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Multifractal and entropy 
analysis of resting-state 
electroencephalography reveals 
spatial organization in local 
dynamic functional connectivity
Frigyes Samuel Racz, Orestis Stylianou   , Peter Mukli & Andras Eke

Functional connectivity of the brain fluctuates even in resting-state condition. It has been reported 
recently that fluctuations of global functional network topology and those of individual connections 
between brain regions expressed multifractal scaling. To expand on these findings, in this study we 
investigated if multifractality was indeed an inherent property of dynamic functional connectivity (DFC) 
on the regional level as well. Furthermore, we explored if local DFC showed region-specific differences 
in its multifractal and entropy-related features. DFC analyses were performed on 62-channel, resting-
state electroencephalography recordings of twelve young, healthy subjects. Surrogate data testing 
verified the true multifractal nature of regional DFC that could be attributed to the presumed nonlinear 
nature of the underlying processes. Moreover, we found a characteristic spatial distribution of local 
connectivity dynamics, in that frontal and occipital regions showed stronger long-range correlation 
and higher degree of multifractality, whereas the highest values of entropy were found over the central 
and temporal regions. The revealed topology reflected well the underlying resting-state network 
organization of the brain. The presented results and the proposed analysis framework could improve 
our understanding on how resting-state brain activity is spatio-temporally organized and may provide 
potential biomarkers for future clinical research.

Analyzing how different regions of the brain dynamically interact emerged as a new frontier of neuroscience in 
the past decades1,2. Such studies investigating brain functional connectivity (FC) made an immense contribution 
to the still expanding knowledge on how functional brain networks are organized in space and time2,3. Moreover, 
it has been widely recognized that FC carries great potential for future clinical applications as well4–6. Ever since 
the fluctuating nature of resting-state FC has been explicitly demonstrated7,8, a new trend developed within the 
connectivity field aiming on describing FC in a time-resolved manner9–11. This approach investigating dynamic 
functional connectivity (DFC) allows for a more detailed analysis of brain function either in resting-state condi-
tion or during task-modulation12. Also, a dynamic approach to FC has been shown by several studies outperform-
ing traditional stationary techniques when it comes to distinguish between healthy and pathological conditions 
such as schizophrenia13–16 or Alzheimer’s disease17.

Investigating DFC shed light on several important properties on how neural activity, and most importantly, 
interactions between neuronal populations are temporally organized. The nonlinear nature of functional cou-
pling between brain regions has been confirmed by Stam et al.18 based on electroencephalography (EEG) and 
magnetoencephalography (MEG) recordings. In a functional magnetic resonance imaging (fMRI) study Lahaye 
and coworkers highlighted the importance of the nonlinear nature of interactions between blood oxygen level 
dependent (BOLD) signals when identifying significant connections19. Their work demonstrated that taking into 
account the non-linearity of interrelated dynamics makes a model more sensitive than when it is based only on 
methods of linear correlation. Jia and colleagues20 used Sample Entropy21,22 (SampEn) analysis for characterizing 
the temporal complexity of individual connections as well as average FC of each region of interest (ROI), thus 
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stressing the need and importance of revealing non-trivial features of DFC. They created a spatial SampEn map 
of the brain as well as identified an age-related decrease in the SampEn of connections that link the amygdala to 
various regions of the cortex; a pattern that was absent in patients with schizophrenia20.

DFC has also been shown having several scale-free properties, meaning that fluctuations in neuronal synchro-
nization cannot be characterized by a single time scale. Instead, such processes express long-range correlations 
(LRC) resulting in a power-law distribution of their statistical properties23. Gong and coworkers investigated the 
dynamic phase synchronization in alpha band EEG between randomly selected brain regions and found that fluc-
tuations in the length of synchronization events followed a scale-invariant pattern24. Stam and de Bruin showed 
that global EEG synchronization also expressed scale-free dynamics in all frequency bands with stronger LRC in 
eyes closed than eyes open state25. Van de Ville and colleagues investigated the dynamics of EEG microstates and 
revealed that transitions between different microstates also occurred according to scale-free dynamics26.

In a recent study utilizing functional near-infrared spectroscopy (fNIRS) imaging and a dynamic graph 
theoretical approach it has been confirmed that DFC of the prefrontal cortex exhibited not only scale-free but 
multifractal dynamics27, meaning that the scale-free property itself varied over time. In case of multifractality, 
dynamics has to be characterized with a set of scaling exponents instead of a single scale-free parameter, and 
the degree of multifractality is captured in the width of the distribution of such scaling exponents28,29. The mul-
tifractal nature of global DFC was subsequently demonstrated in the whole cortex as well using EEG mapping30. 
Moreover, the scope of observations was extended beyond global FC to synchronization levels between pairs of 
brain regions, which demonstrated that individual functional connections themselves also fluctuated according 
to true multifractal dynamics30. Finally, a characteristic spatial distribution of the individual connections was 
found in terms of their multifractal properties, where connections linking regions of the frontal and prefrontal 
cortex expressed stronger LRC and degree of multifractality30. Similarly to previous studies28,31–33, it has also 
been verified that the observed multifractality was – at least partly – a consequence of the nonlinear nature of the 
investigated process.

From the results of Jia et al.20 and Racz et al.30, it is apparent that functional connectivity dynamics vary across 
different brain regions, which may also bear clinical significance. Interpositioned between global network topol-
ogy and individual connections, local connectivity of each ROI captures a different aspect of organization; namely 
of how a given ROI is functionally integrated within the whole dynamic system of the brain. Therefore, the first 
objective of this study was to verify if multifractality was indeed an inherent property of local DFC. This would 
enhance our previous approaches where only multifractal properties of global network topology and individual 
connections were considered27,30. In order to realize this goal, we performed DFC analyses on resting-state EEG 
recordings via estimating dynamic synchronization levels between a set of cortical regions. Subsequently, a meas-
ure of local connectivity was computed from the levels of synchronization in a time-resolved manner, yielding 
time series capturing local DFC for every investigated brain region. Finally, these acquired time series were made 
subject to multifractal analysis and statistical testing to verify their presumed multifractal nature. Our second 
aim was to investigate how the scale-free nature of local DFC varied across different ROIs i.e. to see if localiza-
tion had a significant effect on the multifractal characteristics of local dynamic connectivity. At this end, we also 
investigated the localization-related differences of another widely used nonlinear measure of signal complexity, 
Permutation Entropy34 (PermEn) in order to offer a more comprehensive description of the spatio-temporal 
structuring of local DFC. We performed statistical tests to verify if localization had a significant effect on the 
temporal complexity of DFC, while also performed surrogate data testing to see if the spatial ordering could 
be destroyed by randomly shuffling electrode localizations. Combining these various methods, our goal was to 
obtain spatial maps that capture the complexity of local functional connectivity. Acquiring such spatial maps 
could not only help to enhance our understanding on how the brain as a complex system is spatio-temporally 
organized, but also provide potential biomarkers for future clinical investigations.

