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Abstract: Chemomechanical preparation of the root canal system is considered to be the most
important part of root canal treatment, including both mechanical removal of tissue remnants and
dentine chips, and chemical elimination of biofilm and microorganisms. A number of different
solutions and agitation techniques have been proposed for that purpose. It was the aim of the present
study to investigate whether root canal cleanliness can be improved by using a hydroxyapatite
nanoparticle-containing solution with and without sonic or ultrasonic agitation. Seventy-four single-
rooted teeth were divided into four experimental groups (n = 15) and two control groups (n = 7).
All teeth were split longitudinally and a groove and three holes were cut into the root canal wall
and filled with dentinal debris. Final irrigation was performed using sodium hypochlorite or a
hydroxyapatite nanoparticle-containing solution (Vector polish) activated with a sonically or an
ultrasonically driven endodontic file. Two calibrated investigators rated the remaining debris using
a four-score scale. The results were analyzed using a non-parametric test with α < 0.05. Sonic and
ultrasonic irrigation with sodium hypochlorite cleaned the grooves and holes well from debris.
The hydroxyapatite nanoparticles activated by a sonic file cleaned grooves and holes equally well.
Ultrasonically activated nanoparticles performance was clearly inferior. The syringe control-group
left large amounts of debris in grooves and holes. The use of the hydroxyapatite nanoparticles used
in this study did not improve removal of debris.

Keywords: hydroxyapatite nanoparticles; dentinal debris; grooves; passive ultrasonic irrigation;
sonic irrigation

1. Introduction

Chemomechanical preparation of the root canal system is considered to be the most im-
portant part of root canal treatment, including both mechanical removal of tissue remnants
and dentine chips, and chemical elimination of biofilm and microorganisms. A plethora
of materials, solutions and techniques have been used for cleaning and disinfection of
root canals but so far no irrigant nor any technique have been identified as being equally
effective in both regards [1]. Among chemical disinfectants sodium hypochlorite in various
concentrations is still recommended as the irrigant of choice due to its good antimicrobial
properties, despite its limited capability to dissolve organic tissue, to remove the biofilm
and to penetrate into the intricacies of the complex root canal system.

In order to improve the mechanical efficacy of root canal irrigation agitation of the
irrigant is recommended. In the 1950s, ultrasonics was introduced for endodontic purposes,
which later—among others—was modified by Cunningham and Martin [2], Weber et al. [3],
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and van der Sluis et al. [4], now termed as Passive Ultrasonic Irrigation (PUI). More recently,
sonically driven agitation using stainless steel or NiTi metal wires or even plastic tips
(e.g., EndoActivator (Dentsply Maillefer, Ballaigues, Switzerland), EDDY (VDW, Munich,
Germany)) has become popular among endodontists [5].

Nanoparticles have recently gained considerable attention in medicine and dentistry
(“nanodentistry”), and also in endodontics, mainly due to their antimicrobial properties [6–12].
Their main characteristic is an extremely small particle size. At least 50% of particles in
such a solution must be sized between 1–100 nm to be classified as a nanomaterial. In
addition, nanoparticles show a large ratio between mass and surface area, and a high
chemical reactivity [13].

In endodontics, different kinds of nanoparticles (e.g., gold, silver, copper, zinc, ti-
tanium, chitosan, calcium oxide, calcium hydroxide, and hydroxyapatite) have been
proposed as irrigants, as medical gels to be in direct contact with infected dentine, as
antibacterial ingredients to endodontic sealers, or as media to be activated by lasers in
photodynamic therapy (PDT). Due to their positive electrical charge nanoparticles are
capable to disturb the activity of cell membranes thus interfering with the metabolism of
bacteria [13–15], and also exerting a strong antimicrobial effect [16,17]. Shrestha et al. [8]
demonstrated that nanoparticles agitated by ultrasonics can be transported by collapsing
microbubbles into dentinal tubules at a depth of up to 1000 µm. Combining good antimi-
crobial efficacy and ultrasonically driven intense mechanical action on the root canal walls
nanoparticles could be a suited solution for irrigation of root canals. No information is
available so far on the combined effect of nanoparticles and sonically driven agitation.

The ultrasonic system Vector (Dürr Dental, Bietigheim-Bissingen, Germany) is used
in periodontal treatment for removal of subgingival calculus without causing destruction
to the root cementum [15]. Vector polish, a solution containing synthetically produced
hydroxyapatite nanoparticles with <10 µm size, is activated by an ultrasonically driven
instrument at approx. 25 kHz and 30 µm amplitude [18,19]. Braun et al. [19] supposed that
the ultrasonic energy is transferred directly to the root through the nanoparticles.

