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Psoriasis is a common chronic inflammatory disease of the skin. We sought to use bacterial community
abundance data to assess the feasibility of developing multivariate molecular signatures for differentiation
of cutaneous psoriatic lesions, clinically unaffected contralateral skin from psoriatic patients, and similar
cutaneous loci in matched healthy control subjects. Using 16S rRNA high-throughput DNA sequencing, we
assayed the cutaneous microbiome for 51 such matched specimen triplets including subjects of both
genders, different age groups, ethnicities and multiple body sites. None of the subjects had recently received
relevant treatments or antibiotics. We found that molecular signatures for the diagnosis of psoriasis result in
significant accuracy ranging from 0.75 to 0.89 AUC, depending on the classification task. We also found a
significant effect of DNA sequencing and downstream analysis protocols on the accuracy of molecular
signatures. Our results demonstrate that it is feasible to develop accurate molecular signatures for the
diagnosis of psoriasis from microbiomic data.

P
soriasis is a chronic inflammatory disease of unknown cause. Few studies of the microbiota in psoriatic
patients have used molecular methods for the detection of bacterial and fungal taxa1–3. Such studies have
involved relatively small numbers of subjects, and relatively low depths of coverage. Similarly, no studies

have developed multivariate molecular signatures of psoriasis from high-throughput molecular data from the
skin and assessed their accuracy. By ‘‘multivariate molecular signature’’ or ‘‘molecular signature’’ of psoriasis, we
mean a multivariate computational or mathematical model that can either classify or diagnose psoriasis from
molecular data. Studies that have generated high-throughput molecular data from the psoriatic skin lesions focus
primarily on differential gene expression4–6. Outside of the domain of psoriasis, there have been few efforts to
develop and assess multivariate molecular signatures using microbiomic data for clinical tasks. Most related
efforts involved classification of body sites or subject/population identification7–9.

As part of the Human Microbiome Project of the National Institutes of Health, we sought to assess feasibility
and compare methodologies for developing molecular signatures of psoriasis using microbiomic data from the
skin. Because the cutaneous microbiota is complex10,11, and its composition is site-specific12,13, we matched
lesional skin with unaffected contralateral skin from the same subject. Likewise, the samples from demograph-
ically matched healthy controls were collected at standardized sites where psoriasis lesions commonly appear.
The experimental specimen matching and sample collection protocols were designed to measure predictive
microbial markers that are common across body-sites regardless of the inter-site variability. Each site may have
additional specific markers which may not be detected by the current design. We used this set of specimens to
obtain high-throughput sequencing of the 16S rRNA gene for both the V1–V3 and the V3–V5 loci14. Using
resulting microbiomic data, we then developed and evaluated multivariate molecular signatures of psoriasis
aimed at the separation of cutaneous psoriatic lesions, the clinically uninvolved contralateral skin, and the similar
skin loci in matched healthy control subjects. The availability of two different datasets, based on the V1–V3 and
the V3–V5 16S rRNA gene loci, enabled us to study the effect of the DNA sequencing protocol on the classifica-
tion accuracy of molecular signatures. Similarly, we experimented with 37 protocols for downstream analysis by
using various methods for selecting features/taxa (taxonomic features) for inclusion in the molecular signatures.
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This approach allowed us to study the effects of downstream analysis
protocols on the classification accuracy of molecular signatures.

Results
Microbiomic signatures can diagnose psoriasis with high accu-
racy. Using the high-throughput 16S rRNA gene survey data from
the V3–V5 locus, we developed and evaluated molecular signatures
of psoriasis for four binary classification tasks aimed at separating
psoriasis lesions (PL: psoriatic plaque), psoriasis normal (PN:
contralateral area of clinically uninvolved skin), and healthy
control (CC) samples: (i) PN vs. CC, (ii) PL vs. CC, (iii) PL vs. PN,
and (iv) CC vs. PL and PN.

