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Abstract: Metabolic reprogramming is considered one of the hallmarks in cancer and is characterized
by increased glycolysis and lactate production, even in the presence of oxygen, which leads the
cancer cells to a process called “aerobic glycolysis” or “Warburg effect”. The E6 and E7 oncoproteins
of human papillomavirus 16 (HPV 16) favor the Warburg effect through their interaction with a
molecule that regulates cellular metabolism, such as p53, retinoblastoma protein (pRb), c-Myc, and
hypoxia inducible factor 1α (HIF-1α). Besides, the impact of the E6 and E7 variants of HPV 16 on
metabolic reprogramming through proteins such as HIF-1α may be related to their oncogenicity
by favoring cellular metabolism modifications to satisfy the energy demands necessary for viral
persistence and cancer development. This review will discuss the role of HPV 16 E6 and E7 variants
in metabolic reprogramming and their contribution to developing and preserving the malignant
phenotype of cancers associated with HPV 16 infection.

Keywords: HPV 16 variants; metabolic reprogramming; cancer

1. Introduction

Cancer is a neoplasm that involves the alteration of at least six biological capacities:
resisting cell death, sustaining proliferative signaling, evading growth suppressors, acti-
vating invasion and metastasis, enabling replicative immortality, inducing angiogenesis,
and two emerging hallmarks—evading immune destruction and reprogramming energy
metabolism, related to tumor initiation and progression [1]. In cancer, metabolic repro-
gramming promotes the energy increase necessary for growth, cell division, migration, and
metastasis [2,3]. Otto Warburg was the first to propose that, unlike normal adult tissues,
cancer cells produce energy mainly through aerobic glycolysis rather than oxidative phos-
phorylation, a state known as “aerobic glycolysis” or Warburg effect [2,4]. The Warburg
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effect favors obtaining adenosine 5’-triphosphate (ATP) necessary for cancer proliferation
and metastasis by aerobic glycolysis [5,6].

Approximately 16% of cancer cases worldwide are caused by an infectious agent,
mainly due to infection by oncogenic viruses [7] and about 5% are caused by high-risk
human papillomavirus (HR-HPV) [8]. HR-HPV 16 is the leading cause of more than half
of cervical cancer cases globally [9] and has been found in 50–55% of invasive cervical
cancer cases [10]. It has also been linked to cancers such as head and neck, vulva, vagina,
penis, and anal [11]. Currently, several reports show that human papillomavirus (HPV)
16 variants alter the expression of various genes related to apoptosis, adhesion, metastasis,
angiogenesis, and metabolism [12]. These variants interact with multiple cellular proteins
such as p53, retinoblastoma protein (pRb), p300/CBP, and pyruvate kinase 2 (PKM2),
promoting gain or loss of their functions [13]. These have also been associated with a
more significant oncogenic potential of these variants and the severity of precancerous
lesions [14,15]. Additionally, it has been observed that E6 variants increase the expression
of genes related to metabolic processes [16] and regulate signaling pathways related to
glucose metabolism [17]. This review addresses the oncogenic role of HPV 16 variants in
metabolic reprogramming modulation as a possible mechanism involved in carcinogenesis.

2. Energy Metabolism

Cellular energy metabolism is the bioprocess responsible for converting nutrients such
as carbohydrates, lipids, and proteins into energy and biomass to maintain cell survival
and proliferation [5]. Glucose is the main energy source for mammalian cells [5]. The entry
of glucose to the cell is through solute transporters (SLC): Na+/Glucose cotransporters
(SGLTs) and glucose transporters (GLUTs) [18]. Once glucose is internalized through the
cell membrane by GLUTs or SGLTs, glycolysis begins, which represents one of the main ATP
synthesis pathways. Physiologically, glycolysis occurs in the absence or presence of oxy-
gen (O2) [19]. Enzymes involved in glycolysis are hexokinase (HK), glucose-6-phosphate
isomerase (PGI), phosphofructokinase (PFK), aldolase (ALDO), triose phosphate isomerase
(TPI), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase
(PGK), phosphoglycerate mutase (PGM), enolase (ENO), and pyruvate kinase (PK) [19].
The final product of glycolysis under normal oxygen conditions is pyruvate, which is
converted into acetyl-coenzyme A (acetyl-CoA) by the enzymatic complex pyruvate de-
hydrogenase (PDH), to be oxidized to CO2 and H2O through the cycle of tricarboxylic
acids (TCA) and the electron transport chain (ETC) [20]. However, in hypoxia, pyruvate is
converted to lactate by the enzyme lactate dehydrogenase A (LDHA) [21].

On the other hand, lipids also produce acetyl-CoA from the β-oxidation of fatty acids
obtained from lipolysis or the diet [22]. Furthermore, many of the carbon skeletons of
non-essential amino acids are intermediates of glycolysis and the TCA cycle used as energy
sources [23]. The entry of acetyl-CoA to the TCA cycle is connected to cellular respiration,
which integrates different energy sources derived from the diet, such as glucose, glutamine,
and fatty acids [24]. The TCA cycle produces metabolic intermediates that are used as
precursors for the synthesis of macromolecules, such as citrate in the synthesis of fatty acids
and α-ketoglutarate, succinyl-CoA, and fumarate in the synthesis of amino acids; malate
in gluconeogenesis; and electron acceptors that are used in processes such as the electron
transport chain (ETC) [24]. Biochemical reactions in energy metabolism are regulated
by various mechanisms involving the availability of substrates and allosteric regulation,
which allows the cell to control energy production according to its energy state through the
NADH/NAD+ ratio, ATP, and nutrients availability [24,25]. However, since 1930 it has
been described that the normal conditions of energy metabolism are affected in cancer by
metabolic reprogramming [26].

3. Metabolic Reprogramming in Cancer

Metabolic reprogramming is one of the critical hallmarks in cancer progression [27].
It is characterized by an increase in glycolysis to satisfy energy demand, anabolic, biosyn-
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thetic, and growth requirements, which promote the hyper-proliferation of cancer cells [28].
The absence of nutrients and O2 and secretion of secondary metabolites and carbon dioxide
promote the formation of new blood vessels associated with the tumor, mainly activated
by growth factors and tumor progression [29]. The best-known angiogenic regulators in
cancer are vascular endothelial growth factor A (VEGF-A), von Willebrand factor (VWF),
and thrombospondin-1 (TSP-1) [27,30]. In cancer models, it has been observed that angio-
genesis is active from the early stages of tumor development to terminal stages. Besides,
the regulation of angiogenesis and the supply of nutrients to satisfy energy demands and
the excretion of metabolites are a limiting steps in developing tumors [29].