SEM studies demonstrated that the use of Vector polish fluid in combination with
application of the Vector ultrasonic system results in well cleaned and smooth external
root surfaces with well-retained dental hard tissue [20]. In endodontics, nanoparticles
to the best of our knowledge so far have been investigated only with regard to their
antibacterial properties but no study was found investigating the mechanical action of a
solution containing hydroxyapatite nanoparticles in terms of removal of tissue remnants
and dentinal debris from root canals when activated by sonic or ultrasonic devices.

Therefore, the aim of this study was to investigate the ability of the Vector polish
hydroxyapatite nanoparticle solution as a root canal irrigant activated by passive ultrasonic
agitation (PUI) or sonic agitation (SI) and irrigation using a common syringe (needle
irrigation, NI) as a control to remove dentinal debris from grooves and holes inside straight
root canals.

The nill-hypothesis was that there is no difference in the cleaning ability between
sodium hypochlorite and a hydroxyapatite nanoparticle-containing solution when agitated
by sonic or ultrasonic devices.

2. Materials and Methods

Seventy-four single rooted teeth without previous endodontic treatment and with
mature roots were selected and cleaned with hand scalers (HLW-Germany, Wernberg-
Köblitz Germany). All teeth were shortened to 19 mm length and the access cavities were
prepared using diamond burs (Brasseler, Lemgo, Germany). The root canal orifices were
flared with Gates-Glidden burs sizes 2 and 3 (Brasseler). The insertion depth of the Gates-
Glidden burs was limited to 6 mm from the incisal edge. The root canals were prepared with
the Mtwo rotary NiTi-system (VDW, Munich, Germany) to a size of 40/0.04. Following each
instrument size, the root canals were rinsed with 2 mL NaOCl (3%) (Hedinger, Stuttgart,
Germany). The final flush was performed using 5 mL ethylenediaminetetraacetic acid
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EDTA (17%) (Lege artis, Dettenhausen, Germany) and 5 mL NaOCl (3%). The irrigants
were delivered using a syringe with a 30-gauge needle.

Silicone moulds were made of Silaplast (Detax, Ettlingen, Germany) and pushed
in acryl tubes in order to mount the teeth in a reproducible position for standardized
preparation and irrigation.

Following preparation two longitudinal grooves were sliced into the root with a
diamond disk (Horico, Berlin, Germany) without exposing the root canal and the root
was split into two halves with a small chisel. Only root halves that could be reassembled
perfectly were included in the further experiments. As suggested by Lee et al. [21] in one
of the root halves a standardized groove (4 mm long, 0.5 mm deep, and 0.2 mm wide)
was cut into the dentin using modified finger spreaders ISO-size 35 (VDW). Three holes
were cut into the opposite root halves using round burs (Brasseler, Lemgo, Germany) with
a diameter of 0.3 mm and with a distance of 2 mm between the holes. The position of
the grooves and holes were the same as described by Lee et al. [21] (Figure 1a,b). The
root halves were placed in flat silicone beds in order to allow standardized photography
in a reproducible position. Photographs were taken from the empty grooves and holes
which then were filled with dentine debris under a microscope. The dentine debris had
been scraped off from moist root canal walls from teeth not used in this study. The debris
was filled into the holes and grooves using a spoon excavator and a small spatula and
slightly compressed with blunt gutta-percha cones to achieve a dense packing without
voids. Again, photographs were taken of the filled artificial grooves and holes and the root
halves were reassembled in the silicone moulds.
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Figure 1. (a) Groove prepared into one half of the split root; (b) Three holes prepared into the other
half of the split root.

The nanoparticles used in this study were synthesized hydroxyapatites (Vector polish,
Dürr, Bietigheim-Bissingen, Germany) commonly used in periodontal treatment for clean-
ing and root smoothening. The nanoparticles are available in two sizes, namely 25 µm and
smaller than 10 µm, the latter solution was used in this study.

After filling the grooves and holes with dentinal debris and reassembling the root
halves in the silicone mould the specimens were randomly divided into six groups: Two
groups with 30 teeth each for comparison of the nanoparticle solution (Vector polish, Dürr)
and sodium hypochlorite. The 30 samples of each group were divided into two subgroups
of 15 teeth each to compare sonic and ultrasonic agitation of both solutions. Two groups
with seven teeth each served as control groups (no irrigation, syringe irrigation (NI).

