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Abstract: The organic extracts of the Red Sea soft coral Paralemnalia thyrsoides has led to the identifi-
cation of two neolemnane-type sesquiterpenoids: paralemnolins X and Y (1, 2). In addition to these
newly characterized compounds, ten known metabolites (3–12) were isolated. Previously reported
compounds were elucidated by literature comparison of spectroscopic data (1D and 2D NMR as
well as MS data). In vitro antimicrobial activity was investigated for compounds (1–12) against
Staphylococcus aureus, Escherichia coli, Candida albicans and Aspergillus niger. Compound 5 showed
antimicrobial activity against all assayed microorganisms.

Keywords: Paralemnalia thyrsoide; sesquiterpenes; paralemnolins; antimicrobial

1. Introduction

While natural product research includes plant, marine animal and microbe sources,
more recently, marine flora and fauna have afforded an exciting number of potential
therapeutic agents that are currently in preclinical and clinical evaluation due to promising
biological activities with in vivo and in vitro assays [1–7]. Such drug leads have also
significantly contributed to our understanding of cellular biochemical processes. Typical
marine skeletons combined with robust biological activities have attracted the attention of
pharmacists, chemists and biologists [8–11].

With the high endemic biota observed in the Red Sea, this marine region serves as
an epicenter for marine biodiversity. Indeed, the Red Sea is home to over 40% of the
180 soft coral species that have been discovered worldwide [12]. Soft corals of the genus
Lemnalia and Paralemnalia, in particular, have been discovered to be a significant source of
bioactive chemicals such as sesquiterpenoids of the nardosinane, neolemnane and africanane
types [13–16]. Norsesquiterpenes have been found to be abundant in Paralemnalia thyrsoides
(Alcyonaceae) soft coral [14,16–21]. Previous chemical studies of P. thyrsoides resulted in the
isolation of sesquiterpenoids known as paralemnolins A—W [18,19,21–23].
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Here we report on two neolemnane-type sesquiterpenoids isolated from the Formosan
soft coral P. thyrsoides.

2. Results and Discussion

Chromatographic fractionation and purification of the EtOAc extract of P. thyrsoides
afforded two new sesquiterpenes known as paralemnolin X (1) and paralemnolin Y (2), as
well as 10 previously reported compounds, paralemnolin D (3) [18], paralemnolin E (4) [18],
paralemnolin J (5) [21], paralemnolin P (6) [21], 2-deoxy-12-oxolemnacarnol (7) [14], paralemno-
lide A (8) [24], parathyrsoidin G (9) [25], 6α-acetyl-1(10)-α-13-nornardosin-7-one (10) [15], 6α-
acetyl-7α-acetate-1(10)-α-13-nornardosine (11) [15], and clavukoellian F (12) [26] (Figure 1).
All isolated secondary metabolites were elucidated by 1D and 2D-NMR as well as mass
spectroscopy (Figures S1–S48).
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Figure 1. Structures of isolated compounds (1–12).

Compound 1 was obtained in the form of a colourless oil exhibiting a positive optical
rotation in methanol [α]25

