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a b s t r a c t 

Some statistical analysis techniques may require complete data matrices, but a frequent problem 

in the construction of databases is the incomplete collection of information for different reasons. 

One option to tackle the problem is to estimate and impute the missing data. This paper describes 

a form of imputation that mixes regression with lower rank approximations. To improve the qual- 

ity of the imputations, a generalisation is proposed that replaces the singular value decomposition 

(SVD) of the matrix with a regularised SVD in which the regularisation parameter is estimated 

by cross-validation. To evaluate the performance of the proposal, ten sets of real data from mul- 

tienvironment trials were used. Missing values were created in each set at four percentages of 

missing not at random, and three criteria were then considered to investigate the effectiveness of 

the proposal. The results show that the regularised method proves very competitive when com- 

pared to the original method, beating it in several of the considered scenarios. As it is a very 

general system, its application can be extended to all multivariate data matrices. 

• The imputation method is modified through the inclusion of a stable and efficient compu- 

tational algorithm that replaces the classical SVD least squares criterion by a penalised cri- 

terion. This penalty produces smoothed eigenvectors and eigenvalues that avoid overfitting 

problems, improving the performance of the method when the penalty is necessary. The size 

of the penalty can be determined by minimising one of the following criteria: the prediction 

errors, the Procrustes similarity statistic or the critical angles between subspaces of principal 

components. 
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Method details 

In many different areas of knowledge, data are collected and arranged in a matrix form for further analysis. This happens with

multivariate data where the rows represent the individuals or independent entities being studied, while the columns represent the 

variables obtained from each entity. This structure is also widely used in plant genetic improvement and specifically in multienviron-

ment trials, in which the variables of interest (for example, yield) are arranged in two-way tables in which the genotypes are found

in rows and the test environments are found in the columns [1 , 2] . 

Possibly one of the most prevalent problems in these datasets is incomplete information. For example, if the experimen- 

tal units are plants or animals, some of them may die before all the variables of interest are collected. In archaeology, arte-

facts or skulls may be damaged during excavations, or specimens may be incomplete when excavated, and in opinion polls, a

respondent may fail to answer some of the questions. In all the situations described above, many multivariate analysis tech-

niques require complete records, so two options can be considered: i) units or variables that contain missing data have to be ex-

cluded from the analysis or ii) one or several estimates can be found for each missing value. This latter option is also known as

imputation [3] . 

Recently, García-Peña et al. [4 , 5] described an imputation method free of distributional and structural assumptions for any dataset

that can be arranged in matrix form and that uses a mix between regression and lower rank approximations (LRA). The method was

called GabrielEigen because it is based on the predictive properties of Gabriel’s cross-validation method [6] and uses the eigenvectors

and eigenvalues of the singular value decomposition (SVD) to obtain the corresponding LRA’s. This paper will be focused exclusively

on GabrielEigen. 

To the best of our knowledge, the literature does not yet provide a study that evaluates the performance of a regularised version

of the GabrielEigen approach. Regularisation is a technique used widely in statistics and data science to correct the problem of

overfitting, thus avoiding poor quality imputations and problematic parameter estimation [7 , 8 , 9] . Taking this into account, our

proposal is to replace the default SVD of the original imputation system with a regularised LRA or equivalently a regularised SVD -

regSVD [10] . 

GabrielEigen method 

Suppose that the ( n × p) matrix X contains elements x ij ( i = 1,…,n; j = 1,…,p), some of which are missing. The rows represent

genotypes and the columns the environments. Step 1: Start by inserting into each missing entry the mean of its column, thereby

obtaining a completed matrix X . Step 2: The columns of X are standardised by subtracting m j from each element and dividing the

result by s j (where m j and s j are respectively the mean and the standard deviation of the j th column). Step 3: Using the standardised

matrix, each original missing entry x ij is replaced by 

𝑥 
( 𝑚 ) 
𝑖𝑗 

= 𝒙 𝑇 1∙𝑽 𝑫 

+ 𝑼 

𝑇 𝒙 ∙1 (1) 

where 𝑼 𝑫 𝑽 𝑇 represents the SVD of 𝑿 11 , 𝑫 

+ is the Moore-Penrose generalised inverse of D and 𝑽 𝑫 

+ 𝑼 

𝑇 𝒙 ∙1 is the regression of the

first column omitting the first row in (2). 