The ultrasonic agitation (PUI) was performed using the Irrisafe ISO 20 ultrasonic tip
(Acteon, Mettmann, Germany), the sonic agitation (SI) used the Komet SF65 tip (Brasseler,
Lemgo, Germany), a flexible NiTi irrigation tip. In the control group syringe irrigation was
performed with a 30-gauge needle (Vedefar, Dilbeek, Belgium) mounted on a 5 mL syringe
(Braun, Melsungen, Germany).
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Three activation cycles with 10 mL 3% sodium hypochlorite or 10 mL Vector polish
were performed with the sonic or ultrasonic tips for 20 s. The syringe group was limited to
a volume of 10 mL of the irrigants in three parts lasting 20 s each.

After irrigation the root halves were separated again, and final photographs were
taken. Each root half was photographed three times: following preparation with empty
cavities, cavities filled with dentine debris, and following final irrigation. The photos
of the rinsed root halves were independently evaluated by two investigators using a
four-score scale:

(a) Score 0: 0–25% of the grooves or holes filled with debris (Figures 2a and 3a)
(b) Score 1: 26–50% of the grooves or holes filled with debris (Figures 2b and 3b)
(c) Score 2: 51–75% of the grooves or holes filled with debris (Figures 2c and 3c)
(d) Score 3: 76–100% of the grooves or holes filled with debris (Figures 2d and 3d).
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Figure 3. (a): Score 0: 0–25% of the groove filled with debris; (b) Score 1: 26–50% of the groove filled
with debris; (c): Score 2: 51–75% of the groove filled with debris; (d) Score 3: 76–100 of the groove
filled with debris.

Before the two investigators performed the final rating 40 photographs representing
all scores were rated independently by both investigators for calibration.

3. Statistical Evaluation

Statistical evaluation of the results was performed using the Mann–Whitney-U-Test
and a non-parametric test with α < 0.05. Intraobserver reproducibility and interobserver
agreement were evaluated using Cohen’s Kappa.

4. Results

Cohen’s Kappa coefficient for interobserver agreement was 0.85, demonstrating very
good interobserver agreement. Cohen’s Kappa coefficient for intraobserver reproducibility
was 0.95 for the first and 0.92 for the second observer, respectively, also demonstrating very
good intraobserver agreement. There was no statistically significant difference between
grooves and holes regarding cleanliness (Mann–Whitney-U-Test, p = 0.09), therefore the
results for both were pooled and not analyzed separately.

The results of the final scoring and the levels of statistical significance are summarized
in Table 1. For PUI and SI activation of sodium hypochlorite the score 0 was reached in 98.3%
or 100% of the samples, respectively. The nanoparticle solution failed to remove the dentine
debris when using PUI for activation. Sonic activation of the nanoparticle solution was
able to remove the dentine debris in 85% of the samples. The syringe irrigation (NI) failed
to clean the grooves and holes using either nanoparticles or sodium hypochlorite (Table 1).

Table 1. Absolute and relative frequencies of added scores for holes and grooves (max. 60, for syringe irrigation max. 28).

Group Score 0
n/%

Score 1
n/%

Score 2
n/%

Score 3
n/%

SI + NaOCl 60
100%

0 0 0

SI + nanoparticles 51
85%

6
10%

3
5%

0

PUI + NaOCl 59
93.3%

1
6.7%

0 0

PUI + nanoparticles 17
28.3%

3
5%

12
20%

28
46.7%

Syringe irrigation (NI) + NaOCl 10
35.7%

0 8
28.6%

10
35.7%

Syringe irrigation (NI) + nanoparticles 1
3.6%

2
7.1%

5
17.9%

20
71.4%



Materials 2021, 14, 4750 6 of 9

The results of the statistical analysis are summarized in Table 2.

Table 2. Results of the statistical test (level of significance p ≤ 0.05). Significant differences in bold.

Group Groups p

NaOCl SI vs. PUI 0.876

nanoparticles SI vs. PUI 0.000

SI NaOCl vs. nanoparticles 0.157

PUI NaOCl vs. nanoparticles 0.000

syringe irrigation (NI) NaOCl vs. nanoparticles 0.008

5. Discussion

The design of the present study is similar to that proposed by Lee et al. [21] and van
der Sluis et al. [22] and has frequently been used for investigation of removal of dentine
debris [23,24] or calcium hydroxide [23] from root canals. Following longitudinal splitting
the root halves can be reassembled using a silicon mould which is unlikely to result in
disturbances in the irrigant’s hydrodynamics. This design allows to prepare standardized
anatomical features such as holes and grooves which can be filled with dentine chips under
close direct visual control. Whereas these holes and grooves cannot exactly reproduce
anatomical irregularities inside root canals such as lateral extensions, undercuts, internal
resorption lacunae or anastomoses, they allow to create identical conditions in all teeth,
assuring a high degree of standardization.

