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The abundant and phylogenetically 
diverse set of bacteria present in soils play 
important roles in terrestrial ecosystems 
through their interactions with plants and 
their functions in nutrient cycling pro-
cesses. Acidobacteria is one of the most 
widespread and abundant phyla found 
in soils and sediments worldwide.1-3 In 
some soils, up to 50% of the rRNA gene 
sequences from bacterial clone libraries 
are from Acidobacteria members.4 The 
Acidobacteria phylum is defined by a large 
collection of 16S rRNA gene sequences 
(> 11,589 in the ARB_SILVA Database 
(August 20125) that fall into 26 major 
subdivisions.6 In addition to soils and 
sediments, Acidobacteria members been 
found in aquatic,7,8 extreme9,10 and pol-
luted environments,6 as well as wastewater 
systems.11

Members of this phylum have been dif-
ficult to isolate and culture in vitro. This 
situation has precluded their biological 
and physiological characterization,10,12-16 
and is the reason for the current lack of 
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whole genome sequence data for the 
Acidobacteria. Because known members 
are widely abundant and phylogeneneti-
cally diverse, the Acidobacteria may be 
important constituents of a variety of eco-
systems and further genomic studies are 
warranted.

Mobile elements play important evo-
lutionary roles in bacteria by facilitating 
genome plasticity.17-21 Their abundance 
in bacterial genomes varies for reasons 
that are not yet completely clear.21 The 
“Candidatus Solibacter usitatus Ellin6076” 
genome encodes multiple genes often 
associated with mobile elements (Table 1).  
Fifty nine of the 123 mobile element 
associated genes encode transposases. Of 
these, 42 genes are annotated as inser-
tion sequence (IS) elements, representing 
the IS3, ISL3, IS66, and IS110 families  
(Table 1). The genome also includes genes 
encoding phage integrase family proteins 
from the lambda integrase family, and 
other proteins containing an integrase, 
catalytic region domain.22

An insertion sequence (IS) element is 
a short DNA sequence that functions as 
a simple transposable element in bacte-
ria.23 IS elements are small compared with 
other transposable elements, typically less 
than 2,500 bp in length, and encode only 
the proteins needed for their own mobil-
ity,23 including the transposase that cata-
lyzes the enzymatic reaction that confers 
IS mobility, and a regulatory protein that 
either stimulates or inhibits the transpo-
sition activity.24 The coding region in an 
insertion sequence is usually flanked by 
inverted repeats.23,24 IS elements have been 
classified into families and sub-groups 
within each family, based on specific 
structural features. These include size 
range and presence of terminal inverted or 
direct target repeats.25

The “Can. S. usitatus Ellin6076” 
genome contained 16 genes encoding 
members of the IS3 transposase family, 
specifically the IS3/IS911 subgroup. The 
IS3 family is represented in more than 40 
bacterial species,25 including at least three 
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specificity, even though studies suggest 
that these elements may prefer AT-rich 
regions.23 The most well-characterized 
member of the ISL3 family is IS31831 
from Corynebacterium glutamicum 
(Phylum Actinobacteria).27 Members 

generated by translational frame shift-
ing,23 and excision and circularization 
mediated by the OrfAB transposase.23,26

Members of the ISL3 family gener-
ate 8-bp direct repeats upon insertion, 
but exhibit no obvious target sequence 

acidobacteria genomes (“Can. S. usitatus 
Ellin6076,” G. tundricola MP5ACTX9 
and A. capsulatum). The defining fea-
tures of IS3 family transposition include 
a transposase encoded by OrfAB, where 
the resulting product is a fusion protein 

Table 1. Can. S. usitatus Ellin6076 genes associated with mobile elements and their presence in other acidobacteria genomes

Type
Function/
Domain

Family Number Family found in other acidobacteria genomes?