Here the vectors 𝒙 𝑇 1∙, 𝒙 ∙1 and the matrices 𝑽 , 𝑫 and 𝑼 are obtained from the partition 

𝑿 = 

[ 

𝑥 𝑖𝑗 𝒙 𝑇 ∙1 

𝒙 ∙1 𝑿 11 

] 

(2) 

with 𝑿 11 = 

∑𝑚 

𝑘 =1 𝒖 ( 𝑘 ) 𝑑 𝑘 𝒗 
𝑇 
( 𝑘 ) = 𝑼 𝑫 𝑽 𝑇 , where 𝑼 = [ 𝒖 1 , 𝒖 2 , ..., 𝒖 𝑚 ] , 𝑽 = [ 𝒗 1 , 𝒗 2 , ..., 𝒗 𝑚 ] , 𝑫 = 𝑑𝑖𝑎𝑔( 𝑑 1 , ..., 𝑑 𝑚 ) and 𝑚 ≤ min { 𝑛 − 1 , 𝑝 − 1 } . Also

note that for each missing observation the components of the considered partition will be different, and this partition is obtained

through elementary operations on the rows and columns of X . Step 4 : This imputation process depends on the choice of the value for

m in Step 3 and it is usual to choose m to be the smallest value satisfying ∑𝑚 

𝑘 =1 𝑑 
2 
𝑘 ∑min { 𝑛 −1 ,𝑝 −1 } 

𝑘 =1 𝑑 2 
𝑘 

≥ 0 . 75 . (3) 

Step 5: Finally, the imputed values �̂� 
( 𝑚 ) 
𝑖𝑗 

must be returned to their original scale, 𝑥 𝑖𝑗 = 𝑚 𝑗 + 𝑠 𝑗 ̂𝑥 
( 𝑚 ) 
𝑖𝑗 

, replacing them in the matrix X .

Steps 2 to 5 are then iterated until the imputations achieve stability. This process assumes that n > p. If this is not the case, then the

matrix should first be transposed before conducting the iterations. 

Proposed modifications 

To obtain a regularised version of GabrielEigen it is necessary to replace the standard SVD with a regSVD. Fortunately, both the

statistical and data science literature provide many such algorithms [10 , 11 , 12 , 13] . However, taking into account the characteristics of

the imputation system, which works with a different matrix partition for each missing observation, a simple, fast and stable algorithm

is needed that does not lose much of the calculation speed of the original method nor the convergence of the regularised imputations.

For these reasons, in this study we adopted the proposal by Zheng et al. [14] to obtain the regSVD of 𝑿 11 and we now describe the

steps to achieve it. 
2 
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Table 1 

Datasets chosen to perform the cross-validation study. 

References Species No. of genotypes No. of environments Response variable AMMI model to explain the interaction 𝐺 × 𝐸

Yan et al. [16] Wheat 18 9 Mean yield AMMI2 

Lavoranti [17] Eucalyptus 20 7 Mean tree height AMMI2 

Calinski et al. [18] Pea 18 9 Mean yield AMMI1 

Calinski et al. [19] Rye 18 15 Mean yield AMMI2 

Farias [20] Cotton 15 27 Mean yield AMMI1 

Filho et al. [21] Cotton 17 23 Mean yield AMMI5 

Flores et al. [22] Bean 15 12 Mean yield AMMI4 

Mattos et al. [23] Sugarcane 22 5 Mean yield AMMI1 

Rad et al. [24] Wheat 36 6 Mean yield AMMI3 

Yang [25] Barley 6 18 Yields AMMI1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let 𝑿 11 denote the matrix ( 𝑛 − 1 × 𝑝 − 1 ) and 𝑚 the desired rank. i) Initially, a 𝑽 ( 𝑝 − 1 × 𝑚 ) matrix is obtained with random