Lee et al. [21] and van der Sluis et al. [22] used similar scoring systems, allowing reli-
able and reproducible scoring of the remaining debris. Interobserver agreement and intraob-
server reproducibility in the present study showed good results with Kappa-values > 8.85.

The hydroxyapatite nanoparticle suspension Vector polish so far has not been used or
investigated for endodontic purposes although a good cleaning ability has been demon-
strated in studies on cleaning root surfaces [15,20]. Unfortunately, no data are available
on the concentration of the particles in this solution. It cannot be excluded that different
concentrations of the solution would influence the hydrodynamics and energy transfer of
the activated solution and consequently also have an impact on the cleaning efficacy.

No statistically significant differences were found between the post-irrigation ap-
pearance of grooves and holes, which is in agreement with the findings of Lee et al. [21].
Rödig et al. [23] using an identical study design reported significantly superior cleanli-
ness of the grooves. The author supposed that this might be related to the larger surface
of the grooves which could be addressed better by the hydrodynamical effects of the
activated irrigant.

Regarding the removal of debris from root canals no significant difference between
sonic or ultrasonic activation of the irrigant or syringe irrigation has been observed in some
studies [25,26]. This is in accordance with the results of this investigation for irrigation with
sodium hypochlorite. No explanation for the differing behavior of the nanoparticle solution
with significantly better results for the sonic agitation could be found in the literature.
Interestingly, Kanter et al. [27] also reported a significantly superior performance of a sonic
device (EndoActivator) compared to PUI in the removal of debris from prepared canine
teeth, which was confirmed by Mancini et al. [28]. The overall results in that study were
clearly inferior to those of the present study. Paragliola et al. [29] demonstrated a deeper
penetration of dentinal tubules with PUI than with the sonically driven EndoActivator.
Conversely, Jensen et al. [30] and Arslan et al. [31] did not find any significant difference
between both activation systems. Gu et al. [32], in a review on contemporary irrigant
activation techniques, concluded that the results of sonic and ultrasonic techniques and
devices are completely inconclusive and dependent on a large number of variables, which
is confirmed by the present study. The results in the study of Arslan et al. [31], who
compared debris removal from two apical grooves, again were clearly worse than those
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of the present study. It remains to be investigated whether and to which degree time of
activation and intensity of sonic or ultrasonic agitation of the solution influence the degree
of cleanliness.

In the present study nanoparticles showed an inferior cleaning ability than sodium
hypochlorite only when agitated with ultrasonics. It can be speculated that the microbub-
bles created by ultrasonics are too small to transfer enough energy to the nanoparticles,
which in consequence are not actively pushed into the grooves and holes. Ohl et al. [33] in
a series of experiments demonstrated that high intensity ultrasound is able to press chi-
tosan nanoparticles (size approx. 100 nm) into dentinal tubules. In this regard ultrasonics
performed significantly better than sonic agitation using the EndoActivator [34]. It is well
known that ultrasonics induces formation of microbubbles which generate shock waves
when collapsing and also cause microstreaming with shear stress on the root canal wall [35].
This shear stress not only can disrupt biofilms but also can loosen and remove debris and
smear layer [36]. It still has to be elucidated whether the hydroxyapatite nanoparticles
used in this study prevent creation of these phenomena or even disturb the effect of shock
waves and shear stress on the dentinal wall and which influence the size of the particles
has on the energy transfer and the cleaning effiacy.

Finally, it should be noted that the viscosity of nanoparticles is clearly higher than
that of sodium hypochlorite. Cavitation may be generated even in highly viscous emul-
sions, nevertheless this phenomenon may be dampened by the nanoparticles. Whether
electrokinetic transport can improve the distribution and effectiveness of hydroxyap-
atite nanoparticles, as already demonstrated for chitosan nanoparticles [17] still has to
be elucidated.

The nill-hypothesis that there is no difference between the irrigation techniques could
be accepted only in parts.

6. Conclusions

Using hydroxyapatite nanoparticles did not result in sufficient removal of dentinal
debris from grooves and holes inside a root canal when activated with ultrasound. When
activating the solution with a sonic tip clean grooves and holes were achieved as well
as by activation of sodium hypochlorite with sonics or ultrasound. The hydroxyapatite
nanoparticle solution used in this study did not improve root canal cleanliness when
compared to sodium hypochlorite.
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