Since 1930 it was observed that, unlike normal cells, cancer cells show increased
glycolysis even in the presence of O2; this process has been called “aerobic glycolysis”
or “Warburg effect” [27]. Currently, it is known that the decrease in the incorporation of
pyruvate in the mitochondria is the product of the high supply of glucose, glycolysis and of
processes such as glutaminolysis, which is necessary for the synthesis of amino acids [3,28].
Furthermore, it has been observed that this metabolic reprogramming increases the ex-
pression of glucose transporters, especially GLUT1 and GLUT3, substantially increasing
the importation of glucose into the cytoplasm of the cell [31–33]. Increased glycolysis in
cancer cells is associated with the activation of oncogenes such as RAS and MYC or the
silencing of tumor suppressor genes such as TP53 [3,32,34,35]. Similarly, an increase in
the expression of glycolytic enzymes related to the Warburg effect such as HK2, PFK2,
ALDO, GAPDH, PGK1, ENO1, PKM2, and LDHA has been observed in different cancers.
In liver cancer cell lines such as Hep3B, HepG2, JHH5, JHH7, and Huh7, the expression
of HK2 has been observed, while in other cancers such as lung, breast, colon, and also
in HLF and HH6, liver cancer cell lines are expressed as both HK2 and HK1 [36]. The
enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB or PFK-2) has been
reported to be overexpressed in most tumor cells under hypoxic conditions [37], where
it is responsible for maintaining cellular levels of fructose-2,6-bisphosphate (F-2,6-BP) by
synthesizing or degrading fructose-2,6-bisphosphate. The kinase domain synthesizes F-2,6-
BP from F-6-P and ATP. Simultaneously, the phosphatase site degrades F-2,6-BP to F-6-P
and inorganic phosphate (Pi), such that the F-2,6-BP metabolite is regarded as the most
potent allosteric activator of PFK-1 and an inhibitor of fructose-1,2-bisphosphatase [38].
ALDOA overexpression has also been found to be related to the Warburg effect in oral
squamous cell carcinoma, osteosarcoma, hepatocellular cell carcinoma, and lung cancer.
The overexpression of ALDOB plays an important role during the epithelial–mesenchymal
transition. Likewise, the overexpression of ALDOC has been correlated with neuronal
damage, such as schizophrenia, Alzheimer’s disease, and traumatic brain injury [39]. Fur-
thermore, ALDOA has been proposed as a potential biomarker and molecular target for
the early detection of hepatocellular carcinoma [40]. GAPDH also plays a key role in
maintaining the Warburg effect in various cancers, such as lung, prostate, and pancreatic
adenocarcinoma [41–43]. Increased GAPDH expression is also characteristic of cervical
carcinoma tissue cells. However, it is not yet related to conventional clinicopathological
parameters, such as clinical stage, histological type, or differentiation degree [44]. Until
now, GAPDH was considered a target in the metabolism of glucose in liver cancer via the
coactivator-associated arginine methyltransferase 1 (CARM1), which methylates GAPDH
at arginine 234 (R234), inhibiting its catalytic activity and decreasing the proliferation
of tumor cells in vitro and in vivo [45]. In aerobic glycolysis, another of the glycolytic
enzymes that are altered in cancer cells to promote and maintain the Warburg effect is
the PGK1 enzyme, which has been observed to be overexpressed in breast, colon, and
gastric cancer [46–48]. Furthermore, different variants of PGK1 that differ in structure and
function and are related to differentiation in catalytic efficiency or thermodynamic stability
and changes in their tertiary structure have been identified in tumors. It is currently known
that PGK1 is regulated by the transcription factor HIF-1, which promotes its overexpression
and increases glycolysis [49,50]. Enolase, specifically isoform 1 (ENO1), has been reported
as a critical regulator in tumor formation since the silencing of ENO1 has implications in



Pathogens 2021, 10, 347 4 of 22

the adaptation of autophagy and catabolic pathways, which affects the growth of tumors,
inducing senescence [51]. PKM2 has also been reported to be overexpressed in cancer cells.
However, it has been observed that it is not the only isoform of PKM overexpressed in
cancer [52]. Similarly, the regulation of PKM2 in cancer is important for controlling cell
metabolism and tumor growth [53]. PKM2 expression has been reported to increase due to
alternative splicing, controlled by members of the heterogeneous nuclear ribonucleoprotein
(hnRNP) family: hnRNPA1, hnRNPA2, and polypyrimidine tract binding protein (PTB;
also known as hnRNPI). The transcription factor and oncoprotein c-Myc has also been
observed to regulate increased expression of the three hnRNPs, thus contributing to PKM2
expression in some cancers [52]. PKM2 has been proposed to fluctuate between an active
tetramer and a less active dimer. The PKM2 tetramer has a high affinity for phospho-
enolpyruvate (PEP) and favors pyruvate and ATP production. In cancer cells, active PKM2
is present if glucose is used for energy production or the synthesis of anabolic precursors
such as amino acids, nucleic acids, and phospholipids [52]. LDHA, an isoform of LDH,
is predominantly expressed in cancer cells as a transcriptional regulation product and is
activated by post-translational modifications such as phosphorylation and acetylation to
increase lactate production during tumor progression and metastasis in cancer [54]. In
metabolic reprogramming, tumor cells can metabolize lactate as an energy source that can
be transported to neighboring cancer cells, adjacent stroma, and vascular endothelial cells.
Lactate also plays a key role in promoting tumor inflammation and angiogenesis [55].