Results
Assessing the temporal complexity of local DFC.  An openly available dataset containing resting-state, 
62-channel EEG recordings of 12, young healthy participants35 was analyzed. After preprocessing the raw EEG 
data (see Materials and Methods), the dynamic i.e. time-dependent synchronization levels between all pairs of 
channels were estimated using the Synchronization Likelihood (SL) method36. This yielded a set of synchroni-
zation matrices – one for every time point – describing the dynamically changing connection structure of the 
cortical functional network. In these, cells contained the actual values of SL between the corresponding ROIs, rep-
resenting the estimated strength of functional co-operation. Using the synchronization matrices, for every time 
point we characterized the local functional connectivity of each ROI by its connectivity strength (also termed 
weighted node degree; for details see Materials and Methods). This analysis eventually produced connectivity 
strength time series for all ROIs, capturing fluctuations of local DFC. Multifractal properties of these fluctuations 
were then estimated with focus-based multifractal signal summation conversion37 (FMF-SSC). Long-range corre-
lation was described with the monofractal Hurst exponent H(2), while the degree of multifractality was captured 
in the difference between the generalized Hurst exponents obtained at the minimal and maximal generalized 
moments, termed ΔH15. We characterized the temporal complexity of local DFC with the normalized version 
of PermEn34. The whole analysis procedure was carried out in the five frequency bands traditionally used in EEG 
analysis (delta: 0.5–4 Hz, theta: 4–8 Hz, alpha: 8–13 Hz, beta: 13–30 Hz and gamma: 30–45 Hz).

Verifying multifractality and nonlinearity in local DFC.  When analyzing empirical signals, multifrac-
tality can result from several reasons such as a broad power-law distribution of signal values29, the presence of 
different long-range correlations28, the nonlinear nature of the process28, the finite size of the time series38 or 
mere numerical noise37. Since only multifractality related to the presence of LRC and nonlinearity bears physi-
ological significance, we performed surrogate data testing for each investigated time series to exclude the other 
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irrelevant cases of multifractality. In that, (i) we checked if the process was indeed scale-free as manifested in a 
1/fβ spectra and (ii) by shuffling the time series we verified that the scale invariance was indeed a result of LRC. 
Then (iii) by comparing the estimates of multifractality of the actual time series to those of strictly monofractal 
signals we excluded the possibility of numerical and multifractal background noise. Finally, (iv) we performed 
phase randomization in order to see if the observed multifractality was a consequence of nonlinear dynamics. The 
presence of nonlinearity was also investigated through PermEn, where (v) PermEn of the original time series was 
compared to those of phase randomized surrogates. Results obtained by this testing framework revealed that local 
DFC indeed expressed scale-free dynamics, that was found as a consequence of LRC in the signal. The observed 
multifractality could be clearly distinguished from multifractal background noise and diminished significantly 
when the nonlinear property of the time series was eliminated by phase randomization. However, PermEn failed 
to identify nonlinear behavior in the theta, alpha and beta bands. Detailed results for all test steps and frequency 
bands are shown in Table 1.

Spatial organization in the complexity of local DFC.  We used Friedman tests to determine if localiza-
tion had a significant effect on the assessed values of H(2), ΔH15 and PermEn. To further explore the existence of 
a significant topology, Friedman tests were repeated on n = 100 spatial surrogates, where for each subject the 
estimates of H(2), ΔH15 and PermEn were randomly assigned to the 62 channel locations. To check how similar 
the spatial distribution of each complexity metric was among individual subjects, we calculated Kendall’s coeffi-
cient of concordance39 (W). We used Cohen’s interpretation guideline40, where . .W [0 1 0 3)  corresponds to small 
effect, while . .W [0 3 0 5)  and W ≥ 0.5 corresponds to moderate and strong effects, respectively. Non-parametric 
pairwise comparison of all measures in all frequency bands were performed using Kendall’s τ coefficient to see if 
their topology appeared similar.

In most cases, we found significant regional differences, except for H(2) in the delta, and for ΔH15 in the theta 
and alpha bands. Kendall’s W mostly indicated small concordance among subjects for H(2) and ΔH15, however 
the spatial pattern appeared strongly consistent for PermEn in alpha and higher frequency ranges (shown in detail 
in Table 2). Spatial surrogate testing further confirmed the existence of a significant topology, as Friedman tests 
were not significant (p > 0.05) in all cases when performed on spatially randomized data. Kendall’s τ revealed that 
all three parameters showed consistent spatial differences, except when comparing H(2) with ΔH15 in the delta 
band, as well as H(2) and PermEn with ΔH15 in the theta band. These exceptions however are hardly surprising 
as in these frequency bands the spatial distribution of at least one of the complexity parameters were random/
homogenous (see below). When investigating dynamic properties of local FC on the level of intrinsic networks, 
we found that the revealed channel-wise topology reflected well the functional organization of the brain, espe-
cially in the higher frequency bands.