entries from a uniform distribution (0,1). ii) The matrix 𝑼 ( 𝑛 − 1 × 𝑚 ) is calculated as follows 𝑼 = 𝑿 11 𝑽 ( 𝑽 𝑻 𝑽 + 𝜆𝑰 𝑚 ) 
+ 

where 𝑰 𝒎 
represents the identity matrix ( 𝑚 × 𝑚 ) , (∙) + represents a generalised inverse and 𝜆 is the regularisation parameter (in the original

algorithm the ordinary inverse is used, but in previous tests on matrices of real data some singularities have appeared). iii) The

matrix 𝑽 is updated through 𝑽 = 𝑿 

𝑇 
11 𝑼 ( 𝑼 

𝑻 𝑼 + 𝜆𝑰 𝑚 ) 
+ 
. iv) The value of the regularised objective function is calculated, that is, 

𝐽 = ‖𝑿 11 − 𝑼 𝑽 𝑻 ‖2 
𝐹 
+ 𝜆‖𝑼 ‖2 

𝐹 
+ 𝜆‖𝑽 ‖2 

𝐹 
. v) Steps ii), iii) and iv) are repeated iteratively until reaching convergence in the value of 𝐽 .

vi) The standard SVD is calculated over 𝑼 𝑽 𝑻 to obtain the corresponding regularised eigenvalues and eigenvectors. In this way, the

imputation equation of the regularised GabrielEigen becomes 𝑥 
( 𝑚 ) 
𝑖𝑗 

= 𝒙 𝑇 1∙𝑽 𝒓 𝒆 𝒈 𝑫 

+ 
𝑟𝑒𝑔 

𝑼 

𝑇 
𝑟𝑒𝑔 

𝒙 ∙1 , where 𝑼 𝒓 𝒆 𝒈 𝑫 𝒓 𝒆 𝒈 𝑽 
𝑇 
𝑟𝑒𝑔 

represents the regSVD 

of 𝑿 11 where 𝜆 can be chosen by a direct search as follows. For each value of 𝜆 from 0 to 1 in steps of 0.1, the above process is

repeated and the value of 𝜆 that yields the minimum value of 𝐽 is noted. If this value occurs at 𝜆 strictly less than 1, then the process

ends. If the minimising value is 1, however, the whole process is repeated for 𝜆 in steps of 0.1 from 1 to 2. Again, if the minimising

value of 𝜆 occurs at strictly less than 2, that is the chosen value of 𝜆. Otherwise, the process is repeated for 𝜆 in steps of 0.1 from 2

to 3, and so on until the minimising value occurs strictly within one of these intervals. Note that when 𝜆 is zero, the standard SVD is

obtained, in which case the original GabrielEigen is obtained. 

Validation of the method 

To evaluate the regularised GabrielEigen, a cross-validation study based on real data was performed using the methodology 

and open access datasets presented by García-Peña et al. [5 , 15] . Table 1 presents basic information of the ten complete matri-

ces considered with the corresponding references in case the reader needs additional information. According to García-Peña et al.

[5] , the multi-environment data have different interaction structures that were determined by the Eigenvector method to choose 

the best additive main effects model with multiplicative interaction – AMMIk (k components to explain the genotype × environ- 

ment interaction - G × E ) . In this case, there is a simple interaction for those data that can be explained by an AMMI1 model, an

intermediate interaction when explained with an AMMI2 model and a complex interaction when more than two components are

needed. 