It is currently known that O2 concentrations are significantly reduced in many hu-
man cancers compared to normal tissue [56]. Median pO2 in breast cancer is ~10 mm Hg
compared to ~65 mm Hg in normal breast tissue [56]; pO2 in tumor tissue is 0–20 mm Hg
compared to normal tissue where it is 40 mm Hg [57]. The decrease in pO2 in cancer is
associated with an increased risk of tumor invasion and metastasis [58]. The low avail-
ability of O2 in solid tumors is observed at a distance of approximately 100 µm from the
blood vessels [59] due to hypoxic stress, favoring the activation of HIF1. Active HIF1
regulates the transcription of many genes such as TF (transferrin), HK2 (hexokinase 2),
JMD1A (Jumonji domain-containing), CDH (cadherin), GLUT1, ALDO-C, LDH-A, PKM2,
anhydrase carbonic IX (CAIX), ENO3,2, and PFKFB4 [60–62] that code for cancer-related
proteins such as angiogenesis [63], genetic instability [64], invasion and metastasis [65,66],
proliferation, glucose metabolism, and pH regulation [67–69]. HIF1 is composed of two
subunits, the alpha and beta subunits (HIF-1α and HIF-1β) [70]; both subunits form the
active dimer, necessary for the transcription of their target genes. The active HIF1 complex
binds to DNA at specific sites called hypoxia response elements (HRE) in an RCGTG
sequence. HIF-1β is constitutively expressed, while HIF-1α has a half-life of 5–8 min,
which is increased under hypoxic conditions [71–73]. Under normal O2 conditions, HIF-
1α is continuously expressed, but it is hydroxylated at two proline residues (P402 and
P564) and one of asparagine (N803) by two dioxygenases, prolyl-4-hydroxylases (PHD)
and asparaginyl hydroxylase or factor inhibitor HIF-1α (FIH-1), respectively [74]. These
dioxygenases require O2, ferrous ion (Fe2+), and α-ketoglutarate (α-KG) for their activity
and generate carbon dioxide and succinate as products [69]. Hydroxylated HIF-1α is
ubiquitinated by the complex formed by von Hippel Lindau (VHL), Elongin C, Elongin B,
Cullin 2 (CUL2), ring box protein 1 (RBX1), a ubiquitin E2 (E2) conjugating enzyme, and
the spermidine/spermine protein N (1) -acetyltransferase 2 (SSAT2), to be subsequently
degraded via the 26S proteasome [74]. Hydroxylation of the asparagine residue located in
C-TAD inhibits the binding of HIF-1α to the transcriptional regulators CBP/p300; therefore,
the transcriptional activity of HIF-1α is inhibited [75,76]. Under hypoxic conditions, the
activity of PHDs and FIH1 on HIF-1α is affected, and metabolic reprogramming in a cancer
cell is preferred [75]. The activity of PHDs and FIH1 also decreases in the absence of Fe2+

and α-KG. On the other hand, the loss of the function of succinate dehydrogenase (SDH)
and fumarate hydratase (FH) favor the accumulation of succinate and fumarate, which
bind to PHDs by inhibiting their activity; the binding of NAD(P)H: quinone oxidoreductase
1 (NQO1) to the ODDD of HIF-1α also inhibits the hydroxylation of HIF-1α. Likewise, the
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binding of the HSP90 chaperone in the domain Per-Arnt-SimA (PAS-A) of HIF-1α protects
it from a degradation pathway independent of PHD/VHL, mediated by the activated
receptor kinase C (RACK1) [75,77]. Stabilized HIF-1α is associated with polymerized
microtubules and translocates to the nucleus when the motor protein dynein recognizes its
nuclear localization signal (NLS). HIF-1α forms the active HIF1 complex in the nucleus
to regulate the transcription of its target genes [61,62,77] by binding to DNA in HREs [72].
Active HIF1 promotes the expression of glucose transporters such as GLUT1 that increases
the amount of glucose in the cytoplasm [32,33], oncogenes such as c-Myc, and glycolytic
enzymes related to the Warburg effect such as HK2, PFKFB or PFK-2, ALDOA- B, GAPDH,
PGK1, ENO1, PKM2, and LDHA-B. These HIF-1a target enzymes have also been observed
in different types of cancer associated with high-risk human papillomavirus (HR-HPV),
including HPV 16 [36,52,53,78–81].

4. Human Papillomavirus 16

The HR-HPV that causes more than half of cervical cancer cases in the world is
HPV 16 [9]; it has been found in 50–55% of invasive cervical cancer cases [10], and it is
suggested it has a biological advantage for viral transmission and persistence, as well as
cell transformation [82]. Infection by HPV 16 requires micro-lesions in the host for the
virions to access the cells of the basal layer. In these cells, considered as the infection
reservoir, the viral genome remains as an episome with a low number of viral copies. The
cells of the intermediate layers of the epithelium where HPV E6 and E7 are expressed
promote cell transformation. The E6 oncoprotein interacts with multiple cellular proteins,
affecting their function or promoting their degradation. For example, the interaction with
ubiquitin ligase E6AP and subsequent degradation of p53 inhibits apoptosis, keratinocyte
differentiation, and the response to interferons. Likewise, it has been observed that E6
activates factor c-Myc, telomerase hTERT, and the signaling pathways AKT, Wnt, Notch,
and mTORC1 [83–85].

On the other hand, E7 binds to the proteins pRB, p107, and p130, promoting their
degradation, which favors the progression of the cell cycle, stability and amplification
of the genome, immortalization, and cellular transformation. Likewise, it suppresses the
function of STAT1, activates the AKT signaling pathway, and binds to other proteins such
as E2F1, Cullin2, and HDAC [83–85]. The viral cycle is completed when the viral genome is
encapsulated and immature virions are released into the upper layer of the epithelium [86].
Furthermore, it is related to other cancers, such as head and neck, vulvar, vaginal, penile,
and anal cancer [11]. It has been shown that the E6 and E7 oncoproteins are overexpressed
in cells infected with HPV favoring tumorigenesis. Variants of the HPV 16 E6 and E7
oncoprotein have also been reported to regulate the expression of multiple genes involved
in various cellular processes such as proliferation, differentiation, apoptosis, adhesion,
angiogenesis, transcription, and protein translation [12,87,88].

Variants of HPV 16

The classification of HPV 16 variants has been made according to the distribution by
their geographic origin [89]. In the analysis of their genome, the HPV 16 variants have
been grouped into four main phylogenetic lineages: A (European-Asian, EAS), B (African
1, AF1), C (African 2, AF2), and D (North American/Asian American, NA/AA) [90].
The four lineages, in turn, have been subdivided into eleven sublineages: (1) A1, A2, A3
(European, E), A4 (Asian, As); (2) B1 (Afr1a), B2 (Afr1b); (3) C1 (Afr2a), C2 (Afr2b); and
(4) D1 (North American, NA), D2 (Asian American 1, AA1), and D3 (Asian American 2,
AA2) [90,91]. The sublineages have also been stratified into classes and subclasses [92].
The study of the variants of the specific genes E6 and E7 of HPV 16 has shown that the
most frequent E6 variant is E-G350. However, AA-a showed a higher risk of developing
cervical cancer, followed by E- A176/G350, AA-c, E-G350, and E-C188/G350 compared
to the E-prototype [93]. On the other hand, the E7 variants have been studied to a lesser
extent than the E6 variants. Some studies have reported, based on the conserved regions
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(CR) 1, CR2, and CR3 of E7, 4 variants in the CR1 domain [94,95], 5 in CR2 [94,96–99], and
14 in CR3 [94,95,100–103]. The most frequent variant, up to 70% in the Asian population, is
the E7-G647 variant located in the CR2 domain [88,94].