Spatial maps.  To observe the spatial distributions of the three investigated dynamic measures, we created 
group-level spatial maps after standardizing (z-scoring) the values of H(2), ΔH15 and PermEn on the sub-
ject level. Assuming x to be be the investigated measure, z was obtained as (x − μ)/σ; where μ and σ are the 
within-subject mean and standard deviation, respectively. H(2) of local DFC was found to express a consistent 
topology in the theta and higher frequency bands, where frontal-prefrontal and occipital regions could be char-
acterized with higher H(2) values, while in the delta band it showed a homogenous distribution (Fig. 1, upper 

Power-law 
spectrum

Long-range 
correlations

Multifractal 
noise

Nonlinearity 
(ΔH15)

Nonlinearity 
(PermEn)

Delta 96.9 ± 1.8% 100% 100% 100% 99.6 ± 1.0%

Theta 95.7 ± 2.1% 100% 100% 99.5 ± 1.1% 15.5 ± 6.9%

Alpha 95.6 ± 2.2% 100% 100% 98.7 ± 1.7% 18.4 ± 6.4%

Beta 94.6 ± 2.0% 100% 100% 88.0 ± 7.1% 25.8 ± 14.4%

Gamma 95.3 ± 2.5% 100% 100% 97.0 ± 1.9% 88.3 ± 6.3%

Table 1.  The percentage of the local DFC time series averaged across subjects for all five tests, in all frequency 
bands (mean ± standard deviation). Chi-square test was used separately for each case (frequency band and test) 
to verify that channel location had no significant effect on the test outcome (p > 0.05 in all cases), i.e. the testing 
framework yielded similar results for all channels.

Delta Theta Alpha Beta Gamma

H(2)
Friedman p 0.1105 <0.0001 <0.0001 <0.0001 <0.0001

Kendall’s W 0.1022 0.2748 0.2722 0.4263 0.3203

ΔH15
Friedman p 0.0058 0.1596 0.5878 <0.0001 <0.0001

Kendall’s W 0.1262 0.0983 0.0791 0.2164 0.2121

PermEn
Friedman p 0.006 0.0001 <0.0001 <0.0001 <0.0001

Kendall’s W 0.126 0.1499 0.5066 0.6109 0.5886

Table 2.  Results for the Friedman tests (p-values) and Kendall’s W values for all three investigated measures in 
all frequency bands. Values representing significant effect of localization are marked in bold.
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panel). In the delta band, local connectivity dynamics could be characterized with higher ΔH15 over the central 
and temporal regions, however in the beta and gamma bands the opposite topology emerged, with higher values 
over the frontal-prefrontal and occipital regions (Fig. 1, middle panel). ΔH15 was found evenly distributed over 
the cortex in the theta and alpha bands. When exploring the spatial distribution of PermEn we found that in the 
delta band the frontal and occipital regions expressed higher temporal complexity. However, in the higher fre-
quency bands again the opposite topology was found, where the central and temporal regions could be described 
with higher values of PermEn (Fig. 1, lower panel).

Resting-state networks.  Also, to see if the revealed channel-wise topology resembled the intrinsic net-
work organization of the brain, we sorted the 62 channels into 6 groups to represent the activity of previously 
established resting-state networks41 (RSNs). These included the visual (VN), somatomotor (SM), dorsal attention 
(DA), ventral attention and limbic (VAL), frontoparietal (FP) and default mode (DMN) networks. Based on the 
work of Giacometti and colleagues42

, each EEG channel was assigned to an RSN whose activity the particular 
electrode most likely recorded (for details, see Materials and Methods and Fig. 7). Following this parcellation, we 
averaged the H(2), ΔH15 and PermEn values belonging to the same networks on the subject level. Subsequently, 
the 6 RSNs were compared with repeated-measures analysis of variance. We found that the previously revealed 
spatial differences reflected well the intrinsic RSN organization of the brain. Multifractal parameters and PermEn 
of the RSNs for all frequency bands are presented collectively in Fig. 2, while results of the pairwise comparisons 
are shown correspondingly in Fig. 3. From the results it is apparent that the visual, frontoparietal and default 
mode networks expressed mostly similar characteristics. In the higher frequency bands regions with the lowest 
H(2) and ΔH15, whilst highest PermEn values were mainly associated with the somatomotor network. Especially 
in the theta, alpha and gamma bands the combined ventral attention and limbic networks could also be charac-
terized with lower H(2) and higher PermEn values than in the visual, frontoparietal and default mode networks. 
Except for SM in the beta and gamma bands, VAL also expressed lower ΔH15 then the rest of RSNs. As expected 
from the channel-wise spatial maps, RSN dynamics in the delta band showed an opposite pattern when compared 
to higher frequency bands. Higher ΔH15 and lower PermEn values found in SM and VAL attest to this observa-
tion. These differences were however less pronounced, as pairwise comparisons proved to be significant only for 
a limited number of cases (Fig. 3).

Discussion
In this study, we showed that fluctuations in local DFC expressed complex temporal structuring consistent with 
a true multifractal model of the observed dynamics. This – similarly to previous studies27–30 – was statistically 
verified by means of surrogate data testing. Further statistical testing revealed that this property indeed mani-
fested independently of brain region, which inferred that multifractality of local DFC was a ubiquitous, genuine 
property in the whole cortex. Previous studies already demonstrated the scale-free nature of DFC by means of 
global connectivity25,26 as well as on the level of inter-regional connections24. The true multifractal nature of both 

Figure 1.  Spatial maps of multifractal parameters and PermEn. Group-averaged spatial maps of H(2) (upper), 
ΔH15 (middle) and PermEn (lower) reveal characteristic topology in most of the cases. H(2) and PermEn 
appear to show the opposite pattern to each other, especially in the alpha and higher frequency bands. While 
the fronto-occipital patterns for the frequency ranges of theta and above are fairly consistent, those of the delta 
band is clearly seen as distinct. For visualization purposes, data was standardized (z-scored) on the subject-level 
in each case before group averaging to avoid the influence of inter-subject variability. Note, that standardization 
has no effect on rank-based statistics.
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Figure 2.  Resting-state network dynamics. Bar plots showing the H(2) (upper), ΔH15 (middle) and PermEn 
(lower) of the 6 RSNs in all five frequency bands. Vertical lines represent standard deviation from the mean. In 
most cases the somatomotor and ventral attention-limbic networks show clearly distinct characteristics from 
the rest of the RSNs. VN = visual network; SM = somatomotor; DA = dorsal attention; VAL = ventral attention 
and limbic; FP = frontoparietal; DM = default mode network.