The resulting classification accuracy (AUC) and the number of
taxa participating in molecular signatures derived from the data from
the V3–V5 locus are shown in Table 1, Panel A. Using very few taxa
(2–4) it is possible to separate classes of samples with high and
statistically significant classification accuracy. Of the four classifica-
tion tasks, separation of CC vs. PL and PN yields the highest clas-
sification accuracy (AUC 5 0.894), while separation of PN vs. PL has
lower (AUC 5 0.754) but still statistically significant classification
accuracy (Table 1, Panel A, Columns 1 and 2). The number of taxa
in the constructed molecular signatures is provided in Table 1, Panel
A, Columns 3 and 4. Detailed information on (a) the features/taxa
selected by GLL in all data as well as (b) the 20 most frequently
selected features/taxa by GLL in the training sets during cross-valid-
ation is provided in Supplementary File 1. The file reports individual
AUC’s of the features as well as p-values from Fisher’s Z-test; both
AUC and p-values were computed on all data samples. In addition,
the file reports frequency of selection for the 20 most frequently
selected features/taxa (the maximum frequency is 500 because this
is the number of training sets in which GLL was applied).
Supplementary File 3 provides a list of the 50 most univariately
discriminative taxonomic features for each classification task along
with their individual AUC’s and mean relative abundances per
group. Features in this list that have also been selected by GLL in
all data are highlighted with yellow.

DNA sequencing protocol affects the accuracy of microbiomic
signatures. We also investigated the effect of using a survey of
microbiota from a different region (V1–V3) of the 16S rRNA gene
on classification accuracy of molecular signatures by repeating the
same experiment described above. We focused on the same four
binary classification tasks (PN vs. CC, PL vs. CC, PL vs. PN, and
CC vs. PL and PN) and followed a nested cross-validation design to
select features/taxa and build molecular signatures.

The resulting classification accuracy (AUC) and the number of
taxa participating in the molecular signatures are shown in Table 1,
Panel B. Detailed information on features/taxa selected by GLL is
provided in Supplementary File 2. Information about the 50 most
univariately discriminative taxonomic features for each classification
task is provided in Supplementary File 4. Only the separation of PL
from CC has statistically significant accuracy. The observation that
other classification tasks do not yield statistically significant accura-
cies indicates that the V1–V3 locus, unlike V3–V5, captures less
information about the different skin types. Although the V1–V3
based survey can still be useful for diagnostic purposes, the ability
to distinguish between the unaffected skin types (normal vs. control)
or the skin within the affected individuals (normal vs. lesion) has
been lost compared to V3–V5. The general reason for differences in
performance is because amplification of V1–V3 and V3–V5 regions
provides different surveys of the variability of 16S rRNA gene in the
communities.

Downstream analysis protocol affects the accuracy of micro-
biomic signatures. Table S1 in Supplementary Information
describes all downstream analysis protocols evaluated using the
16S rRNA data both from the V1–V3 and the V3–V5 loci for all
four binary classification tasks (PN vs. CC, PL vs. CC, PL vs. PN, and
CC vs. PL and PN). Each protocol differs from the others by using a
different feature/taxa selection method.

The resulting classification accuracy (AUC) and the number of
features/taxa participating in molecular signatures is shown for
results averaged over all four classification tasks (Figure 1) and for
individual results for each classification task (Figure 2) for data from

Table 1 | Classification accuracy (AUC) and the number of taxa in the molecular signatures of psoriasis constructed by the GLL and SVM
algorithms using the V3–V5 16S rRNA locus data (Panel A) and using the V1–V3 16S rRNA locus data (Panel B)*

Panel A: V3–V5 16S rRNA locus

1 2 3 4

Classification task

Classification accuracy (AUC) Number of selected taxa

Cross-validation estimate Statistical significance (p-value) From cross-validation (mean) From the entire dataset

PN vs. CC 0.854 ,0.001 2.8 2
PL vs. CC 0.806 0.002 2.5 2
PL vs. PN 0.754 0.004 2.1 3
CC vs. PL and PN 0.894 ,0.001 3.7 4

Panel B: V1–V3 16S rRNA locus

1 2 3 4

Classification task

Classification accuracy (AUC) Number of selected taxa

Cross-validation estimate Statistical significance (p-value) From cross-validation (mean) From the entire dataset