A. capsulatum
“Can.  

K. versatilis”
G. mallensis G. tundricola T. saanensis

“Can.  
C. thermophilum”

phage 
integrase 

family  
protein

COG4974  
Site-specific 
recombinase 

XerD

lambda 
inte-
grase

27 yes yes yes yes yes yes

integrase 
catalytic 
region

pfam00665 rve NA 37 yes yes yes yes yes no

trans-
posase 

IS3/IS911 
family  

protein

Pfam01527 
transposase_8

IS3 16 yes no no yes no no

trans-
posase 
IS204/
IS1001/
IS1096/
IS1165

COG3464 
Transposase 

and inactivated 
derivatives

pfam01610  
Transposase_12

ISL3 2 no no no yes yes no

putative 
trans-

posase 
protein 

Y4bF

pfam01548 
Transposase_9

pfam02371 
Transposase_20

NA 4 yes yes yes yes yes no

IS116/
IS110/
IS902

IS110 20 yes yes yes yes yes no

trans-
posase 

IS66

pfam03050  
Transposase_25

COG2251  
Predicted 

nuclease (RecB 
family)

IS66 4 no no no no no no

trans-
posase

transposase_11

pfam01609
NA 1 yes no yes yes no no

trans-
posase

NA NA 4 no no no no no no

putative 
trans-

posase
NA NA 7 no no no yes no no

trans-
posase-

like
NA NA 1 no no no no no no

Data presented in this table were obtained from BLAST 45 analysis, the Integrated Microbial Genomes (IMG) System,35 and the references that describe 
the genomes.16, 22, 28, 34
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elements can transfer adaptive traits, 
such as pathogenicity islands and viru-
lence genes (reviewed in refs. 18 and 36), 
antibiotic resistance,37-39 metabolic func-
tions,29,40 and also play a significant role in 
genome plasticity and evolution.17-21

The types and abundances of mobile 
element-associated genes present in partic-
ular organisms may be highly influenced 
by environmental conditions. Phage-
mediated transduction events could 
occur within a relatively local population, 
among unrelated bacteria that live in close 
proximity (reviewed in refs. 41–43). One 
may speculate that particular families 
of mobile elements are common to the 
inhabitants of soil and sediment ecosys-
tems, and may differ in composition from 
those in other environments (e.g., aquatic 
and hot springs). In support of this con-
jecture, the acidobacteria genomes from 
soils and sediments16,22,28 contained some 
similar types of mobile element genes, 
in spite of the very different geographic 
regions and geochemical characteristics of 
the soils/sediments from which they were 
isolated. In contrast, the genome of the 
hot springs isolate, “Can. C. thermophi-
lum B,”34 contained a unique assortment 
of mobile element genes compared with 
the other acidobacteria. Significantly, the 
mobile elements found in the “Can. C. 
thermophilum B” genome were most simi-
lar to those found in the genomes of other, 
more distantly related bacterial inhabit-
ants of the hot springs environment.34

The “Can. S. usitatus Ellin6076” and 
G. tundricola MP5ACTX9 genomes har-
bored increased numbers of mobile ele-
ment genes compared with the other 
acidobacteria genomes. This could be due 
to a particular need for increased func-
tional diversity in these species, which 
could aid them in coping with extremes 
of moisture, temperature, geochemi-
cal conditions, and potentially provide 
them with an enhanced competitive abil-
ity to exploit different environmental 
resources.22 However, other isolates from 
the same environments as “Can. S. usitatus 
Ellin6076” and G. tundricola MP5ACTX9 
did not contain similar increased num-
bers of mobile elements. The genomes 
of “Can. K. versatilis Ellin345,” isolated 
from the same pasture as Can. S. usitatus 
Ellin6076;44 and genomes of G. mallensis 