Figure 3.  Pairwise comparisons of resting-state networks. Pairwise comparisons of RSN dynamics are 
presented as matrices, where rows and columns represent the RSNs, while cells contain the result of the pairwise 
comparison of corresponding RSNs. Different colors mark different levels of significance, while white cells 
indicate no significant difference as indicated by the legend. Dynamic characteristics of SM separated strongly 
from the rest of the RSNs in most frequency bands. VN = visual network; SM = somatomotor; DA = dorsal 
attention; VAL = ventral attention and limbic; FP = frontoparietal; DM = default mode network.
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global network topology and that of individual connections were also confirmed recently27,30. Our present results 
contribute to this expanding body of knowledge by demonstrating that multifractality is an inherent property of 
DFC on the local level as well. Results of surrogate data testing performed on phase randomized surrogates impli-
cate that the observed multifractality is related to the nonlinear nature of regional connectivity dynamics28,32. The 
presence of multifractal dynamics in physiological systems is often interpreted as resulting from stochastic feed-
back regulation mechanisms43,44. This offers a plausible explanation indeed, considering the mostly bidirectional 
nature of functional connections and the presence of both excitatory and inhibitory synapses in the brain. It is 
likely that similar regulatory effects could – at least in part – shape the dynamics of regional functional connectiv-
ity, however this notion clearly requires further research. Interestingly, the presence of nonlinearity could be more 
efficiently captured with multifractal time series analysis: phase randomization led to the vanishing of multifrac-
tality, that was marked by a prominent decrease in ΔH15. On the contrary, PermEn remained almost unaltered 
following phase randomization instead of increasing, as expected. This suggests that multifractal analysis is a 
more sensitive technique in identifying nonlinear behavior than PermEn calculation. It should be noted however, 
that the general applicability of the former is limited as it is a model-based approach, whilst the latter is not34.

Although multifractality itself appeared as a universal property of local DFC independent of brain region, 
we found it manifesting to various extent at different ROIs. More precisely, values of H(2) and ΔH15 showed 
characteristic spatial organization in most frequency bands. In the higher range (beta and gamma in particular), 
the observed topology of H(2) and ΔH15 appeared quite similar, with higher values over the frontal and occipital 
regions. This pattern partly resembles the spatial distribution found in the same frequency bands in a previous 
work of Racz et al.30 when investigating the multifractal nature of individual connections, where connections 
with higher H(2) and ΔH15 values were localized mainly to the frontal and prefrontal cortex. Note however, 
that in that study the electrode density over the occipital and parietal cortices was sparse, likely preventing this 
pattern from manifesting fully. The same topology of H(2) still turned out to be significant (see Table 2) in the 
alpha and theta bands, however in the delta band its spatial distribution appeared random. On the contrary, the 
opposite topology of ΔH15 was found in the delta band, showing higher values over dorsal PFC and the temporal 
lobes. This peculiar behavior of the delta band – i.e. expressing inverse region-specific differences in multifractal 
characteristics when compared to higher frequency bands – has also been observed previously30. While this 
study understandably limits any further elaboration on the physiological underpinning of these findings, nev-
ertheless it highlights the importance of the observed phenomenon. It appears worthwhile for future research 
to investigate delta band DFC under more suitable experimental conditions such as during sleep, where delta 
activity is more prominent. Values of PermEn also showed characteristic regional differences in the theta range 
and above, that resembled the exact opposite of the topology found in H(2) i.e. highest values over the central and 
temporal regions. In the delta band, a different distribution of PermEn was revealed with lower estimates over the 
somatomotor and temporal regions, however in that case the state space reconstruction was ill-conditioned: as 
the embedding dimension allowed for 25! possible permutations, a signal length of order 1026 would have been 
required for a reliable estimate of PermEn. Therefore, these results acquired in the delta band should only be 
treated as exploratory.

H(2) values in the gamma band were found in the close vicinity of 1, resembling a pure Brownian random 
walk (pink noise). In all other frequency bands H(2) fell within the range of 1.0 and 1.3 (Fig. 4), characterizing 
local DFC as an antipersistent process37 in consistence with the known nonstationarity of electrophysiological 
data23. This antipersistence implies that an increase in the local functional connectivity of a region is expected 
to be followed by a subsequent decrease. In other words, a state where the activity of a given ROI becomes more 
synchronized to those of the rest of the complex system – when the local connectivity of the ROI increases – will 
likely be followed by a state of functional decoupling.

Interpretation of the results regarding the differences found in ΔH15 is more challenging, as the relation of 
ΔH15 to neural activity is not fully established yet. Shimizu et al.45 reported an increase in the degree of multi-
fractality in the occipital cortex during visual stimulation when investigating brain function through the BOLD 
signal. In a different fMRI study Ciuciu et al.46 utilized an auditory response paradigm and observed an increase 
in the degree of multifractality in the cerebellum, basal ganglia and fronto-parietal regions, while a decrease in 
the auditory and attentional systems. The cognitive relevance of multifractality was also investigated by Wink et 
al.47, finding that increased width of the multifractal spectrum (i.e. stronger multifractality) in the inferior frontal 
cortex was associated with faster response times in a face recognition task, but also with weaker accuracy. ΔH15 
of local DFC reflects on the range in which scaling of local DFC varies over time, that also corresponds to the 
strength of nonlinearity in the process. From our results it appears that resting-state dynamic connectivity in the 
frontal and prefrontal regions (and also in the visual cortex) is regulated through more enhanced feedback mech-
anisms, giving rise to increased variability in the scaling of local DFC. An opposite explanation seems reasonable 
regarding the somatomotor cortex, leastwise in resting-state condition. This behavior is hardly surprising though, 
as during rest the somatomotor system is presumably idle. Finally, the spatial pattern revealed for PermEn impli-
cates a higher level of complexity in local DFC of the somatomotor system. From a different perspective, where 
white noise is considered as an infinitely complex process and therefore can be characterized with maximal 
entropy (in the normalized case, 1), local FC dynamics in the somatomotor system can be regarded closer to a 
random process when compared to the rest of the brain. This is well reflected in the values of PermEn usually 
falling between 0.8 and 0.9, meaning that local DFC is a highly complex process, although clearly distinguishable 
from white noise. It should be reiterated, that in most frequency bands the topology of PermEn highly resem-
bled – although inversely – that of H(2). This level of resemblance raises questions about PermEn as a complexity 
estimator, which could be affected by the long-range correlations in the process. A recent work of Xiong and 
colleagues48 thoroughly investigated – beside other effects – the influence of LRCs on the performance of entropy 
estimators. According to their results, kernel-type estimators (such as PermEn) are biased by overestimating 
the absolute (theoretical) value of entropy, however this bias remains constant and very stable, independently of 
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the strength of LRC present in the signal48. Thus, even though PermEn would not necessarily yield the correct 
values of absolute entropy, the differences observed between various regions indeed indicate different levels of 
complexity, and not just merely reflect the different levels of long-range correlation. The relevance of this in this 
study is with PermEn appearing the most sensitive of the three parameters investigated, identifying the strongest 
channelwise spatial concordance with Kendall’s W > 0.5 in the alpha, beta and gamma bands.