D + 67.5 (C 0.01, MeOH). CI-MS analysis showed a molecular
ion peak at 336.1940, indicating a molecular formula of C19H28O5 (calculated 336.1939 for
C19H28O5) and thus indicating six degrees of unsaturation. The 13C and 1H NMR spectra
revealed the presence of two acetyl groups (δH 2.08 (3H, s), 2.00 (3H, s); δC169.9 (2C=O),
21.0 (2CH3)) and one double bond (δC 127.1 (CH), 143.7 (C)).The 13C NMR (Table 1) and
DEPT spectra revealed 19 carbon signals, which were classified as 5 quaternary carbons
(comprising two acetate keto groups at δC 169.9), 5 methines (including three oxygenated
methines at δC 65.3, 72.5, 73.8 and one olefinic methines at δC 127.1), 4 methylenes, and
5 methyles (including two methyl groups of acetyl groups) in the 13C NMR spectrum,
indicating the presence of two acetyl groups. Furthermore, one trisubstituted double
bond at 127.1 (CH) and 143.7 (C) was assigned from the 13C NMR, DEPT and HMQC
spectra. The suggested structure, a neolemnanoid skeleton, corresponded to a bicyclic
structure with a condensed eight- and six-membered ring system, as previously isolated
from P. thyrsoides [18]. The skeleton was established by extensive 2D NMR analysis (HMQC,
HMBC and 1H–1H COSY). The 1H–1H COSY spectrum was used to reveal proton sequences
and the connectivity of H-4/H-5, H-5/H2-6, H2-6/H2-7, H-9/H2-10, and H2-10/H2-11
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(Figure 2). Two oxygen-bearing carbons at δC 55.4 (C) and 65.3 (CH), the latter coinciding
with a proton at δH 2.96 (s) in the HMQC spectrum, confirmed a trisubstituted epoxide
(Figure 2). Comparison of the NMR spectral data of compounds paralemnolin D, E, G
and H revealed that the C-2–C-3 double bond was oxidized to bean epoxide group in
compound 1 [18]. The epoxide site was established via H3-14 correlation to carbon signals
at δC 65.3 (C-2), 55.4 (C-3), and 72.5 (C-4) in HMBC spectrum. Spectroscopic data was
similar to paralemnolin F [18], except the up-field shift of C-2 at δC65.3/71.8 as well as the
down-field shift of H-2 at δH 2.96 (Table 1). NMR spectral data comparison of compound
1 with paralemnolin F disclosed that both compounds had similar structures. In Table 1,
the NOESY spectrum was recorded, and H3-13 was found to show NOE interactions with
H3-14, H3-15 and one proton (δH 1.42, m) of H2-11; additionally, H3-14 was found to show
NOE interactions with H-4 and H-5, identifying these protons as β-oriented. Furthermore,
H-2 (δH 2.96, s) exhibited NOE interactions with H-12, suggesting the α-orientation of H-2
(Figure 3). The structure of 1 was determined as paralemnolin X.

Table 1. 1H (CDCl3, 500 MHz) and 13C (125 MHz) NMR of 1 and 2.

No
1 2 Paralemnolin F

δH δC δH δC δH δC

1 — 42.3 — 38.9 — 40.9
2 2.96 s 65.3 2.89 s 65.2 2.62 s 71.8
3 — 55.4 — 58.3 — 58.7
4 5.18 d (3.0) 72.5 4.77 d (6.0) 75.5 5.30 br s 73.6
5 5.13 dd (11.4, 2.4) 73.8 5.09 dd (10.0, 6.0) 73.6 5.27 m 71.9
6 1.82 m, 1.90 m 31.3 1.81 m, 2.10 m 31.9 1.86 m, 1.97 m 30.2
7 2.05 m, 2.41 m 30.0 2.40 m, 2.44 m 32.3 2.15m, 2.42 m 29.8
8 — 143.7 — 142.1 — 140.4
9 5.55 dd (4.3, 2.6) 127.1 5.44 br d (4.5) 124.2 5.58 dd (3.6, 3.8) 127.8
10 2.07 m 25.9 1.96 m, 2.00 m 25.8 2.07 m 25.3
11 1.42 m, 1.46 m 25.3 1.36 m, 1.44 m 26.3 1.50 m 25.9
12 1.80 m 39.6 1.77 m 32.3 1.73 m 42.8
13 0.80 s 14.5 1.20 s 21.9 0.98 s 17.0
14 1.73 s 19.5 1.48 s 13.9 1.48 s 20.7
15 0.98 d (6.9) 16.9 0.94 d (6.9) 17.7 0.97 d (6.9) 16.2

CH3-AC 2.00 s, 2.08 s 21.0 2.11 s, 2.02 s 20.7, 20.9 2.07s, 2.09 s 20.9, 21.1
C=O-Ac — 169.9 — 169.7, 169.9 170.0, 169.9
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Compound 2 (a colourless oil) displayed a positive optical rotation in methanol [α]25
D +