blunt-ended viral DNA made by reverse 
transcription. This domain also catalyzes 
the DNA strand transfer reaction of the 
3' ends of the viral DNA to the 5' ends 
of the integration site. There are two inte-
grase families differentiated by the pres-
ence of a tyrosine or serine amino acid 
in the catalytic site. These families differ 
from each other with respect to the mech-
anism of recombination, characteristics 
of attachment sites, and requirements for 
bacterial host cofactors.33 Phage integrase 
genes were present in all of the acidobac-
teria from soils or sediments [A. capsu-
latum, “Can. K. versatilis,” G. mallensis 
MP5ACTX8, G. tundricola MP5ACTX9, 
and T. saanensis SP1PR416,22,28(Table 
1)], as well as in the genome of “Can. C. 
thermophilum B” from an alkaline hot 
spring.34 However, while the genomes 
of the acidobacteria from soils or sedi-
ments contained genes encoding proteins 
with integrase catalytic domains, “Can. 
C. thermophilum B” did not.34 Other 
mobile element genes found in the “Can. 
C. thermophilum B” genome were unique 
to this species; they were not found in the 
other acidobacteria. The majority of these 
genes encoded IS605 family proteins.34 
A cursory examination of the arctic tun-
dra genomes by searching for the “phage” 
keyword in IMG35 revealed the presence 
of genes encoding phage terminase sub-
units, phage portal, phage prohead pro-
tease and phage major capsid proteins in 
G. mallensis MP5ACTX8 and G. tundri-
cola MP5ACTX9, suggesting that these 
genomes may contain prophage regions. 
In contrast, the genomes of “Can. S. usita-
tus,” A. capsulatum and “Can. K. versatilis” 
do not contain any identifiable prophage 
regions, but they do contain genes encod-
ing phage integrase family proteins and 
other proteins containing integrase cata-
lytic domains.16 There were no prophage 
regions reported in the genome of “Can. 
C. thermophilum B.”34

In summary, all of the sequenced 
Acidobacteria genomes contain multiple 
genes that are often associated with mobile 
elements (Table 2). Increasing evidence 
indicates that mobile element abundance 
correlates positively with the frequency of 
horizontal gene transfer between genomes 
or between replicons of the same genome 
(reviewed in refs. 18 and 21). Mobile 

of this family have been found in other 
bacterial species,23,25 including “Can. S. 
usitatus Ellin6076,” which contained two 
genes annotated as members of this family. 
ISL3 is also represented in the acidobacte-
ria Granulicella tundricola MP5ACTX9 
and Terriglobus saanensis SP1PR428 (Table 
1). The transposition mechanism of these 
elements has not yet been determined, 
but evidence suggests that IS1411 from 
the proteobacterium, Psuedomonas putida, 
forms a circular species.29

IS66 family members are widely dis-
tributed in the phylum Proteobacteria e.g., 
(Agrobacterium, Rhizobium Escherichia, 
Pseudomonas, and Vibrio spp).30 Four 
copies of IS66 were found in “Can. S. 
usitatus Ellin6076,” but not in the other 
acidobacteria genomes (Table 1). The 
mechanism of IS66 family transposi-
tion appears to be different from that of 
the IS3 family members. The IS66 fam-
ily elements do not produce a transposase 
by translational frame-shift; instead they 
produce three proteins by a translational 
coupling mechanism, where the distal 
ORF is translated only after translation of 
the proximal ORF.30

Twenty genes encoding members of the 
IS110 family were identified in the “Can. 
S. usitatus Ellin6076 genome,” and repre-
sentatives of this family were also found 
in all of the other acidobacteria genomes, 
except “Can. C. thermophilum B”  
(Table 1). The IS110 family forms two dis-
tinct subgroups, IS110 and IS111, which 
could be classified as separate families.23,25 
The mechanism of transposition of IS110 
family elements is unclear. However, the 
presence of a circular form of the element is 
supported by evidence in Streptomyces coe-
licolor31 and Pseudoalteromonas atlantica.32

The presence of phage integrases in 
bacterial genomes can indicate past phage 
transduction events, even in the absence 
of intact prophage regions in the genome, 
which is the case for the soil acidobacteria 
genomes that we previously analyzed.16,22 
Phage integrases, also known as site- 
specific recombinases, catalyze site- 
specific recombination between short (30–
40 bp) phage and bacterial DNA attach-
ment sequences termed attP (phage) and 
attB (bacterial).33 The catalytic domain 
acts as an endonuclease when two nucleo-
tides are removed from the 3' ends of the 
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MP5ACTX8 and T. saanensis SP1PR4, 
isolated from the same arctic soil as  
G. tundricola MP5ACTX9,28 all con-
tained much lower numbers of mobile ele-
ment genes. This situation underscores the 
need for isolation and study of additional 
acidobacteria and their genomes, from as 
many diverse environments as possible, to 
further explore the prevalence and func-
tions of mobile genetic elements in mem-
bers of this genetically and geographically 
diverse phylum.
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