By grouping the EEG channels to resemble intrinsic resting-state networks of the brain, we found that loca-
tions with markedly different dynamical properties indeed corresponded well to intrinsic functional networks. 
Most prominently, it was revealed that those regions with the lowest H(2), ΔH15 and highest PermEn values 
in most frequency bands corresponded mainly to the somatomotor network, the dorsal attention network and 
the combined ventral attention and limbic networks. Conversely, the highest H(2) values were consistently 
found in the visual, frontoparietal and default mode networks. Similar differences between scaling properties 
of resting-state networks were also observed in previous studies49,50. Specifically, He50 investigated the scale-free 
nature of the BOLD signal in numerous brain regions using detrended fluctuation analysis. Significant differences 
were identified between the monofractal Hurst exponent of various RSNs. In particular, the highest values were 
found in the default and visual networks, lowest values were produced by the motor network, the thalamus, the 
hippocampus and the cerebellum; while Hurst exponents of the attention and saliency networks were found in 
between50. Although our results were acquired using a different imaging modality, they are remarkably consistent 
with the results presented by He50, expanding on those by showing that not only monofractal, but multifractal and 
entropy-based measures, too, show significant differences among various RSN dynamics.

Several studies investigated the correspondence between RNSs reconstructed using fMRI and narrow-band 
electrophysiological activity in order to identify relationships between various RNSs and specific frequency 
bands. Some patterns were consistently verified by these studies, however there is also a considerable amount 
of inconsistency among the results. The visual network was found to show generally good correspondence to 
electrophysiological activity in all frequency bands except gamma51, with the correlation being the highest with 
the alpha and beta bands51,52. The somatomotor network was frequently reported to be strongly related to beta 
band activity51,53 and connections among the SM network could be best explained by beta band MEG activity52. 
Brain function within areas of the dorsal attention network was also most strongly related to alpha and beta band 
oscillations51,54. The electrophysiological correlates of the frontoparietal network were found mainly in the theta 
and gamma bands52,54. Finally, findings in the literature are the most inconsistent regarding the default mode 
network, which was reported to be associated with generally all frequency bands, albeit to a different extent51,53,54. 
Although to some degree most studies managed to associate RSNs to different frequency bands, a general conclu-
sion was often drawn that RSNs most likely emerge from neural activity involving multiple frequencies. This was 
first demonstrated by Mantini et al.51, who showed that the dynamics of six investigated RSNs could be associated 
to various extent with electrophysiological oscillations of more than one frequency range. In fact, each RSN could 
be characterized by a specific set of electrophysiological correlates including all five frequency bands51. Similar 
conclusions were drawn by Hipp et al.53, who showed that even though there were cases where the activity of an 
RSN strongly represented neuronal activity in a specific frequency band (SM and beta), in general RSNs were 

Figure 4.  Channel-wise box plots of H(2) in all frequency bands. H(2) values in the gamma band were found 
generally in the close vicinity of 1, representing a pure Brownian motion. In the lower frequency bands, H(2) 
mostly fell between 1 and 1.5, indicating an antipersistent process.
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more likely to be associated with a mixture of concurrent activities at multiple frequencies. Note, that VN, SM and 
DA (among others such as the auditory network) are considered as parts of the extrinsic, while FP and DMN as 
constituents of the intrinsic higher order systems of the brain54,55 and thus they are often expected to show simi-
lar inter-system and different between-system characteristics. In this present study, generally similar differences 
were found in the dynamics of local FC on the RSN level in all frequency bands. The SM and VAL networks were 
found most of the time to express different dynamic characteristics than the rest of RSNs (see Fig. 2), therefore 
our findings do not resemble the extrinsic-intrinsic organization of the brain. However in Fig. 3 it is apparent that 
each frequency band could be characterized with a unique set of differences, therefore our results are in support 
of those suggesting that RSNs are more likely to be associated with a mixture of neural activities emerging from 
a broad range of frequencies51,53.

Finally, we have to address certain limitations of this study. Although we were able to confirm the true multi-
fractal nature of local resting-state DFC, the analyzed dataset consisted only of measurements with eyes closed. 
In fact, global EEG dynamics56 and also scale-free properties of global DFC25,30 show several differences between 
eyes open and eyes closed states. Hence, in order to assess the influence of cortical desynchronization on multi-
fractal properties of local DFC it would be indeed instructive to investigate state-related differences. Alterations 
in functional connectivity related to various task-response paradigms were already demonstrated using either 
static57–59 or dynamic12,60 approaches alike. As multifractal analysis proved to be capable of identifying cortical 
regions with increased stimulation45,46, its combination with DFC and entropy analysis could provide an even 
more sensitive tool in investigating the neuronal response to various external stimuli. Also, for the sake of simplic-
ity in this study we characterized local functional connectivity only with one measure that is basically equivalent 
to the weighted node degree61. However, several other local properties of functional networks can be considered, 
such as the clustering coefficient62, local efficiency63 or centrality-related measures64. Inclusion of such measures 
in future studies could be beneficial. Probably the most severe drawback of the present study is the lack of exact 
source localization of the EEG signal, that would allow for a more precise brain parcellation and more direct 
estimation of neural activity of various RSNs65,66. In this regard, our procedure to parcellate the set of EEG elec-
trodes in reference to intrinsic RNSs based on the probability maps provided by Giacometti et al.42 (see Materials 
and Methods) can be only regarded as a crude approximation, yet capable of producing results comparable to 
previous reports in the literature. The reason why we decided to follow this approach was that we would have 
liked to propose an analysis pipeline that was fully automatized and relied on EEG data only. For the same reason, 
all EEG preprocessing was carried out using automated algorithms. Likewise, starting parameters of the anal-
ysis tools used during the analysis (i.e. SL, FMF-SSC and PermEn) were defined according to objective, purely 
data-driven criteria. The motivation behind these considerations was that this would allow such pipeline to be 
implemented with ease in a broad range of scenarios in possible future studies, including clinical conditions as 
well. Finally, it would be instructional to see how the results may depend on the electrode density of the measur-
ing equipment. In order to address this issue, we repeated all steps of the analysis procedure using data only from 
the 19 electrodes localized at the international 10–20 positions. Detailed results of this approach are attached as 
Supplementary Material. We found that the characteristic topologies revealed based on all 62 channels could 
be very well reproduced using only 19 channels covering the whole cortex (see Fig. S1). Results regarding RSN 
dynamics (Figs S2 and S3) and concordance among subjects (Table S1) were also comparable, implicating that the 
patterns presented in this study were generally independent of electrode density.