25.6 (C 0.01, MeOH). CI-MS analysis showed a molecular ion peak at 336.1934, indicating a
molecular formula of C19H28O5 (calculated 336.1933, for C19H28O5) and thus indicating
six degrees of unsaturation. The existence of two acetyl groups (δH 2.11 (3H, s), 2.02 (3H,
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s); δC 169.9, 169.7 (2C=O), 20.9, 20.7 (2CH3)) and one double bond (δC 124.2 (CH), 142.1
(C)) were revealed by the 13C and 1H NMR spectra. The 13C NMR spectrum displayed
19 carbon signals, which were classified as 5 quaternary carbons (comprising two acetate
keto groups at δC169.7, 169.9), 5 methines (including three oxygenated methines at δC 65.2,
75.5, 73.6 and one olefinicmethine at δC 124.2), 4 methylenes, and 5 methyles (including
two methyl groups of acetyl groups) in the 13C-NMR spectrum, indicating the presence
of two acetyl groups. Furthermore, one trisubstituted double bond at 124.2 (CH) and
142.1 (C) was assigned from the 13C-NMR, DEPT and HMQC spectra. These structural
elements recommended that the neolemnanoid skeleton confers a bicyclic structure with
a condensed 6/8-membered ring system, as previously isolated from P. thyrsoides [18].
The skeleton of 2 was established by extensive 2D NMR analysis (1H–1H COSY, HMQC,
and HMBC). To establish the proton sequences, the 1H–1H COSY spectrum was used to
reveal the connectivity of H-4/H-5, H-5/H2-6, H2-6/H2-7, H-9/H2-10, and H2-10/H2-11
(Figure 2). A trisubstituted epoxide was established from two oxygen-bearing carbons at
δC 58.3 (C) and 65.2 (CH). The latter correlated with a proton at δH 2.89 (s) in the HMQC
spectrum. Spectroscopic data was similar to 1, except for the down-field shift of C-3 at
δC 58.3/55.4 and the up-field shift of C-14 at δC 13.9/19.5 (Table 1). The NMR spectra, in
comparison with 1, revealed that both compounds had similar structures; in Table 1, the
NOESY spectrum was recorded. H3-13 show NOE interactions with protons at δH 0.98 d
(6.8, H3-15), and 2.89 (s, H-2) and one proton at δH 2.40 (m, H2-7); additionally, H-2 shows
NOE interactions with protons at δH 4.77 (d, 6.0, H-4) and 5.09 (dd, 10.0, 6.0, H-5) and
one proton at δH1.81 (m, H2-6), revealing a β-orientation of these protons. Furthermore,
H3-14 (δH1.48, s) exhibited NOE interactions with protons at δH1.77 (m, H-12) and one
proton at δH 2.10 (m, H2-6), suggesting the α-orientation H3-14 (Figure 3). The structure of
compound 2 was determined as paralemnolin Y.
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A microdilution assay was used to determine the MIC. Metabolite 5 was the most
active compound against all test microorganisms, with weak antimicrobial activity in com-
parison with positive controls (treflucan and thiophenicol) while other compounds showed
varying activities (see Table 2). Compound 7 exhibited no observed antimicrobial activity.
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Table 2. Minimal inhibitory concentration (MIC- µmol) determined by microdilution assay.

Compound No. Staphylococcus
aureus

Escherichia
coli

Candida
albicans

Aspergillus
niger

1 1.488 - - -
2 1.488 - - -
3 0.899 - - 1.798
4 1.562 - - 1.562
5 0.449 1.798 1.798 2.248
6 1.893 - - -
7 - - - -
8 0.221 - - 1.773
9 1.785 - 1.785 0.446

10 2.110 - - 1.059
11 1.785 - - 0.446
12 0.992 - - 0.992

Treflucan - - 0.327 0.163
Thiophenicol 0.140 0.281 - -

3. Materials and Methods
3.1. General Experimental Procedures

For optical rotation the JASCO P-2300 polarimeter (JASCO, Tokyo, Japan) was used;
for IR spectra, the Shimazu FTIR-8400S instrument (Shimazu, Columbia, MD 21046, USA)
was used. A Bruker 600 or 500 Hz NMR spectrometer was used to record 1D and 2D NMR
spectra (Bruker, MA, USA). A JEOL JMS-700 equipment was used to obtain HR-MS spectra
(Tokyo, Japan). TLC analysis was conducted with precoated silica gel plates (Merck, Kiesel-
gel60 F254, 0.25 mm, Merck, Darmstadt, Germany); chromatography (CC) was conducted
with silica gel 60 (Merck, 230–400 mesh, Merck, Darmstadt, Germany). HPLC was carried
out with a Jasco PU-980 pump, a Jasco UV-970 intelligent UV detector at 210 nm, and
a semi-preparative reversed-phase column (Cosmosil C18, column 250 × 10 mm, 5 µm,
Nacalai Tesque, Kyoto, Japan).