Missing values were introduced into each experimental matrix ( 𝒀 ) via four percentages ( P = 0, 5, 10 e 20%) of missing not at

random (MNAR) deletions, which is very common in this class of studies. When the missing percentage was zero, one observation

was removed at a time and the regularised GabrielEigen was applied to obtain a matrix with the corresponding imputations of all

positions. When the missing percentage was different from zero, the Pth percentile was initially found in each environment or column

of 𝒀 and data that were smaller than said percentile were considered missing. Subsequently, on each incomplete matrix ( 𝒀 𝐼 ) each

element was removed in turn and the regularised GabrielEigen was applied to obtain the corresponding imputation. The positions

that were missing from the beginning were imputed once with the regularised method. In this way, cross-validation matrices were

obtained that contained the imputations for all positions and which were called 𝑰 𝐶𝑉 . 

To compare 𝒀 and 𝑰 𝐶𝑉 , matrices, three criteria were chosen: the prediction error [26] , the Procrustes similarity statistic [27] and

the critical angle between two subspaces of principal components [28 , 29] . The prediction error 𝑃 𝑒 is defined by the square root of

the mean squared error between the true values (removed) and the corresponding imputations. An alternative way to compare the

matrices was using the Procrustes 𝑀 

2 statistic where 𝑀 

2 = 𝑡𝑟𝑎𝑐𝑒 ( 𝒀 𝒀 𝑻 + 𝑰 𝑪 𝑽 𝑰 
𝑻 
𝑪 𝑽 

− 2 𝒀 𝑸 𝑰 𝑇 
𝐶𝑉 

) and 𝑸 = 𝑹 𝑶 

𝑻 represents the rotation 

matrix calculated from the SVD elements of the matrix 𝒀 𝑻 𝑰 𝐶𝑉 = 𝑶 𝚺𝑹 

𝑻 . Finally, to obtain the critical angle ( 𝜃) , the SVD´s of 𝒀 =
𝑴 𝑮 𝑷 𝑻 and 𝑰 𝐶𝑉 = 𝑾 𝑱 𝑲 

𝑻 were calculated, then the matrices 𝒀 and 𝑰 𝐶𝑉 with retained k components, 𝒀 ( 𝑘 ) and 𝑰 𝐶𝑉 ( 𝑘 ) , were compared 

and the critical angle calculated as 𝜃 = 𝑐𝑜𝑠 −1 ( 𝑑) , where 𝑑 is the smallest element of 𝑳 in the SVD of matrix 𝒀 𝑇 ( 𝑘 ) 𝑰 𝐶𝑉 ( 𝑘 ) = 𝑺 𝑳 𝑨 

𝑻 . The

best 𝜆 using the regularised method will be the one that minimises each criterion, with 𝜆 = 0 being the standard comparison value as

it represents the original GabrielEigen. We do not expect that in all cases a single 𝜆 will minimise the three statistics simultaneously,

because each of them represents a different feature in evaluating performance over matrices that have different structures for the

G × E interaction. For this reason, being a very flexible and adaptive method, the selection of 𝜆 was carried out by repeating the above

procedure for each value of 𝜆 from 0 to 1 in steps of 0.1, each criterion in turn in place of 𝐽 and recording the value that minimised
3 
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Table 2 

Summary of the cross-validation study on the Yan et al. [16] data. 

P 𝜆 𝑃 𝑒 𝑀 

2 𝜃

0 0 0 . 3888 12.7456 0.0814 

0.3 0.3908 12 . 4800 0 . 0787 
0.05 0 0.4060 31.8679 0.5286 

0.4 0 . 4023 28 . 7060 0 . 4022 
0.1 0 0.5173 136.8122 1.4028 

0.4 0.6348 210.0024 0 . 7066 
0.6 0 . 4878 102 . 7738 1.1851 

0.2 0 0.5849 182.9877 1.0119 

0.6 0.5902 156 . 7244 0.7005 

0.9 0.5849 220.3691 0 . 5925 
1 0 . 5842 218.3659 0.7377 

In red, the minimised values of the statistics by regularised GabrielEigen in 

each percentage considered. 𝜆 = 0 represents the original GabrielEigen. 