Conclusions
In this study, we demonstrated that DFC expressed multifractal dynamics when investigated on the local level 
and this property could be thoroughly verified through surrogate data testing. On this ground, we were able to 
characterize the temporal complexity of local DFC through its multifractal properties, utilizing also Permutation 
Entropy to have a more comprehensive description of system dynamics. We found that temporal characteris-
tics of DFC varied significantly over the cortex, yielding characteristic spatial distributions of multifractal and 
entropy-related features. Moreover, the observed topologies reflected well the underlying functional organization 
of the brain. Our results shed light on previously unobserved features of spatio-temporal brain dynamics that are 
not only meaningful for a better understanding of physiological brain function, but could carry potential in future 
clinical applications as well.

Materials and Methods
Data and participants.  In this study we analyzed a publicly available dataset of resting-state EEG recordings 
published and made freely available by Sockeel and colleagues35. The dataset consisted of the EEG recordings of 
twelve young, healthy participants (age 26.6 ± 2.1 years, 6 female, all right-handed). Measurements were carried 
out using a 62-channel BrainAmp system with a sampling rate of 5 kHz. The reference electrode was localized in 
the Cz position while a ground electrode was placed below the Oz position. During the measurements subjects 
were lying supine with their eyes closed while a recording equivalent to the sound produced by an MRI system 
was played to mimic the conditions of an MRI measurement. Similarly to Sockeel et al.35, only the last 300 seconds 
of the datasets (containing the resting-state recordings with eyes closed) were used in our study. Data was visually 
inspected and artifact-free segments with a length of 218 data points were selected for further analysis. The orig-
inal study of Sockeel et al.35 was approved by the local ethics committee (Comité de Protection des Personnes–
Ile-de-France under the number CPP DGS2007-0555), measurements were carried out in accordance with the 
Declaration of Helsinki and all participants provided written informed consent.

Preprocessing.  Preprocessing of raw EEG data was performed in Matlab (The Mathworks, Natick, MA, 
USA) using the Batch Electroencephalography Automated Preprocessing Platform67 (BEAPP). BEAPP operates 
using custom functions and scripts along with methods of the EEGLAB software package68. Data preprocessing 
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consisted of the following steps of the BEAPP pipeline: (i) Raw data was first band-pass filtered with lower 
and upper cutoff frequencies 0.5 Hz and 250 Hz, respectively, with additional ‘cleanline’ filtering to remove 
line noise at 50 Hz. (ii) Band-pass filtered data was then downsampled from 5 kHz to 500 Hz. Subsequently, 
(iii) artifact removal was carried out automatically using the Harvard Automated Processing Pipeline for 
Electroencephalography69 (HAPPE). HAPPE includes multiple steps of denoising such as a wavelet-enhanced 
independent component analysis (W-ICA) approach69 followed by independent component analysis (ICA) with 
automated component rejection using the Multiple Artifact Rejection Algorithm70,71 (MARA). Finally, (iv) data 
was again band-pass filtered to the frequency bands traditionally used in EEG analysis (delta: 0.5–4 Hz, theta: 
4–8 Hz, alpha: 8–13 Hz, beta: 13–30 Hz and gamma: 30–45 Hz) using a 5th order Butterworth filter.

Dynamic functional connectivity estimation.  Functional connectivity between all possible pairs 
of brain regions was estimated using the Synchronization Likelihood (SL) method36. SL utilizes a temporal 
embedding-based state-space reconstruction approach72 of dynamic processes x(t) = x1, x2, … xT and y(t) = y1, 
y2, … yT and estimates the probability of their generalized synchronization73. First, x(t) and similarly, y(t) are 
reconstructed in an m dimensional state space as a set of state space vectors using temporal embedding72 with 
time lag L as

= … = … .− − − − − −X t x x x Y t y y y( ) [ , , ], ( ) [ , , ] (1)t t L t m L t t L t m L( 1) ( 1)

Then, for each time point t, the k nearest neighbors of X(t) and Y(t) within a local neighborhood are identi-
fied by their Euclidean distance. Finally, SL for every time point t is calculated as the conditional probability that 
the nearest neighbors of X(t) can be found at the same time points as the nearest neighbors of Y(t). Parameters 
of the SL algorithm (mainly m and L) were set in each case to fit the frequency bands and data sampling rate 
according to Montez et al.74 and are shown in Table 3. State space vectors can be close to each other not only due 
to recurrence but simply because they are close in time75. Therefore, to diminish this effect of temporal autocor-
relation the direct neighborhood – as defined by the parameter w1 – of the actual state space vector X(t) is always 
excluded from the nearest neighbor search. Finally, the parameter w2 (w2 ≫ w1) defines the fixed neighborhood 
of X(t) where the nearest neighbor search is performed. For a detailed description and evaluation of the method 
the reader is referred to the original paper of Stam and van Dijk36. With SL being a probability-type measure it 
takes on values between 0 and 1 representing independence and complete synchronization, respectively. SL has 
several properties that make it an appealing choice for EEG-based DFC analysis as it is able to identify nonlinear 
dependencies between processes, robust against non-stationarities and it works in a time-resolved manner25,36. 
We set the internal thresholding parameter (that basically defines the number of nearest neighbors searched) to 
0.05 as in previous studies25,30,76.