PN vs. CC 0.405 0.985 2 1
PL vs. CC 0.751 ,0.001 3.8 4
PL vs. PN 0.576 0.080 3.1 3
CC vs. PL and PN 0.482 0.618 4.2 3
*Results for molecular signatures with statistically significant classification accuracy (at 5% alpha-level adjusted for multiple comparisons) are shown with bold font. Column4 reports the number of selected
taxa when the GLL method was applied to the entire dataset (all samples). Column 3 reports the number of taxa selected on average in all training sets of five-fold cross-validation (repeated 100 times with
different splits into five folds). These represent results of the application of GLL to (5 3 100 5 500) training sets of the dataset with 80% of samples.
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the V3–V5 locus. Detailed results and statistical comparison are
given in Table S2 (for classification accuracy) and Table S3 (for
number of selected features/taxa) in Supplementary Information.
With respect to classification accuracy, there are 8 methods (includ-
ing GLL) that yield molecular signatures with statistically significant
classification accuracies for all 4 tasks (GLL, UAF-KW1, UAF-SN1,
UAF-T1, UAF-T2, RFVS1, RFVS2, LARS-EN1). The GLL feature/
taxa selection method outperforms 34 of the 36 comparator methods
on average over four classification tasks. While there are 2 methods
(RFVS1 and RFVS2) that yield slightly higher classification accuracy
than GLL, the differences in accuracy are not statistically significant.
With respect to the number of selected features/taxa, GLL selects
fewer features/taxa than 24 of the 36 comparator methods (including
RFVS1 and RFVS2) on average over the four classification tasks.
There are 12 methods that select fewer features than GLL (6 of these
12 methods select significantly fewer features), however there is no
single method that both selects fewer features and yields higher clas-
sification accuracy than GLL. Combined with the previous obser-
vation that there is no method that yields significantly higher
classification accuracy than GLL regardless of the number of

features, we conclude that GLL is the optimal method for the
development of molecular signatures from this data.

Detailed results and statistical comparison for data using the V1–
V3 locus are given in Table S4 (for classification accuracy) and Table
S5 (for number of selected features/taxa) in Supplementary
Information. None of the other comparator methods yield molecu-
lar signatures with statistically significant classification accuracies for
all 4 tasks. Therefore, we did not perform comparison between meth-
ods using the data from the V1–V3 locus.

Discussion
The original analysis of the V1–V3 dataset (Alekseyenko AV, Perez-
Perez GI, D’Souza A, Strober B, Gao Z, Bihan M, Li K, Methé BA,
Blaser MJ: Population differentiation of the cutaneous microbiota in
psoriasis, forthcoming) consisted of ecological analysis, which iden-
tified increasing intra-group (Unifrac) beta-diversity in the psoriasis
specimens (diversity CC , PN , PL). The PL and PN specimens also
showed decreased taxonomic richness and distribution evenness
(Shannon index) compared with the CC (Control samples). These
differences could be explained by the combined increased abundance

Figure 1 | Classification accuracy (AUC) versus number of selected features/taxa for 37 feature selection methods averaged over 4 classification tasks
(PN vs. CC, PL vs. CC, PL vs. PN, and CC vs. PL and PN) in data based on the V3–V5 16S rRNA locus. Methods from the same algorithmic family are
shown with the same markers in the figure. The pink area contains methods that have nominally higher classification accuracy (AUC) than GLL. The

green area contains methods that have selected fewer taxa than GLL. The red dash-dotted line indicates a Pareto frontier constructed over non-GLL

methods. Methods on the Pareto frontier are such that no other non-GLL method has both higher AUC and a smaller number of selected features

averaged over the four classification tasks.
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of the four major skin-associated genera (Corynebacterium, Propio-
nibacterium, Staphylococcus, and Streptococcus). The univariate ana-
lysis using the AUC determined that the three genera Cupriavidus,
Methylobacterium, and Schlegelella statistically significantly (at 5%
alpha-level) classify the groups of specimens. Interestingly, these
genera also often participate in the multivariate molecular signatures
of psoriasis constructed in the present study (detailed comparison is
provided in Table S6 in Supplementary Information). Finally, based
on partitioning around medoids clustering, the ecological study
identified two distinct cutaneotypes: (1) Proteobacteria-associated,
and (2) Firmicutes- and Actinobacteria-associated. Cutaneotype 2

was enriched in PL specimens compared to CC (OR 3.52 [1.44–
8.98], p , 0.01).

A useful theoretical property of the GLL method is that under
broad distributional assumptions, it provably discovers the local
pathway membership around the response variable of interest15.
Specifically, this means that under sufficient assumptions of the
method15, which are commonly accepted and used in causal discov-
ery research16, GLL will output from observational data the set of
direct causes, direct effects, and (optionally, depending on the ver-
sion of GLL) direct causes of direct effects of the response variable
(in this study, the response variable is a binary indicator of the