5. Mechanisms Involved in HPV 16 Variants-Mediated Metabolic Reprogramming

Variants of HPV 16 have been associated with the oncogenic potential of the virus
and the severity of cervical lesions [14,15]. It has been reported that the E6 and E7 onco-
protein of HR-HPV can promote metabolic reprogramming through increased activity of
glycolytic enzymes and inhibition of the Krebs cycle and the respiratory chain to satisfy
the energy requirements of cancer cells and achieve efficient viral replication [81,104].
Martínez-Ramírez and collaborators describe the enzymes and metabolic pathways altered
by HR-HPV and report that HPV 16 increases glycolysis in oral squamous cell cancer. In
lung cancer, GLUT1 transporter levels increase; in cervical cancer, glycolysis is due to
increased glycolytic enzymes HKII, PFK, ENOA, PKM2, and LDHA. In contrast, oxidative
phosphorylation (OXPHOS) is affected by HPV 16 in cervical cancer by modulating the
mitochondrial structure and the release and increase of reactive oxygen species (ROS). This
finding is explained by the inactivation of mitochondrial Complex III and ATP synthase
and a decrease in glutathione (GSH) and superoxide dismutase 1 and 2 (SOD1 and 2)
levels [81]. Additionally, it has been observed that E6 variants increase the expression of
various genes, of which more than 60% correspond to genes associated with metabolic
processes. [16]. The possibility exists that variants of the E6 and E7 oncoprotein of HPV 16
may favor metabolic reprogramming. Next, we will describe the role of HPV 16 variants in
regulating the molecular mechanisms of cell metabolism in cancer.

5.1. p53 Degradation

Metabolic reprogramming in cancer is carried out by different molecular mechanisms
related to p53, MYC, or HIF-1α [105]. In recent years, variants of the E6 oncoprotein of
HPV 16 have shown differences in their ability to bind p53 and induce its degradation [106],
through the stability of the E6-E6AP-p53 complex [107]. HPV 16 variants AA, E, and Afr2a
have been shown to reduce p53 levels in human keratinocytes (Figure 1), exhibiting a
more significant effect than the E-prototype and E-G131 (R10G) variants [108–111]. The
effect of the E-prototype variant on p53 degradation has been related to the polymorphism
in codon 72 of p53, which results in an arginine genotype (CGC), conferring p53 greater
susceptibility to being degraded by E6 (Figure 1) [112]. Higher expression of European
E6 sublineage variants has also been reported to be related to greater p53 degradation
compared to As sublineage variants [109]. Additionally, in a group of patients with cervical
cancer, the presence of the polymorphism in codon 72 (homozygous arg/arg genotype of
p53) with the E-prototype variant was related to the clinical status and the susceptibility
for p53 to be degraded [113].

P53 is currently known to regulate glycolysis and oxidative phosphorylation (OX-
PHOS) [114]. It has been observed that it inhibits the entry of glucose into the cell by
directly repressing the transcription of the glucose transporters GLUT1 and GLUT4 [115],
in addition to inhibiting the translocation of GLUT1 by directly inducing the transcription
of the Ras-related glycolysis inhibitor and calcium channel regulator (RRAD) [116]. It can
also inhibit glycolysis by repressing the insulin receptor (INSR) expression, necessary in
the translocation of GLUT4 to intracellular vesicles that are subsequently directed to the
plasma membrane and, in turn, triggers a rapid increase in glucose absorption [117]. It neg-
atively regulates HK2 and activates the expression of TP53 induced glycolysis regulatory
phosphatase (TIGAR), reducing glycolytic activity and attenuating the activity of PFK1,
leaving glucose-6-phosphate as a necessary substrate in the nucleotide synthesis in the
pentose phosphate pathway [118,119]. Furthermore, it can inhibit glycolysis by reducing
the expression of the glycolytic enzyme phosphoglycerate mutase (PGM), responsible for
converting 3-phosphoglycerate (3PG) to 2-phosphoglycerate (2PG) during glycolysis [120]
or by decreasing PKM2 (via the ubiquitin ligase Parkin, responsible for ubiquitinating
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PKM2) [114]. P53 has also been shown to inhibit lactate transport by repressing monocar-
boxylate transporter 1 (MCT1), causing lactate to accumulate and limit the glycolytic rate
in cancer cells [121]. P53 positively regulates the entry of pyruvate into the mitochondria
and the progression of TCA by increasing the amount of pyruvate carboxylase [122]. It
has also been reported that p53 represses the function of transcription factors that induce
the transcription of glycolysis regulatory enzymes, such as factor HIF1 [114]. It has been
observed that p53 binds to the HIF-1α/p300 complex to decrease its transcriptional activity;
likewise, it also negatively regulates c-Myc [123,124]. In summary, the E6 variants of HPV
16 of the AA, E, and Afr2a sublineages can alter glucose metabolism by inducing p53 degra-
dation, leading to increased expression of enzymes, transporters, and receptors involved
in glycolysis such as GLUT1, GLUT4, INSR, HK2, TIGAR, PFK1, PKM2, MCT1, pyruvate
carboxylase (PC) (Figure 1), and the positive regulation of the transcription factors HIF-1α
and c-Myc related to the transcription of genes involved in the glycolysis. Thus, the E6
variants of HPV 16 that induce a more significant degradation of p53 favor the increase of
glycolysis in HPV-associated cancers.

Figure 1. The degradation of p53 induced by E6 variants of human papillomavirus (HPV) 16 favors metabolic reprogram-
ming. Variants of the European (E), African 2a (Afr2a), and Asian American (AA) sublineages decrease p53 levels through
interaction with E6AP, increasing p53 degradation (red arrows), and avoiding transcriptional repression. p53 inhibits
glycolysis by repressing transcription of the monocarboxylate transporter 1 (MCT1), the glucose transporters GLUT1 and
GLUT4, the enzymes hexokinase 2 (HK2), phosphoglycerate mutase (PGM), pyruvate kinase 2 (PKM2), and TP53 induced
glycolysis regulatory phosphatase (TIGAR). TIGAR decreases the activity of the enzyme phosphofructokinase 1 (PFK1) to
target fructose-6-phosphate to the pentose phosphate (PPP) pathway. Insulin receptor (INSR) favors the translocation of
GLUT4 to the membrane. Therefore, the absence of p53 due to its degradation by the effect of the variants of the E, Afr2a,
and AA sublineages promotes glycolysis by activating the expression of the transporters GLUT1, GLUT4, MCT1, and the
enzymes of the glycolytic pathway HK2, PGM, PKM2. Additionally, it targets fructose-6-phosphate to the PPP pathway via
TIGAR for nucleotide synthesis.
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5.2. pRb Degradation