After calculating the pairwise SL time series from the 62-channel preprocessed EEG data (Fig. 5a), the 
acquired results could be organized into a set of synchronization matrices. More precisely, each matrix described 
the functional connection structure of the cortex at time point t (Fig. 5b). Based on these, local functional con-
nectivity of each region was characterized with the connectivity strength (S) for every time point (Fig. 5c). S of 
channel i was calculated according to

∑=
− = ≠

S t
N

SL t( ) 1
1

( )
(2)

i
j j i

N

ij
1,

where SLij(t) is the value of SL between channels i and j at time point t and N is the number of channels. In a 
network theoretical approach the connectivity strength of a node is equivalent to its normalized weighted node 
degree61 and thus it captures the connectedness of the given ROI to the rest of the functional network. Finally, this 
procedure resulted in a connectivity strength time series for every channel (Fig. 5d), that captured the dynamics 
of local functional connectivity of the according brain region.

Multifractal time series analysis.  The first 214 data points of the connectivity strength time series were sub-
jected to FMF-SSC analysis37 to estimate their multifractal characteristics. The general (monofractal) signal sum-
mation method77 (SSC) consists of the following steps: (i) the data is divided into segments (windows) of size s,  
(ii) for each segment the local linear trend is removed to avoid effects of non-stationarity, then (iii) the standard 
deviation σ of the detrended data is calculated in every window and finally (iv) averaged along the windows. 
Subsequently v) the procedure described in steps (i–iv) is carried out for different scales (windows of different 
size) ranging from smin to smax. This yields a scaling function S(s) that is in general the averaged σ calculated as 
a function of window size. In case of scale-free signals, a power-law function can be fitted to S(s). The scaling 
exponent obtained this way is the monofractal Hurst exponent H, capturing the long-range correlation property 
of the process23. In the multifractal extension of SSC, the procedure described in steps (i–v) is repeated using a 
set of generalized moments (of order q) to magnify the effect of small (negative q values) and large (positive q 
values) fluctuations. This sequence of calculation yields the unified scaling function37 S(q, s) (Fig. 6a) according to

∑ σ υ=
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where Ns is the number of windows at scale s and υ is the index of the actual window of size s. Apart from calcu-
lating standard deviation instead of fluctuation as the appropriate statistical measure, signal summation conver-
sion is basically equivalent to the more widely used detrended fluctuation analysis78,79. Note, that in case of finite 
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empirical time series, replacing s in (3) with the total signal length basically eliminates the sum from the formula, 
thus making it independent from q. This results in the convergence of the values of S(q, s) calculated at different 
qs into a single point termed the focus37. Therefore, the focus can be used as a reference point during linear regres-
sion, in that power-law functions are fitted to S(q, s) at each q (Fig. 6a). This procedure yields the generalized 
Hurst exponent, H(q) (Fig. 6b) that is defined as the scaling exponent of the fitted power-law function at gener-
alized moment q. When the scaling function is plotted using double logarithmic scaling as in Fig. 6a, the fitted 
power-law functions appear as linear and estimates of H(q) are obtained as the slope of the function fitted to S(q, s)  
at moment q. Apart from making multifractal analysis robust in case of finite empirical signals, the focus-based 
regression also helps in enforcing the monotonously decreasing property of H(q)37, i.e. H(q1) ≥ H(q2) if q1 < q2. 
The step-by-step process of FMF-SSC analysis is also illustrated in the Supplementary Video.

Parameters of the FMF-SSC analysis were set according to Mukli et al.37, with smin = 23, smax = 212 and 
 − − … + +q { 15, 14, , 14, 15}. Multifractal properties were captured in two end-point parameters (Fig. 6b): H(2) 

which is equivalent to the monofractal Hurst exponent reflecting on the global long-range correlations in the 
signal23, and ΔH15 that is the difference between H(−15) and H(15), capturing the degree of multifractality in 
the process37. It is important to point out that these two measures adequately represent the multifractal nature of 
a process equivalently to the widely used singularity (also often termed multifractal) spectrum, as the latter can 
be obtained from the generalized Hurst exponent via Legendre transformation29,37. Consequently, H(2) is analo-
gous – although not strictly equivalent – to the centre of the singularity spectrum, while ΔH15 captures the same 
property as the width of the singularity spectrum37.

Permutation entropy.  As a first step of PermEn calculation, the investigated time series x(t) = x1, x2, … xT 
is converted into a set of m-dimensional vectors X(t) using temporal embedding72 with time lag L. Then, values 
in each vector are replaced by their ranks within the actual vector. This step basically converts each vector into 
one of m! possible permutations of order m. The relative frequency of each permutation of type π in the process 
can be then calculated as

Figure 5.  The process of dynamic functional connectivity estimation. Pairwise Synchronization Likelihood 
estimation is performed on the 62-channel EEG data (a) in a time-resolved manner. This yields a 
synchronization matrix for every time point (b). From these matrices, connectivity strength of each region 
can be calculated in each instance (c), yielding connectivity strength time series. As a demonstration, the 
connectivity strength time series of region F3 is shown (d) from a representative subject, calculated from alpha 
band activity.

m L w1 w2

Delta 25 41 1968 2967

Theta 7 20 240 1239

Alpha 6 12 120 1119

Beta 8 5 70 1069

Gamma 6 3 30 1029

Table 3.  Starting parameters of Synchronization Likelihood for all frequency bands. A method on how to 
objectively define m, L, w1 and w2 on data with explicit frequency limits is presented in Montez et al.74. The same 
values of m and L were used for Permutation Entropy calculation in each frequency band.

https://doi.org/10.1038/s41598-019-49726-5


1 1Scientific Reports |         (2019) 9:13474  | https://doi.org/10.1038/s41598-019-49726-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

π π
=

− − +
p of type permutation

T m L
( ) #

( 1) 1 (4)

giving the best estimate on the frequency of π in a finite time series34. Finally, Bandt and Pompe34 defined permu-
tation entropy of order m as

∑ π π= −E m p p( ) ( )log ( ) (5)

with the sum running over all m! possible π permutations of order m. Also, the upper limit of E(m) always appear 
to be equal to mlog !, therefore its normalized form can be acquired by dividing it by this upper limit. Thus 
0 ≤ E(m) ≤ 1 typically corresponds to different levels of complexity, with 0 standing for a completely predictable 
i.e. minimally complex, while 1 a maximally unpredictable i.e. random process34. Although there is no theoretical 
limit regarding the order m, by practical and computational considerations m is usually chosen in the range 

…m {3 7} , however with sufficient time series length higher values can be applied as well34. Also, in many appli-
cations L = 1 is chosen, however in signals with explicit frequency limits it is advised to choose m and L so that the 
fluctuations present in the signal are well represented by the embedding80,81. Therefore, to remain consistent 
within our analyses, for all frequency bands we chose the same values of m and L as when calculating SL, as listed 
in Table 3.