Figure 2 | Classification accuracy (AUC) versus number of selected features/taxa for 37 feature selection methods for each of the four classification
tasks (PN vs. CC, PL vs. CC, PL vs. PN, and CC vs. PL and PN) in data based on the V3–V5 16S rRNA gene locus. Methods from the same algorithmic

family are shown with the same markers in the figure. The pink area contains methods that have nominally higher classification accuracy (AUC)

than GLL. The green area contains methods that have selected fewer taxa than GLL. The red dash-dotted line indicates a Pareto frontier constructed over

non-GLL methods. Methods on the Pareto frontier are such that no other non-GLL method has both higher AUC and a smaller number of selected

features for each classification task.
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phenotype). This theory has been tested in both biological and non-
biological fields; see for example15,17,18. The output of non-causal
feature selection methods, which are comparator methods used in
this study, cannot in general be interpreted causally and often results
in associated variables that do not have a causal relation with the
phenotype; they can merely be passengers15,17,19. Nevertheless, we
consider the current work to be an initial step in the discovery pro-
cess. To causally validate and interpret the findings, several consid-
erations must be addressed: the genetic composition and immune
status of the host, prior exposure and entrance routes of potential
pathogens, pathogenetic mechanisms of implicated taxa, and func-
tional assessment of the impact of microbial community composi-
tion on the observed phenotype.

In conclusion, this work demonstrates that it is possible to develop
accurate molecular signatures for the diagnosis of psoriasis from
microbiomic data. We have shown that the accuracy of molecular
signatures depends on the DNA sequencing and downstream ana-
lysis protocols. Using the 16S rRNA data from the V3–V5 locus leads
to accurate and statistically significant molecular signatures, whereas
data from the V1–V3 locus carries limited diagnostic signal. With
respect to the downstream analysis protocol, our results suggest that
the Markov boundary-based Generalized Local Learning (GLL)
method works well for this type of data, returning molecular signa-
tures based on very few (2–4) features/taxa with statistically optimal
classification accuracy. Furthermore, the features/taxa selected by
GLL have putative causal interpretation. This warrants their further
study and quantifying their effect on phenotype. The approach pre-
sented in this study was designed as a general-purpose downstream
analysis methodology and as such may facilitate the design and
development of microbiomic molecular signatures of other diseases
in addition to psoriasis.

Methods
Study population. We obtained informed written consent (using the model consent
forms for the HMP demonstration projects) and enrolled a total of 199 subjects (75
patients with psoriasis and 124 healthy controls) under New York University School
of Medicine IRB #08-709 between June 2008 and September 2011. Psoriatic patients
were diagnosed at an academic dermatology practice, and psoriasis was clinically
classified based on characteristic morphologic features of the individual skin lesions
and their cutaneous distribution. Among the patients with psoriasis, 57 (76%) had not
been exposed to antibiotics or received a relevant clinical treatment for at least one
month before skin samples were obtained, and of these, a total of 54 patients were
studied. Among the healthy controls, 112 (90.3%) had not been exposed to antibiotics
or received any relevant treatment for at least one month before skin samples were
obtained.

For the 54 subjects with psoriasis, we sought control subjects of the same gender
and ethnicity, and of similar age (65 years), for whom a cutaneous specimen was
obtained in a region proximate to the psoriasis lesion. In total, we obtained matching
control specimens from 37 (29.8%) subjects. One or more sites from each of these
controls were matched to the 54 subjects with psoriasis. A control subject could be
matched to more than one patient, since we also matched for cutaneous site.
However, each control cutaneous site was uniquely mapped to only one triplet, thus
there was no duplication of specimens in the analysis.

Specimen collection and processing. In the patients with psoriasis, we sampled a
typical psoriatic plaque (designated as Psoriasis, lesion), and as a reference site, the
contralateral area of clinically uninvolved skin (designated as Psoriasis, normal). We
also sampled skin from matched healthy (control) individuals at locations that
approximated the location of the psoriatic lesion. We accomplished this by obtaining
4 skin swabs from each control person, from scalp (posterior-temporal, above the ear
crease), elbow (inner aspect), lower lateral abdomen, and knee. The selected sampling
sites reflect common general locations on the head, torso, and extremities where
psoriatic lesions arise in patients2. Both the lesions and the control specimens were
predominantly obtained from dry and oily cutaneous sites12, reflecting the
distribution of psoriatic lesions in general1.

Methods for specimen processing are described elsewhere20. In brief, a 2 by 2-cm
area of the cutaneous surface at each of the locations was sampled by swabbing the
skin with a cotton pledget that had been soaked in sterile 0.15 M NaCl with 0.1%
Tween 20 (Fisher Scientific, Fair Lawn NJ). DNA was extracted from the swab
suspensions in a PCR-free clean room by using the DNeasy blood and tissue kit
(Qiagen, Chatsworth CA); glass beads (0.5 to 1 mm) were added to the specimens and
vortex-mixed at maximum speed for 40 s, followed by DNA extraction, using the
manufacturer’s protocol for genomic DNA isolation from Gram-positive bacteria,
and samples were eluted in 100 ml AE buffer (DNeasy Blood and Tissue kit; Qiagen).