It is currently known that in cancer cell lines, the HPV 16 E7 oncoprotein is located
preferentially in the nucleus and, to a lesser extent, in the cytoplasm, which is related to
the decrease in retinoblastoma protein (pRb) levels [125]. Furthermore, dephosphorylated
pRb has been reported to bind to the transcription factor E2F, inhibiting its transcriptional
activity [126]. Factor E2F is activated when pRb is phosphorylated as it allows its release
from the pRb/E2F complex, thus binding to promoters of genes essential for cell cycle pro-
gression cdc2 and cyclin E [126,127]. Recently it has been reported that the variant A4 that
has the N29S mutation in the E7 oncoprotein promotes more significant degradation of pRb
compared to the variant designated A5 that possesses the L28F mutation (Figure 2) [128].
It has been reported that the mutation in variant A4 generates a new phosphate acceptor
site for casein kinase II (CKII) that confers a greater phosphate-dependent interaction for
pRb and that leads to its degradation in a greater proportion, compared to other E7 variants
(Figure 2) [88,129]. The lack of pRb in tumors reduces oxidative metabolism, even when
ATP levels do not decrease, increases the use of glutamine as a carbon source for obtaining
energy, and increases the expression of genes involved in the synthesis of nucleotides such
as dihydrofolate reductase (DHFR), thymidylate synthase (TS), ribonucleotide reductase
(RNR), and thymidine kinase (TK), which are induced by E2F [130]. Considering that the
A4 and A5 variants of HPV 16 E7 cause pRb degradation, it is suggested that these variants
may be affecting metabolism as an alternative route that will allow them to obtain the
necessary energy to maintain the replicative state of tumor cells.

Figure 2. The degradation of retinoblastoma protein (pRb) induced by HPV 16 E7 variants favors metabolic reprogramming.
The hyperphosphorylated pRb repressor allows the release of E2F. The E7-A4 variant has a new phosphate acceptor site
for casein kinase II (CKII) that promotes more significant degradation of pRb, compared to A5 and other E7 variants that
degrade pRb to a lesser extent. Therefore, there is greater activation of E2F by the A4 variant than different E7 variants in
which E2F is less active.

5.3. Activation of c-Myc and Expression of Its Target Genes

The transcription factor c-Myc is considered one of the most deregulated oncogenes
in cancer [131]. It is known to be linked to alterations in cancer metabolism through the
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regulation of genes involved in the biogenesis of ribosomes and mitochondria, as well
as genes involved in the metabolism of glucose, nucleotides, and glutamine [132]. The
metabolic reprogramming induced by c-Myc is related to the increase of GLUT1, HK2,
LDHA, PKM2, and ENO1 proteins of glycolytic metabolism and the increase of the glu-
tamine transporters ASCT2 and glutaminase (GLS) enzyme (Figure 3) [133]. Under hypoxic
conditions, c-Myc collaborates with active HIF1 by regulating pyruvate dehydrogenase
kinase 1 (PDK1) levels, suppressing mitochondrial respiration, and promoting glucose
conversion to lactate [132]. Variants exhibiting the R17I and Q21D mutations in the HPV
16 E6 oncoprotein have been shown to stabilize the E6-p53-E6AP complex [107]. Since the
E6-p53-E6AP complex binds to the c-Myc protein [134], it is suggested that the variants of
the E6 oncoprotein could be increasing the activity of c-Myc and the expression of its target
genes involved in metabolism. On the other hand, the E-A126 variant that possesses the
R8Q mutation in the E6 oncoprotein activates the Wnt/β-catenin signaling pathway [135]
promoting that β-catenin and PKM2 are translocated to the nucleus, inducing the expres-
sion of c-Myc (Figure 3) [136]. Therefore, the variants present the R17I, Q21D, and R8Q
mutations in the E6 oncoprotein of HPV 16 could be favoring metabolic reprogramming,
increased nucleotide synthesis, and glutaminolysis through c-Myc, HIF-1α, and pyruvate
dehydrogenase kinase 1PDK1.

5.4. Stability of HIF-1α and Expression of Active HIF-1 Target Genes

HPV 16 E6 has been reported to promote the hypoxia-induced Warburg effect by
binding HIF-1α and VHL by blocking the interaction between HIF-1α and VHL [137].
Lack of interaction between HIF-1α and VHL attenuates VHL-mediated ubiquitination of
HIF-1α, preventing degradation of HIF-1α, suggesting that HPV 16 E6 plays an essential
role in the regulation of the Warburg effect [138]. A decrease in the enzyme isocitrate
dehydrogenase 1 (IDH1) and IDH2 has been observed in response to the AA/E7-prototype
variant compared to E-prototype/E7-prototype [137], and a decrease in the expression
levels of the VHL ubiquitin ligase by the Asian variant that has the D25E mutation in
the E6 oncoprotein (Figure 3) [16]. IDH is necessary for the production of α-KG, used for
the hydroxylation of HIF-1α under normoxia conditions, while VHL is a fundamental
part of the degradation of HIF-1α via the proteasome. Therefore, a decrease in IDH and
VHL increases the stability of HIF-1α [139]. Variants of the AA sublineage of the HPV 16
E6 oncoprotein have been shown to increase HIF-1α levels in the keratinocyte nucleus
under hypoxic conditions (Figure 3) [17]. According to the levels of HIF-1α induced by
AA sublineage variants, an increase in transcriptional activity has been observed under
hypoxic conditions [17]. GLUT1 levels in cancer significantly increase in cells with AA
sublineage variants (Figure 3) [17,140,141]. Additionally, HIF-1α increases the levels of
PKM2 and the transcriptional activator STAT3, which increases aerobic glycolysis and
decreases mitochondrial activity (Figure 3) [142]. High levels and nuclear translocation of
HIF-1α are related to the ability of AA sublineage variants to enhance mitogen-activated
protein kinases (MAPK)/extracellular signal-regulated kinase (ERK)1/2 phosphorylation
(Figure 3) [17]. These data together indicate that variants of the AA and As sublineages of
the HPV 16 E6 oncoprotein positively regulate the Warburg effect by increasing levels of
metabolic proteins and transcriptional factors STAT3 and HIF-1α.