Surrogate data testing.  For the testing of power-law spectra, surrogate time series with equal length and 
spectral slope were generated using the spectral synthesis method82. The spectral slope β of the DFC time series 
was estimated by fitting a power-law function on their power spectrum using linear regression. Goodness of fit 
of the power-law function was assessed by the Kolmogorov distance D according to Clauset et al.83. If D of the 
original time series was within the mean ± 2σ range of those acquired from surrogate data, the time series was 
considered having a power-law spectrum50,83. For each time series 40 surrogate signals were generated, as this 
number corresponds to a 95% and 97.5% confidence level for two-sided and one-sided tests, respectively84,85.

Surrogates for LRC testing were created by shuffling the original time series, as shuffling destroys all 
long-range correlations and reduces the process into pure white noise, while having no effect on the distribu-
tion of the values28,29. As H(2) of the original DFC time series were found always above 0.8, if it was outside the 
mean + 2σ range of those acquired from the surrogate time series the presence of LRC was verified. Again, 40 
surrogates were generated for each time series.

Monofractal time series (n = 40) with equal length and H(2) were generated using the method of Davies and 
Harte86. ΔH15 values were acquired with FMF-SSC, and if ΔH15 of the DFC time series was larger than the 
mean + 2σ acquired from the monofractal signals, the case of multifractal background noise could be excluded.

Surrogates for the testing of nonlinearity (n = 40) were generated by Fourier transforming the original signal, 
randomizing its phases and then performing inverse Fourier transformation84. If the ΔH15 of the DFC time 
series was larger than the mean + 2σ acquired from the surrogates, the observed multifractality was considered 
as a consequence of nonlinearity. PermEn of the surrogates were also calculated and compared to those of DFC 
time series. If PermEn of the original time series was outside the mean ± 2σ range acquired from surrogates, the 
presence of nonlinearity was verified.

Figure 6.  End-point parameters of multifractal time series analysis. The scaling function (a) is acquired by 
multifractal signal summation conversion. In that, standard deviation is calculated as a function of scale and 
the process is repeated along several statistical moments. The generalized (q-dependent) Hurst exponent (b) is 
acquired via linear regression with the focus used as a reference point. Global scale-invariance is described by 
H(2), while the degree of multifractality is captured as the difference between H(q) calculated at the minimal 
(−15) and maximal (15) moments.
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Brain parcellations.  Brain parcellation was carried out manually according to the probability maps 
reported by Giacometti and colleagues42. These maps contain probabilities for EEG electrodes positioned in the 
10–20, 10–10 and 10–5 configurations on which anatomical or functional network they most likely monitor42. 
We applied a non-overlapping parcellation scheme presented in Giacometti et al.42 where EEG electrodes were 
grouped to represent the activity of 7 intrinsic functional networks as identified by Yeo et al.41. Since some EEG 
electrodes were found to register the simultaneous activity of more than one intrinsic network42, in such cases the 
electrode was always assigned to the intrinsic network with the highest probability to achieve a non-overlapping 
parcellation. Also, as the electrode positions monitoring the ventral attention and limbic networks were strongly 
overlapping, we decided to treat these two networks jointly, resulting in a final number of 6 networks and their 
corresponding groups of channels (Fig. 7). Finally, the H(2), ΔH15 and PermEn values were averaged within each 
network on the subject level.

Statistical analysis.  As requirements of a repeated measures analysis of variance were not fulfilled – because 
of the non-normal distribution of values in at least one of the channels (Kolmogorov-Smirnov test, p < 0.05) – we 
performed Friedman tests with a significance level of αs = 0.05 to investigate the effect of channel localization on 
the values of H(2), ΔH15 and PermEn. To further verify the existence of a significant topological distribution, 
Friedman tests were also performed on n = 100 spatial surrogates, where for each subject the estimated values of 
H(2), ΔH15 and PermEn were assigned to the 62 channel locations randomly. The accordance in the ranking of 
different electrode positions among subjects was estimated using Kendall’s coefficient of concordance39. Kendall’s 
W captures the similarity in the rank order of values and thus it reflects how similar the topological distribution 
appeared among the subjects. Non-parametric assessment of pair-wise correlation between the ranks of different 
complexity parameters was carried out using Kendall’s τ coefficient to determine whether the same subjects were 
responsible for the observed within-subject significant differences. When evaluating the difference between the 
dynamical measures of the 6 intrinsic brain networks, repeated measures analysis of variance could be applied as 
the datasets were normally distributed (Kolmogorov-Smirnov test, p > 0.05 in all cases) and the assumption of 
sphericity was not violated (Mauchley’s test, p > 0.05). Pairwise multiple comparisons between the networks were 
carried out separately for values of H(2), ΔH15 and PermEn using Bonferroni post-hoc tests with a significance 
level of αs = 0.05. Statistical analyses were performed using StatSoft Statistica 13.2.

Data Availability
The EEG data analyzed in this study was made publicly available without restrictions by Sockeel, et al.35 at http://
megfront.meg.chups.jussieu.fr/MEEG_data/data.tgz and http://datadryad.org/review?doi=doi:10.5061/dryad.
v9f16.

Figure 7.  Electrodes were grouped to represent six resting-state networks: the visual network (VN, 10 
channels), the somatomotor network (SM, 10 channels), the dorsal attention network (DA, 9 channels), the 
combined ventral attention and limbic networks (VAL, 12 channels), the frontoparietal network (FP, 8 channels) 
and the default mode network (DMN, 13 channels). Brain maps were created using the BrainNet Viewer 
software87 after electrode positions were transformed to match a template head using SPM 12b88. VN = visual 
network; SM = somatomotor; DA = dorsal attention; VAL = ventral attention and limbic; FP = frontoparietal; 
DM = default mode network.
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