To eliminate bacterial or DNA contamination, lysozyme (Sigma-Aldrich, St. Louis
MO) was passed through a microcentrifuge filter (molecular mass threshold,
30,000 Da; Amicon, Bedford MA) at 18,514 3 g for 20 min before adding to the
enzymatic lysis buffer.

DNA sequencing and upstream processing. Samples were prepared for
amplification and sequencing at the J. Craig Venter Institute (JCVI) Joint Technology
Center (JTC)14. Genomic DNA sample concentrations were normalized. The V1–V3
region of the 16S rRNA gene was amplified using forward primer attached to the
Roche B adapter for 454-library construction and reverse primer attached to the
Roche A adapter and a 10-nt barcode [59-A-adapter-N (10) 1 16S primer-3]. A
barcoded primer design was completed using a set of algorithms developed at the
JCVI. PCR reactions were completed as follows (per reaction): 2 ml of gDNA, 13 final
concentration of Accuprime PCR Buffer II (Invitrogen, Carlsbad CA, USA), 200 nM
forward and reverse primers, 0.75 U of Accuprime TaqDNA polymerase high fidelity
(Invitrogen), and nuclease-free water to bring the final volume to 20 ml. PCR cycling
conditions consisted of an initial denaturation of 2 min at 95uC, 30 cycles of 20 s at
95uC, 30 s at 50uC, and 5 min at 72uC. A negative control (water blank) reaction was
examined after 35 cycles. Samples then were quantified, cleaned, and sequenced on
the Roche 454-FLX (454 Life Sciences, Branford CT, USA) as described21, and a read
processing pipeline consisting of a set of modular scripts designed at the JCVI were
employed for deconvolution, trimming, and quality filtering, as described
previously21. Finally, we included in our analysis only samples with more than 2,000
reads (the median number of reads per sample was 8,621). The sequencing effort was
statistically similar across clinical skin types. The above protocol was repeated to
obtain sequencing data from the V3–V5 locus of the 16S rRNA gene.

As a result, we obtained two 16S rRNA datasets (one for the V1–V3 locus and
another one for the V3–V5 locus) with the number of evaluable samples for each class
given in Table 2. The number of samples in the dataset for the V3–V5 locus was
smaller than for the V1–V3 locus primarily because of the lower sequencing quality
and yield at the former locus, however as shown in the Results section the number of
samples was sufficient to obtain molecular signatures and evaluate their statistical
significance. The passing sequences were analyzed using the RDP classifier executed
at a bootstrap confidence cut-off of 80%22 and were normalized. This criterion
resulted in processed datasets with 791 and 660 taxonomic features (relative taxo-
nomic abundance at phylum, class, order, family, and genus levels) for the V1–V3 and
the V3–V5 loci, respectively. These datasets were used for development of molecular
signatures and assessment of their classification accuracy with the methods described
in the following subsection.

Downstream analyses for development of microbiomic signatures. The features/
taxa for inclusion in molecular signatures were selected by several feature selection
methods. We used Generalized Local Learning (GLL), a supervised multivariate
method, as a key technique for feature selection in this study15,19. Under broad
distributional assumptions, the taxa selected by GLL are theoretically guaranteed to
achieve both maximal classification accuracy and maximal parsimony for the dataset
at hand15,19. In addition, because the GLL method is based on Markov Boundary
theory (a branch of formal causal graph induction), under broad distributional
assumptions, it returns the local pathway members around the response variable of
interest. GLL was executed with a default setup: Fisher’s Z-test was used for assessing
conditional independence at a 5% alpha level, and the max-k parameter, which
represents the maximum size of the conditioning sets, was set to 3. In addition to GLL,
we applied 36 comparator methods/variants that have been successful in other types
of genomic data, as well as recent applications to microbiomics7,23. The reasons for
such an extensive range of methods is to shed light on relative strengths and
weaknesses of state-of-the-art methods for microbiomic molecular signature
development, and to ensure that we obtain as highly predictive and as compact
signatures as possible from our data. In brief, these methods include: support vector
machine-based recursive feature elimination (SVM-RFE)24; univariate methods
based on various statistical tests (Kruskal-Wallis non-parametric one-way ANOVA
test, signal-to-noise ratio, ratio of between-group to within-group sum of squares,
two-sample t-test, and x2-test23,25–27, denoted as UAF-KW, UAF-S2N, UAF-BW,
UAF-T, and UAF-X2, respectively); minimum redundancy and maximum relevancy
methods (MRMR)28,29; random forest-based variable selection (RFVS)30; least angle
regression elastic net (LARS-EN)31; soft independent modeling of class analogy
(SIMCA)32; principal component and sparse principal component analysis-based
methods (PCA and SPCA)33; threshold gradient descent regularization (TGDR)34;
and using all features/taxa in the dataset without feature selection (ALL). All feature/
taxa selection methods and details about their variants are listed in Table S1.