Table 3 

Summary of the cross-validation study on the Lavoranti [17] data. 

P 𝜆 𝑃 𝑒 𝑀 

2 𝜃

0 0 0.8491 25.7167 1.1074 

0.6 0 . 8486 27.2383 0.8544 

1 0.8685 21 . 8352 0.2287 

1.2 0.8748 21.9613 0 . 2281 
0.05 0 0.9125 36.7293 1.3471 

1.1 0 . 8828 28.8920 1.1073 

2.1 0.9357 25 . 7175 0.3664 

2.3 0.9668 26.0377 0 . 2887 
0.1 0 1.0594 57.7581 1.3484 

1.7 0 . 9520 38.2263 0 . 5742 
1.8 0.9661 37 . 4250 0.6785 

0.2 0 1.1275 105.1459 0.7153 

1.1 1.0561 65 . 2960 1.3609 

1.2 1 . 0544 69.4481 1.2718 

1.4 1.6390 90.8105 0 . 5738 

In red, the minimised values of the statistics by regularised GabrielEigen in 

each percentage considered. 𝜆 = 0 represents the original GabrielEigen. 

Table 4 

Summary of the cross-validation study on the Calinski et al. [18] data. 

P 𝜆 𝑃 𝑒 𝑀 

2 𝜃

0 0 3.3340 71.8047 1.5708 

0.3 3 . 3172 60 . 9821 1.5708 

0.05 0 3 . 1381 116.4965 1.5708 

1.3 3.1951 108 . 6089 1.5708 

0.1 0 3.2787 145.2247 1.5708 

0.5 3 . 2472 148.2420 1.5708 

1.1 3.2937 132 . 0886 1.5708 

0.2 0 3.4189 147.1461 1.5708 

0.1 3.4280 146 . 5964 1.5708 

0.2 3 . 4116 162.3310 1.5708 

In red, the minimised values of the statistics by regularised GabrielEigen in 

each percentage considered. 𝜆 = 0 represents the original GabrielEigen. 

 

 

 

 

 

each of the three criteria. If the minimising value occurred at 1, the interval of search was extended to 2 in further steps of 0.1, and

similarly beyond 2 if necessary. 

Tables 2-11 present the summaries of the cross-validation studies carried out on each data set respectively, the complete results

are available in the Supplementary material section. In each table, the percentage P considered and the values of 𝜆 that minimised

the comparison criteria are found. When only 𝜆 = 0 appears in some percentage, it indicates that the best method was the original

GabrielEigen. For example, in Tables 3 and 8 , it is observed that regularised GabrielEigen was superior in all percentages because it

always minimised the performance statistics with a penalty value, 𝜆, different from zero. 
4 
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Table 5 

Summary of the cross-validation study on the Calinski et al. [19] data. 

P 𝜆 𝑃 𝑒 𝑀 

2 𝜃

0 0 4 . 1180 44.3537 0.4627 

0.5 4.1421 42 . 9701 0 . 3926 
0.05 0 4.1683 50.7815 0.6590 

0.5 4 . 1358 47.2441 0.5100 

5.5 6.6672 45 . 4674 0 . 4813 
0.1 0 4.1930 63.3659 0.8554 

1 4 . 1719 49.7279 0.5656 

3.5 4.9132 48 . 2016 0.5642 

5 7.0407 50.1386 0 . 5544 
0.2 0 4.6765 87.9293 1.2874 

1 4 . 5474 62 . 6246 0 . 7142 

In red, the minimised values of the statistics by regularised GabrielEigen in 

each percentage considered. 𝜆 = 0 represents the original GabrielEigen. 

Table 6 

Summary of the cross-validation study on the Farias [20] data. 