5.5. Activation of Signaling Pathways That Regulate Glycolysis

Aerobic glycolysis in cancer has been reported to occur downstream of cellular sig-
naling pathways [143]. Among the signaling pathways that regulate aerobic glycolysis in
cancer are members of the family of mitogen-activated protein kinases (MAPK), which
in turn is divided into three subfamilies of MAPK: extracellular signal-regulated kinase
(ERK), the N-terminal c-Jun kinase (JNK), and the p38 kinase. Members of the three MAPK
subfamilies have been shown to regulate the redirection in energy production from glycol-
ysis in malignant and highly proliferative cells by affecting the activity of key metabolic
regulators, necessary for energy production in the development of cancer [143]. The MAPK
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signaling pathway is activated by the E-G350 (L83V) variant of the E6 oncoprotein of
HPV 16. It is related to larger and more aggressive tumors compared to the E-prototype
variant [144]. Variants of the AA sublineage have been reported to exhibit more significant
expression of the MAP2K1 gene [145] that codes for MAPK1, also known as MEK1; a
component of the RAS mitogen-activated protein kinase (MAPK) pathway, MAPK1 is a
threonine/tyrosine kinase that activates ERK1 and promotes autophagy [146]. Autophagy
in tumor cells is necessary to prevent energy crisis and maintain nucleotide reserves during
starvation [147] by recycling macromolecules, thus providing bioenergetic and biosynthetic
substrates TCA cycle, which maintains energy homeostasis and nucleotide levels [148]. Au-
tophagy is increased to promote survival, growth, and malignant neoplasia autonomously
in tumor cells [148]. Variants of the AA sublineage have a greater capacity to activate
the signaling pathway: MAPK-ERK, MAPK-p38, and PI3K/AKT (Figure 3) [149]. It has
been observed that the E-G350 variant and the variants of the AA sublineage of the E6
oncoprotein of HPV 16 affect the regulation of metabolic reprogramming in cancer, the E-
G350 variant through MAPK, and the variants of the sublineage AA by obtaining nutrients
through MEK1/ERK1-activated autophagy and by activating MAPK-ERK, MAPK-p38, and
PI3K/AKT signaling. The MAPK-p38 signaling pathway positively regulates GLUT1 and
GLUT4 expression and glucose uptake [150,151]. The low activation of the AKT pathway
is related to PKM2, ENO1, ENO2, and HK2 expression through the HIF-1/AKT signaling
pathway [152]. On the other hand, it has been observed that the ERK and PI3K signaling
pathways are necessary for the expression of LDH and pyruvate dehydrogenase kinase
(PDK). However, the activation of PDK is also dependent on Src/JNK [153]. These data
suggest that variants of the AA sublineage and the E-G350 variant of the E6 oncoprotein
of HPV 16, both with the T350G mutation, play a crucial role in the reprogramming of
glycolytic metabolism at the level of three critical components of pyruvate metabolism,
LDH, pyruvate dehydrogenase (PDH), and PDK, in which the entry of pyruvate to the
TCA cycle is inhibited by being metabolized to lactate.

The Wnt signaling pathway has been related to the formation of malignant tumors
such as breast, colon [154], and cervical cancer, where the Wnt pathway has been suggested
as one of the main dysregulation pathways [155]. The HPV 16 variants that present the
E-A126 (R8Q), E-G131 (R10G), E-G350 (L83V), and E-T245 (R48W) mutations in the E6
oncoprotein. These can hyperactivate the Wnt signaling pathway, being activated more by
the variant presenting the R8Q mutation (Figure 3), followed by the variants showing the
L83V, R10G, and R48W mutations [135]. The E-A126 (R8Q) variant was found to exhibit
a greater effect on the activation of β-catenin transcription (Figure 3) [135]. The Wnt/β-
catenin pathway regulates the activation of the tyrosine kinase receptors that leads to the
activation of the PI3K/AKT pathway, which leads to an increase in glucose metabolism,
which in turn leads to the activation of the Warburg effect through HIF-1α, which in turn
increases the expression of GLUT, HK, PKM2, LDH-A, and PDK, resulting in increased
cytosolic pyruvate, of which most is converted to lactate and released to the extracellular
environment, while a small part is converted to acetyl-CoA, which enters the TCA cycle
and is converted to citrate to promote lipid and protein synthesis [136]. Furthermore, the
Wnt/β-catenin pathway has been shown to increase the Warburg effect by suppressing
mitochondrial respiration by reducing cytochrome oxidase transcription, an essential
enzyme for OXPHOS [154]. On the other hand, AA sublineage variants increase mTOR
activation, which, like the Wnt/β-catenin pathway, leads to energy metabolism activation
through HIF-1α [13].
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Figure 3. Metabolic reprogramming is mediated by HPV 16 E6 variants through c-Myc, hypoxia-inducible factor (HIF)-1α,
WNT, and miR-21. The E6 variant E-A126 with the R8Q mutation promotes the glycolytic pathway by activating the
Wnt/β-catenin pathway. Variants of the AA sublineage activate the mitogen-activated protein kinases (MAPK) pathway
that increases HIF-1α levels. The protein β-catenin translocates to the nucleus accompanied by PKM2 and induces the
expression of c-Myc. These variants also decrease the levels of the isocitrate dehydrogenase 1 (IDH2) enzyme necessary
to obtain α-ketoglutarate, one of the substrates of the prolyl-4-hydroxylases (PHDs) enzymes. On the other hand, the As
sublineage variants decrease the von Hippel Lindau (VHL) ubiquitin ligase levels, both enzymes are necessary for HIF-1α
to be degraded via the 26S proteasome. Therefore, the variants of the AA and As sublineages increase the levels of HIF-1α,
avoiding its degradation via the proteasome. Consequently, HIF-1α stabilizes and translocates to the nucleus. Both HIF-1α
and c-Myc increase the levels of glycolysis enzymes such as hexokinase 2 (HK2), phosphofructokinase 1 (PFK1), pyruvate
kinase M2 (PKM2), lactate dehydrogenase A (LDH-A), as well, lactate levels increase. The STAT3 activator increases
glycolysis, decreases mitochondrial activity and allows the transcription of miR-21, which is also positively regulated by
variants of the As sublineage. MiR-21 inhibits the PPARGC1B messenger. The levels of the CD36 transcriptional repressor
PPARGC1B decrease and allow the expression and translocation of CD36. In this way, miR-21 regulates the entry and
synthesis of fatty acids in the cell by the effect of the variants of the AA and As sublineages.

