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the high observed prevalence in the study locations 
remained consistent over a long time period.

Our data suggest an overall high prevalence of 
R. raoultii and its possible long-term stability in D. re-
ticulatus tick populations in the studied region, high-
lighting the enduring high risk of acquiring this rick-
ettsial infection. Besides veterinary consequences (1), 
this risk should be considered by medical personnel 
and public health authorities because the incidence of 
tick-borne lymphadenopathy might increase with the 
reported (1) expansion of the vector into new areas 
and its growing abundance in Central Europe. 
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In January 2021, after detection of severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) variants, genomic 
surveillance was established on Réunion Island to track 
the introduction and spread of SARS-CoV-2 lineages and 
variants of concern. This system identified 22 SARS-CoV-2 
lineages, 71% of which were attributed to the Beta variant
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Coronavirus disease (COVID-19) is a respiratory 
illness caused by severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2). On Réunion Is-
land, an overseas department of France located in the 
Indian Ocean, the first cases of COVID-19 were de-
tected on March 11, 2020, in a group of travelers (D.A. 
Wilkinson et al., unpub. data, https://doi.org/10.11
01/2021.01.21.21249623). In response, a regional epi-
demiologic surveillance focusing on contact tracing 
and early detection of clusters was conducted. After 
several months of imported cases and sporadic au-
tochtonous cases, a sharp increase in locally acquired 
infections was recorded in August 2020, after the re-
turn of many Réunion Island residents from travel 
abroad, primarily mainland France, where the inci-
dence rate was high. The virus subsequently spread 
throughout the island.

In January 2021, after SARS-CoV-2 variants were 
detected, genomic surveillance was established to 
track the introduction and spread of SARS-CoV-2 
lineages on the island. During January–June 2021, 
we generated a total of 1,528 genome sequences with 
>90% coverage using the ARTIC protocol (https://
artic.network/ncov-2019/ncov2019-bioinformatics-
sop.html) and nanopore technology (MinION; Ox-
ford Nanopore Technologies, https://nanoporetech.
com). This collection represents 8.3% of all COV-
ID-19 cases on Réunion Island during that period (n 
= 18,409). Sample selection was pseudo-random; a 
small proportion of cases was prioritized for sequenc-
ing because of atypical epidemiologic or clinical char-
acteristics. Pangolin lineages were assigned to all ge-
nomes using Pangolin version 1.2.88 (https://github.
com/cov-lineages/pango-designation/releases/
tag/v1.2.88).

We present the main findings of genomic sur-
veillance from weeks 1–22, 2021 (January 4–June 6, 
2021). We focused on the evolution of the weekly 
proportions of the 8 most frequent SARS-CoV-2 
variants and examined the correlation between 
the weekly number of confirmed cases and the 
proportion of sequences identified as Beta vari-
ant (B.1.351). We extracted lineage distributions 
in other islands of the Indian Ocean and South 
Africa from the GISAID database (http://www.
gisaid.org) to investigate the origins of the Beta  
variant sublineages.

We identified 22 SARS-CoV-2 lineages, 71% of 
which were attributed to the Beta variant (sublin-
eages B.1.351 and B.1.351.2) (Table). On the basis of 
available data in the GISAID database, lineage B.1.622 
seems to be specific to Réunion Island; no other se-
quence had been reported elsewhere.

The Beta variant was first detected on Réunion Is-
land during the first week of January 2021, although it 
may have been introduced before its detection by full-
genome sequencing. During the first 6 weeks of 2021, 
lineages known to have high levels of circulation in 
Europe (e.g., B.1.160, B.1.177) represented most se-
quenced genomes (Figure). This finding highlights 
the strong effect of air travel on COVID-19 dynamics 
on an island such as Réunion (1; D.A. Wilkinson et al., 
unpub. data).