P 𝜆 𝑃 𝑒 𝑀 

2 𝜃

0 0 313 . 3214 11 . 6758 1.5708 

0.05 

0 628 . 3844 79 . 0002 1.5708 

0.1 0 655.0411 86 . 0643 1.5708 

0.1 654 . 4184 86.2050 1.5708 

0.2 0 791 . 5721 127 . 0425 1.5708 

In red, the minimised values of the statistics by regularised GabrielEigen in 

each percentage considered. 𝜆 = 0 represents the original GabrielEigen. 

Table 7 

Summary of the cross-validation study on the Filho et al. [21] data. 

P 𝜆 𝑃 𝑒 𝑀 

2 𝜃

0 0 494 . 3442 35 . 8798 0.3167 

0.1 494.4528 35.9373 0 . 3142 
0.05 0 503.5711 46.2577 0 . 4505 

0.4 501 . 1091 45.7147 0.4994 

1 505.1621 45 . 4245 0.6029 

0.1 0 510.6541 49.1562 0 . 9724 
0.2 507 . 5024 48 . 8906 1.0174 

0.2 0 805 . 1187 149 . 3996 1 . 2661 

In red, the minimised values of the statistics by regularised GabrielEigen in 

each percentage considered. 𝜆 = 0 represents the original GabrielEigen. 

 

 

 

 

 

 

 

 

 

 

 

 

In the four datasets that had a simple G × E interaction structure ( Tables 4 , 6 , 9 and 11 ) the critical angle was not effective as

an evaluation criterion, since the value of d was zero, therefore, the value of 𝜃 was the same in the four datasets studied. Thus, for

these sets the comparison was based on 𝑃 𝑒 and 𝑀 

2 . Of these four datasets, only one ( Table 6 ) showed that GabrielEigen ( 𝜆 = 0 ) was

superior to the regularised version minimising the statistics in almost all percentages. In the three remaining data sets, the regularised

version outperformed the original method, minimising the statistics in at least two of the percentages studied ( Tables 4 , 9 and 11 ). 

Cross-validation studies on data matrices with intermediate G × E interaction structure ( Tables 2 , 3 and 5 ) showed that the

regularised system always minimised the critical angles, similarity statistics and prediction errors between the real and the matrices

that contained the imputations when the percentage of missing data was different from 0%. In this specific case ( 𝑃 = 0% ) , when there

was only one missing observation, the original method outperformed the regularised version in two of the three data sets ( Tables 2

and 5 ). 

Finally, considering the three data sets with complex G × E interaction ( Tables 7 , 8 and 10 ), the regularised version minimised

the statistics in most of the considered scenarios, but there were some exceptions in which the original method outperformed the

regularised one. For example, in Table 7 , when the percentage of missing data was 0 and 20%, the original method outperformed the

regularised one by minimising 𝑃 𝑒 and 𝑀 

2 , but 𝜃 was minimised using GabrielEigen ( 𝜆 ≠ 0 ) when 𝑃 = 0% . Tables 8 and 10 show the

best performance of the regularised version proposed in this research for complex interactions. 
5 
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Table 8 

Summary of the cross-validation study on the Flores et al. [22] data. 

P 𝜆 𝑃 𝑒 𝑀 

2 𝜃

0 0 408.6810 80.5414 1.1105 

0.3 408 . 3536 61.3890 0.8755 

1.8 428.0701 38 . 9867 0.4631 

2 411.2996 39.1653 0 . 2926 
0.05 0 397.5333 60.3773 1.3677 

0.5 392 . 8433 55.0385 1.1930 

1.2 406.2281 54 . 2030 0.7543 

1.4 411.5636 54.8298 0 . 7373 
0.1 0 410.4625 95.9522 1.4797 

0.1 410.1320 84 . 5007 1.4695 

0.6 404 . 0759 96.7766 0.8229 

1.4 426.5184 106.0734 0 . 6046 
0.2 0 449.0753 147.7002 1.3157 

0.6 455.4980 142.6922 0 . 6836 
1 437 . 3100 136.0719 1.4614 

1.1 438.0416 134 . 5970 1.2774 

In red, the minimised values of the statistics by regularised GabrielEigen in 

each percentage considered. 𝜆 = 0 represents the original GabrielEigen. 