5.6. Overexpression of miR-21

MicroRNAs (miRNAs) are small RNAs of 20 to 24 nucleotides that control gene expres-
sion by binding to the 3’UTR, 5’UTR, or non-coding regions of messenger RNA (mRNA),
which leads to degradation of mRNA or inhibition of protein synthesis [156,157]. Studies in
cervical cancer cells transfected with variants of the Asian sublineage of the E6 oncoprotein
of HPV 16 observed a 2- to 3-fold higher expression of miR-21 (Figure 3) compared to the
E-prototype variant [158]. The increased expression levels of miR-21 have been associated
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with STAT3 expression, the transcriptional activator of miR-21 (Figure 3) [158]. miR-21
has also been reported to promote carcinogenesis by regulating fatty acid metabolism
by promoting increased cellular lipid content, including cellular phospholipid content,
neutral lipid content, and cellular triglyceride content [159], by increasing the expression
of the lipid and fatty acid receptor CD36, since it targets PPARGC1B, a target of miR-21,
a transcriptional repressor of CD36 [159,160]. Furthermore, miR-21 is involved in the
increase of crucial lipid metabolic enzymes such as fatty acid synthase (FASN), acetyl-CoA
carboxylase 1 (ACC1), and fatty acid-binding protein 5 (FABP5) [159]. However, the mecha-
nism by which it favors the increase of these enzymes is still unknown. These data suggest
that carcinogenesis promoted by the variants of the As sublineage is increased since they
promote the expression of miR-21 favoring the entry and synthesis of fatty acids, necessary
for the production of energy and synthesis of cell membranes, as well as the expression of
key enzymes of lipid metabolism (Figure 3).

5.7. Regulation of Metabolic Enzymes

During the cell cycle, cells experience a series of events that require a significant
supply of energy. It has been observed that during the G1 phase and the synthesis phase,
or S phase, energy requirements are increased due to the synthesis of proteins, nucleic
acids, and lipids. Therefore, glycolysis and pyruvate production is increased [161]. It has
been reported that cultures of primary human foreskin keratinocytes (PHFK) transfected
with the E7-prototype variant and those of the AA sublineage of the E6 oncoprotein of
HPV 16 exhibit a more significant proportion of cells in the G1 phase, higher levels of
enzymes of the metabolism of glucose, and low levels of TCA enzymes [137]. A decrease
in the enzyme isocitrate dehydrogenase 1 and 2 (IDH1, IDH2) has also been observed in
PHFK transfected with the bicistron containing the variant of the AA and E7-prototype
sublineage (AA/E7-prototype) compared to the bicistron with the variants E-prototype/E7-
prototype [137]. Likewise, higher GAPDH and PKM2 were observed in PHFK with
AA/E7-prototype variants compared to E-prototype/E7-prototype (Figure 4), and low
levels of phosphoglucomutase enzymes-2 and aldo-ketoreductase with the bicistron of
the AA/E7-prototype variants compared to E-prototype/E7-prototype [137]. These data
suggest that the oncogenicity of the variants of the AA sublineage of the E6 oncoprotein
of HPV 16 is related to the Warburg effect by increasing glucose metabolism enzymes
(Figure 4) [6] and decreasing enzymes of the tricarboxylic acid cycle as the IDH necessary
for the production of α-ketoglutarate used in the hydroxylation of HIF-1α for its subsequent
degradation via proteasome under normoxic conditions. In this sense, the decrease in
IDH favors an increase in the stability of HIF-1α, allowing the expression of its target
genes involved in glycolytic metabolism [139], a hallmark of cancer [6,27]. It was also
reported that in PHFK with variants of the AA sublineage of the E6 oncoprotein of HPV
16, glucose entry into the cell increases (Figure 4). It was observed that PHFKs with
variants of the AA sublineage are capable of internalizing up to 1.65 times more glucose
compared to PHFK with the E-prototype variant, which is accompanied by an increase in
glucose consumption and a greater secretion of lactate compared to PHFK containing the
E-prototype (Figure 4) [17]. Lactate excretion into the extracellular space is considered part
of the tumor microenvironment. It is related to extracellular proteolysis, which results in
an acid-resistant phenotype necessary for cancer cell migration and metastasis [162].

On the other hand, AA sublineage variants increase the expression of CAIX compared
to the E-prototype; this effect is greater in the presence of E7-prototype (Figure 4) [163].
The CAIX gene is highly expressed in response to hypoxia and is considered a general
marker of tumor hypoxia, considered part of the tumor microenvironment in numerous
solid tumors [164,165]. This suggests that the expression of CAIX is directly related to the
oncogenic potential of the AA sublineage variants of the E6 oncoprotein, where there is a
more significant increase compared to the E-prototype [163]. One of the ways that could
also be participating in the positive regulation of glycolysis through the AA sublineage
variant is by binding to the gamma-2 subunit of the protein kinase activated by 5’-AMP
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(PRKAG2) [13], a regulator key to vigorous metabolism that activates energy production
pathways and inhibits energy-consuming processes [13].

Figure 4. E6 variants of HPV 16 regulate the activity of enzymes related to metabolic reprogramming. Variants of the AA
sublineage increase glucose entry into the cell, increase glyceraldehyde-3-phosphate dehydrogenase (GAPDH), PKM2,
and increase lactate release. Variants of the As sublineage increase enolase 1 (ENO1) levels. Mitochondrial metabolism is
decreased by variants of the AA and As sublineages. Variants of the AA sublineage decrease IDH2 in the tricarboxylic acid
cycle (TCA), whereas variants of the As sublineage decrease AIFM2 and cytochrome c in the electron transport chain (ETC).
Variants of the AA sublineage increase the carbonic IX (CAIX) enzyme levels, essential for balancing the pH of the tumor
microenvironment induced by aerobic glycolysis. Arrows in black indicate activation and positive regulation as appropriate.
The thick black arrows indicate the increase in the product of the enzymatic reaction. Arrows T indicate inhibition.

On the other hand, the Asian variant of E6, containing the amino acid change D25E in
the E6 oncoprotein, negatively regulates the expression of the AIFM2 protein [16], known
as apoptosis-inducing factor mitochondria associated 2, which contains a domain oxidore-
ductase NADH [166]. It has also been observed that the variant of the AA sublineage
binds to cytochrome C [13] and could be interfering at levels such as the Asian variant
D25E [13,16,167], which also increases the expression levels of ENO1 (Figure 4) [16]. The
low levels of AIFM2 and cytochrome C, as well as the increase in the expression of ENO1
induced by the variant AA and As, may affect the reduction of oxidative phosphorylation,
favoring the production of energy through aerobic glycolysis, one of the main characteris-
tics of metabolic reprogramming in cancer. Furthermore, the As variant has been shown to
decrease the levels of the enzyme GSTP1 (glutathione S transferase Pi 1) [168], a critical
cytosolic enzyme of phase II detoxification metabolism [169]. Low levels of GSTP1 are asso-
ciated with DNA damage from reactive oxygen species and drug resistance in cancer [169],
suggesting that the As variant of HPV 16 may negatively regulate phase II detoxification
metabolism. Consequently, ROS levels and DNA damage that favors integrating the viral
genome into the cellular genome can be increased.