Since mid-February 2021 (week 7 of 2021), the 
Beta variant has become dominant on Réunion Is-
land, despite low-level circulation of the Alpha vari-
ant, another variant of concern that was dominant 
in mainland France and other countries in Europe 
at that time. We detected a correlation (Spearman 
ρ = 8.4 × 10−4; p<0.001) between the number of CO-
VID-19 cases in January–February 2021 and the 
number of sequences attributed to the Beta variant, 
which has been shown to have increased transmis-
sibility (C.A. Pearson et al., unpub. data, https://
cmmid.github.io/topics/covid19/sa-novel-variant.
html). Several additional factors could explain the 
dominance of Beta variant; genetic and epidemio-
logic factors may have contributed to a founder ef-
fect, a higher frequency of virus introductions result-
ing from holiday travels, possible superspreading 
events, and local and regional contexts (2). Indeed, 
geographic proximity and population movements 
with Mayotte, another overseas department of 
France, and Comoros link Réunion Island to South 
Africa, where Beta variant was first reported (3).

 
Table. Observed lineages of severe acute respiratory syndrome 
coronavirus 2, Réunion, France, 2021 
Pangolin lineage No. genomes 
B.1.351.2 (Beta, sub-lineage 2) 716 
B.1.351 (Beta, sub-lineage 0) 361 
B.1.177 154 
B.1.622 71 
B.1.1.7 (Alpha) 65 
B.1.160 55 
B.1.160.18 36 
B.1.1.353 18 
B.1.617.2 (Delta) 14 
B.1.438.2 10 
B.1.525 (Eta) 8 
B.1.416.1 5 
B.1.177.24 3 
B.1 3 
B.1.177.37 2 
B.1.1 1 
B.1.1.241 1 
B.1.160.27 1 
B.1.177.81 1 
B.1.221 1 
B.1.428.2 1 
P.2 1 
Total 1,528 
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We detected 2 sublineages of Beta variant, B.1.351 
and B.1.351.2. Sublineage B.1.351.2 accounted for 
3-fold more cases than B.1.351. It was detected con-
currently in Mayotte, Comoros, and Réunion Island. 
This finding, coupled with information from GISAID, 
suggests that lineage B.1.351.2 was imported to Co-
moros and Mayotte from South Africa and could 
have been introduced to Réunion Island from Mayo-
tte (4) (Appendix 1, https://wwwnc.cdc.gov/EID/
article/28/4/21-2243-App1.pdf). This possible in-
troduction from Mayotte is supported by the flow of 
travelers between the 2 departments and the notable 
peak in COVID-19 cases that occurred in Mayotte dur-
ing weeks 1–11, mainly caused by the Beta variant (5). 
However, analysis of the origin of lineages is strongly 
affected by each location’s capacity to sequence and 
report genomes in GISAID, which renders compari-
son between different locations difficult (4).

Our study provides valuable insights into the in-
teractions between SARS-CoV-2 lineages on Réunion 
Island, which represents a closed system with con-
trolled entries, especially when travel restrictions are 
in place. Additional research on genomic epidemiol-
ogy and the effect of air travel can further improve un-
derstanding of why some variants become dominant 

over others, particularly in insular contexts. The future 
of genomic surveillance on Réunion Island will focus 
on mutation screening to increase reactivity, combined 
with real-time sequencing, as a robust approach to 
track the spread of emerging SARS-CoV-2 variants of 
concern and to inform public health actions (6,7).
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Figure. A) Epidemic curve 
of severe acute respiratory 
syndrome coronavirus 2cases 
detected in Réunion, France 
by week of sampling, weeks 
1–22, 2021. Orange bars 
correspond to school holidays. 
B) Distribution of severe 
acute respiratory syndrome 
coronavirus 2 lineages 
identified in Réunion, France. 
Weekly number of sequenced 
genomes appears above the 
relevant bar.
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The severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2) B.1.1.529 (Omicron) variant 

of concern has been suggested to be more transmis-
sible than previous variants of concern (1). We de-
scribe an outbreak caused by the Omicron variant 
that originated from 1 person with an imported case 
and rapidly spread within 3 weeks to the community 
in South Korea.

Details of the surveillance and quarantine system 
in South Korea have been described (2). Public health 
officers interviewed case-patients, and to identify 
links between clusters, we created epidemic curves 

In South Korea, a November 2021 outbreak caused by 
severe acute respiratory syndrome coronavirus 2 Omi-
cron variant originated from 1 person with an imported 
case and spread to households, kindergartens, work-
places, restaurants, and hospitals, resulting in 11 clusters 
within 3 weeks. An epidemiologic curve indicated rapid 
community transmission of the Omicron variant. 
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