Table 9 

Summary of the cross-validation study on the Mattos et al. [23] data. 

P 𝜆 𝑃 𝑒 𝑀 

2 𝜃

0 0 1.7100 37.5537 1.5708 

0.1 1 . 7094 37 . 2896 1.5708 

0.05 0 1.7786 59.9372 1.5708 

0.3 1 . 7733 62.5957 1.5708 

0.9 1.7924 39 . 5298 1.5708 

0.1 0 1.8450 66.4930 1.5708 

0.8 1 . 8183 59.7910 1.5708 

1 1.8191 51 . 5971 1.5708 

0.2 0 1.8946 125.9495 1.5708 

0.1 1 . 8932 98 . 6778 1.5708 

In red, the minimised values of the statistics by regularised GabrielEigen in 

each percentage considered. 𝜆 = 0 represents the original GabrielEigen. 

Table 10 

Summary of the cross-validation study on the Rad et al. [24] data. 

P 𝜆 𝑃 𝑒 𝑀 

2 𝜃

0 0 0 . 9865 90.5471 1.3099 

1.6 1.3846 29 . 7955 0 . 5241 
0.05 0 1.0282 119.5269 1.2888 

0.1 1 . 0201 123.7278 1.2921 

1.2 1.3977 57.2260 0 . 1416 
1.6 1.3756 49 . 2441 0.1794 

0.1 0 1.2426 68.8992 0.1288 

0.6 1 . 1709 57 . 6604 0 . 1131 
0.2 0 1.5559 130.5261 0.0859 

0.1 1.5511 130 . 0996 0 . 0850 
0.2 1 . 5486 130.3880 0.0875 

In red, the minimised values of the statistics by regularised GabrielEigen in 

each percentage considered. 𝜆 = 0 represents the original GabrielEigen. 
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Table 11 

Summary of the cross-validation study on the Yang [25] data. 

P 𝜆 𝑃 𝑒 𝑀 

2 𝜃

0 0 0 . 4773 1 . 1489 1.5708 

0.05 0 0.5713 4.2444 1.5708 

0.3 0 . 5586 3.7725 1.5708 

0.6 0.5811 3 . 4985 1.5708 

0.1 0 0.5834 5.1723 1.5708 

0.3 0 . 5711 4 . 6265 1.5708 

0.2 0 1 . 3669 41 . 3616 1.5708 

In red, the minimised values of the statistics by regularised GabrielEigen in 

each percentage considered. 𝜆 = 0 represents the original GabrielEigen. 

 

 

 

 

 

 

 

 

 

 

Summary comments 

A generalization of the GabrielEigen imputation method has been proposed, using a regSVD. The penalised version of the system

shows that the original formulation should not be applied to any data set without first performing an adequate study to choose the

regularisation parameter 𝜆. In this article, the choice of this value proved to be quite flexible regardless of the type of interaction,

the dimension of the matrix and the percentage of missing data in matrices with G × E interaction. Likewise, given that the system

can be applied to any data matrix, it can be an alternative for non-parametric imputation and without structural assumptions for

multivariate data. 

For the choice of the appropriate 𝜆 we have proposed three criteria that should be minimised. In general, this 𝜆 will depend on

the data set studied, but we recommend starting the study in the interval [0;2.5] because in nine of the ten data sets studied in this

interval, 𝑃 𝑒 , 𝑀 

2 and 𝜃 were minimised. Naturally, additional research will be needed, for example, to investigate the performance

of regularised GabrielEigen under other absence mechanisms or to study the effect that different probability distributions can have 

on 𝜆. Lastly, the method also looks promising for wrapping around methodologies that have already been proposed to obtain robust

and multiple imputations [5 , 15] . 
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