The integration of the HPV 16 genome into the host genome is associated with carcino-
genesis, not only because of the overexpression of E6 and E7 but also because it can induce
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the several host overexpression mRNAs [170]. As observed in epithelial samples with the
integrated viral genome of the variants of the AA sublineage of the E6 oncoprotein of HPV
16, there is an overexpression of the SLC26A2 gene that encodes a solute transporter [171].
The SLC26A2 gene belongs to the family of SLC26 genes that encode solute transporters re-
sponsible for transporting sulfate (SO42−), Cl−, and oxalate [172]. Oxalate can be produced
by epithelial cells and be present as free oxalic acid or in salts such as sodium, calcium, or
potassium oxalates [173–176]. High oxalate levels may be related to the transformation of
normal to tumor cells, increasing proliferation [177] and mitochondrial damage, as well
as altering basal proton output and mitochondrial oxygen consumption linked to ATP
production [178] through damage to mitochondrial proteins [179]. These data suggest that
variants of the AA sublineage of the HPV 16 E6 oncoprotein might have a different effect
on dysregulation of mitochondrial metabolism and increased aerobic glycolysis through
integration and overexpression of SLC26A2. Table 1 summarizes the effect that the E6 and
E7 variants of HPV 16 has on metabolic reprogramming in cancer.

Table 1. Effect of HPV 16 E6 and E7 variants on metabolic reprogramming in cancer.

Oncoprotein Sublineage Nucleotide or Protein Variant Effect on Protein or Signaling Pathway Effect on Metabolism Reference

E6

Europeo

E-prototype p53 glycolysis [108–112]

R17I
c-Myc expression and activation

glycolytic metabolism
nucleotide synthesis
glutaminolysis

[107,132–136]
Q21D

E-A126 (R8Q) c-Myc expression and activation
Wnt/β-catenin signaling pathway activation

glycolytic metabolism
nucleotide synthesis
glutaminolysis
Warburg effect
mitochondrial respiration

[107,132–136,154]

E-G131 (R10G) p53
Wnt/β-catenin signaling pathway activation

glycolysis
Warburg effect mitochondrial respiration [108–112,135,136,154]

E-T245 (R48W) Wnt/β-catenin signaling pathway activation
glycolytic metabolism
Warburg effect
mitochondrial respiration

[135,136,154]

E-G350 (L83V) MAPK signaling pathway activation
Wnt/β-catenin signaling pathway activation

autophagy
glycolytic metabolism
Warburg effect
mitochondrial respiration

[135,136,144,150,151,154]

Asian As (D25E)

HIF-1α stability
STAT3 expression
miR-21 expression
AIFM2 expression

ENO1 expression
cytochrome liberation

glutathione S transferase Pi 1 (GSTP1) levels

Warburg effect
mitochondrial respiration

fatty acid synthesis
lipid metabolism
oxidative phosphorylation
phase II detox metabolism

[13,16,17,137,139–142,158–
160,168]

Asian-American AA (Q14H/H78Y/L83V)

HIF-1α stability
STAT3 levels
MAP2K1 expression
MAPK-extracellular signal-regulated kinase

(ERK), MAPK-p38 y PI3K/AKT activation
mTOR activation
IDH1 IDH2

GAPDH and PKM2
phosphoglucomutase and aldoketoreductase
CAIX expression

PRKAG2 interaction
SLC26A2 expression
p53

autophagy
glucose uptake
glycolytic metabolism and Warburg effect
internalization of glucose into the cell
oxalate levels, mitochondrial damage

[6,13,16,17,108–112,137,139–
142,145,149–151,163,171]

African Afr2a(R10I/Q14D/H78Y) p53 glycolysis [108–112]

E7
A4 (N29S)

pRb
oxidative metabolism
glutaminolysis
nucleotide synthesis

[88,128–130]
A5 (L28F)

Up or down arrows indicate the increase or decrease, respectively.

6. Conclusions

Metabolic reprogramming is one of the hallmarks of cancer. There is a considerable
increase in glycolysis and lactate production even in the presence of oxygen, a phenomenon
known as the “Warburg effect”. Likewise, there is an increase in the synthesis of fatty
acids and glutaminolysis. The E6 and E7 oncoproteins of HPV 16 can promote metabolic
reprogramming through increased activity of glycolytic enzymes and decreased oxidative
metabolism to meet the energy requirements of cancer cells and achieve efficient viral
replication. The E6 and E7 variants of HPV 16 present a different oncogenic potential for
cancer development through various mechanisms that promote metabolic reprogramming.
The variants of the E, As, AA, and Afr2a sublineages, which present the R10G, R48W,
D25E, Q14H, H78Y, L83V, R8Q, R17I, and Q21D mutations of the E6 oncoprotein of HPV



Pathogens 2021, 10, 347 15 of 22

16 favor metabolic reprogramming, increasing the entry of glucose and glycolysis due
to the increase in the levels of GLUT1 and the enzymes of the glycolytic pathway such
as HK2, GAPDH, ENO1, PKM2, LDH-A, decreasing oxidative metabolism due to the
decrease in the levels of proteins such as PDK, IDH1, IDH2, Aifm2, and cytochrome C,
likewise stimulating the glutaminolysis pathway by increasing the ASCT2 transporter and
the GLS enzyme, as well as the entry and synthesis of fatty acids, necessary for energy
production and synthesis of cell membranes, processes mediated by the degradation of
p53, increased levels of c-Myc and the stability of HIF-1α, activation of the Wnt pathway,
and overexpression of miR-21.

On the other hand, the E7 A4 variant promotes metabolic reprogramming by increas-
ing glutaminolysis and nucleotide synthesis through pRb degradation and E2F activation.
The mechanisms described show that HPV 16 variants regulate metabolism in cancer
through metabolic reprogramming; however, further research is necessary to understand
how variations in the nucleotide and amino acid sequence of E6 and E7 of HPV 16 may
be favoring metabolic reprogramming. It is required to carry out more detailed analyses
on the interaction of the variants of the E6 and E7 oncoproteins of HPV 16 with proteins
involved in altered metabolic pathways during metabolic reprogramming to understand
the development of this pathology and to be able to propose new markers and strategies in
the HPV 16 cancer therapy. The information presented in this review shows that the E6 and
E7 variants of HPV 16 play a crucial role in metabolic reprogramming, and the detection
and identification of the viral type are of great importance in patients with precancerous
lesions or cancers associated with infection by HPV, as metabolic reprogramming is an
essential hallmark in carcinogenesis. Likewise, the enzymes or proteins involved in energy
metabolism affected by these variants could be studied as possible therapeutic targets or
diagnostic and prognostic markers in cancers associated with HPV infection.
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