was 96% and 78%
using a genomic method for LCR and LCNEUS, respectively. Moreover, in another study
on dairy sheep (Manech Tête Rousse breed), Macedo et al. [41] exhibited an increase in
accuracy of 78% for the PBLUP method and 51% for the ssGBLUP method by adding
phenotypic information of focal individuals to the partial dataset. Similarly, Bermann
et al. [39] reported that the accuracies based on the LR method were 0.45 for BLUP and 0.76
for ssGBLUP in the simulated data, whereas those obtained with the real data (chicken
mortality) were 0.41 and 0.47 for BLUP and ssGBLUP, respectively. These authors also
demonstrated that moving from the partial to the whole dataset resulted in a 17% and
20.4% gain in accuracy based on the pedigree evaluation and a 14% and 9.8% increase for
the genomic-based evaluation in real and simulated data, respectively.

These findings were also in concordance with those reported by Mehrban et al. [14],
who applied the LR method to evaluate carcass traits in Hanwoo cattle using four eval-
uation models and showed that using genomic information and additional phenotypic
information from highly genetically correlated traits is a suitable tool to improve the
prediction accuracy.

Consistent with our results, several previous studies have proved the superiority
of ssGBLUP over traditional BLUP approaches in various livestock since it was
proposed [7,18,32,33,42–50]. Moreover, in Hanwoo cattle studies, the accuracies obtained
from single-step models were found to be higher than those from pedigree-based and
multi-step methods for carcass traits [11–15,51] and body measurement traits [16].

This estimator was proposed by Legarra and Reverter [20], and it is an estimator of
the ratio between accuracies based on pedigree and genomic evaluations in partial and
whole datasets. They also highlighted that the correlation between predictions obtained
with partial and whole datasets is not a measure of accuracy, but an estimator of the
ratio between accuracies. In fact, the advantage of this method is the simplicity of its
application, comparing the EBV/GEBV estimated from less information (partial dataset)
with the EBV/GEBV from data containing more information (whole dataset) for the same
individuals in different evaluations.

In addition to the prediction accuracy, the bias and estimator of dispersion are other
important indicators when comparing different prediction methods in breeding programs.
Bias, for which the desired value is zero, refers to the difference between the mean of EBV
in partial and whole dataset. In general, predictions obtained via the single-step approach
by adding genomic information showed less bias compared with those obtained from
the pedigree-based method across the studied traits, except for rib. The dispersion can
be defined as the value of the slope of the regression of breeding values estimated with
whole dataset on breeding values estimated using partial dataset, and it has an expected
value of 1. Dispersion estimates less than or greater than 1 indicate an overestimation
(inflation) or underestimation (deflation), respectively. The results showed that the aver-
age absolute deviation of dispersion from 1 was less for ssGBLUP than for the PBLUP
method. Therefore, the inclusion of all information available in the evaluation simultane-
ously reduced the overestimation and underestimation of the breeding values [52], and the
single-step genomic approach is able to partially account for pre-selection, as expected [53].
It was previously shown that inflation or deflation of predictions could result in incor-
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rect comparisons between animals of different generations and inaccurate genetic trend
estimates [54].

Consequently, the results of the current study provide a comprehensive analysis
of accuracy, bias, and dispersion for primal cut yields using the LR method, which can
be applied to any model and any data structure [20,55]. Our results demonstrated that
ssGBLUP generally provided a higher accuracy than the PBLUP method for primal cut
yields in Hanwoo cattle that could have a practical applicability for breeding programs.

5. Conclusions

Our aim was to investigate two methods, pedigree-based BLUP and ssGBLUP, for
10 primal cut yields using the LR method in terms of population accuracy, bias, and
dispersion in Hanwoo cattle. The results indicated that the ssGBLUP model yielded
considerably higher accuracy than the PBLUP model for all the studied traits. Concerning
the bias and dispersion, predictions from the ssGBLUP method had less bias and a value of
dispersion closer to 1 compared to PBLUP across the primal cut yields. It is worthy to note
that the inclusion of all pedigree, phenotypic, and genomic information simultaneously
in the ssGBLUP led to a 65% (7%) higher accuracy on average than PBLUP in primal
cut yields using the partial (whole) dataset. Therefore, it seems that using ssGBLUP is a
promising approach in future genomic evaluations targeting the improvement of weight in
the more valuable primal cuts, consequently increasing the profitability of the Hanwoo
beef production system.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12121886/s1, Figure S1: Location of 10 carcass primal cut yields in Hanwoo cattle;
Figure S2: The regression coefficients of accuracy on the her-itabilities of traits in the partial dataset.
The grey zone is the 95% confidence interval.
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