Once the features/taxa were selected, molecular signatures were developed using
the support vector machine (SVM) supervised classification algorithm35. We chose to
use SVM classifiers because they have high utility in many genomic datasets23, and
have outstanding empirical performance in microbiomic data (see36 and chapter 6
of 23). Furthermore, several theoretical considerations warrant application of SVMs to
microbiomic data: SVMs perform well in data with limited sample size, are relatively
insensitive to high dimensionality of the data, prevent overfitting by using regular-
ization techniques, and can learn both simple and complex decision functions35,37,38.
SVMs were applied with a polynomial kernel; the degree of the kernel (d) and penalty
parameter (C) were optimized by nested cross-validation over values d 5 (1,2,3) and
C 5 (0.01, 0.1, 1, 10, 100) as detailed below. We used the libSVM version 3.12
implementation of SVMs39.
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For estimation of classification accuracy and optimization of classifier hyper-
parameters, we used nested five-fold cross-validation repeated 100 times with dif-
ferent splits of the data into five folds40,41. This protocol proceeded as follows. First, all
samples in the data were randomly split into five non-overlapping and approximately
equal parts (folds) such that each fold retained a similar proportion of samples from
two classes. Next, four of five folds (80% of the data; ‘‘original training set’’) were used
for feature/taxa selection and development of the molecular signature, and the
remaining fold (20% of the data; ‘‘original testing set’’) was used for estimation of
classification accuracy of the molecular signature. The molecular signature was
developed and evaluated five times so that each of the five folds could play the role of
the original testing set, and its complement could play the role of the original training
set. Then the entire process was repeated 100 times with different splits of the data
into five folds. The resulting classification accuracy estimate was the mean over five
different testing sets from each of 100 different data splits into folds. Since the
methodologies for feature/taxa selection and development of molecular signature
have parameters that require tuning, each of the original training sets (consisting of
four folds) was further split into a smaller training set with three folds and a validation
set with one fold, and a four-fold cross-validation protocol was used to estimate
accuracy of each parameter configuration and select the one with the best average
accuracy for application to the original training set. This protocol avoids overfitting
and yields unbiased estimates since the testing set is not used for development of the
molecular signature (i.e., no ‘‘information leak’’ occurs from the response variable
back to the model selection, feature selection, and classifier fitting procedures).

As a metric of classification accuracy, we used the area under the ROC curve
(AUC)42,43. This metric has greater statistical power to detect signal than the com-
monly used proportion of misclassifications and is insensitive to the ratio of cases to
controls44. The ROC curve is the plot of sensitivity versus one minus the specificity for
a range of classification threshold values. AUC ranges from 0 to 1, with an AUC equal
to 0 indicating the classifier opposite to the perfect, 0.5 indicating a random (i.e.,
uninformative) classifier, ,0.70–0.75 indicating a mediocre classifier, ,0.80–0.85
indicating a very good classifier, ,0.90 or better indicating an excellent classifier, and
1 indicating perfect classification42,43.

Statistical comparison/testing of results was conducted using two types of per-
mutation tests following the theory developed by Good45. The first test assessed
whether a molecular signature had statistically significant classification accuracy and
tested the null hypothesis of AUC 5 0.5. This test was implemented with 1,000
permutations of the response variable, as described46. The second test assessed
whether a molecular signature obtained with the GLL methodology was significantly
better or worse than a molecular signature obtained with a different feature/taxa
selection method. This test was implemented with 10,000 permutations, as
described47. Since both statistical tests assessed a large number of comparisons, we
performed adjustment for multiple comparisons using methods to control false-
discovery48,49. We used a 5% alpha-level adjusted for multiple comparisons to
establish statistical significance.

All experiments presented in this manuscript were run on the Asclepius Compute
Cluster at the Center for Health Informatics and Bioinformatics (CHIBI) at New York
University Langone Medical Center (http://www.nyuinformatics.org).
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