3.2. Coral Material, Extraction and Separation

A collected Red Sea soft coral Paralemnalia thyrsoide (Hurghada in March 2017) was
identified by Montaser A. Alhammady (co-author) with a voucher specimen (08RS1075)
deposited in the National Institute of Oceanography and Fisheries (NIOF), Egypt.

The soft coral P. thyrsoides (2.5 kg wet weight) was sliced into small parts; this was
followed by extraction with ethyl acetate (6 L × 3 times). The combined extracts afforded a
dark black gum (117.5 g) under vacuum concentration. Further chromatography fraction-
ations and purification were operated using our previously described protocol [27]. All
column fractions were examined via TLC and collected as the main fractions (PT1-PT9).
One fraction (PT3; 930 mg) was subjected to the silica gel column with an elution solvent
system of n-hexane/CHCl3 step gradient to afford two sub-fractions (PT3-1-2) via the TLC
profile. The sub-fraction PT3-1 was re-purified and rephrased. RP-18 HPLC (MeOH/H2O,
3:1) afforded compounds 1 (9.1 mg), 2 (13.4 mg), 6 (7.3 mg), 7 (5.8 mg), and 9 (10.5 mg).
Fraction PT-4 (718.9 mg) was further fractionated over ODS-C18 CC using MeOH/H2O
with increasing polarity as the eluent; this afforded three main subfractions (PT4-1-3). The
subfraction PT4-2 (278.7 mg) was re-subjected to RP-18 HPLC (MeOH–H2O, 4:1) to give
compounds 3 (7.9 mg), 4 (10.2 mg), 5 (9.3 mg), and 8 (6.7 mg). The sub-fraction PT4-3
was purified by Isolera flash column chromatography eluted with n-hexane:EtOAc (1:1) to
afford compounds 10 (8.6 mg), 11 (12.6 mg), and 12 (5.8 mg).

3.3. Spectral data of Paralemnolin X, Y (1,2)

Paralemnolin X (1): yellow oil; [α]25
D + 67.5 (c 0.01, CH3OH); 1H and 13C NMR data

(CDCl3, 500 Hz), see Table 1; HRCIMS m/z 336.1940 (calculated 336.1939 for C19H28O5).
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Paralemnolin Y (2): yellow oil; [α]25
D + 25.6 (c 0.01, CH3OH); 1H and 13C NMR data

(CDCl3, 500 Hz), see Table 1; HRCIMS m/z 336.1934 (calculated 336.1933 for C19H28O5).

3.4. Antimicrobial Activity Assay
3.4.1. Microorganisms

Staphylococcus aureus (ATCC29213) and Escherichia coli (ATCC 25922) are Gram-positive
bacterium (GPB) and Gram-negative bacterium (GNB), respectively. Additionally, the
fungal yeast Candida albicans (ATCC 10231) and Aspergillus niger (NRRL-599) were screened
for compound anti-microbial activity by the Microbial and Natural Products Chemistry
Department, National Research Centre (NRC), Egypt.

Nutrient agar medium was used for bacterial cultivation followed by suspension in
nutrient broth medium at 37 ◦C for 24 h. The fungus culture was grown on potato dextrose
agar medium at 28 ◦C for 4 days, and then suspended in potato dextrose broth. The
turbidity of the suspension was adjusted to that of the standard 0.5 McFarland solution.

3.4.2. Minimum Inhibitory Concentration Determination

The MIC values were determined by the broth microdilution assay (NCCLS, 2008) [28]
with slight modifications. Each sample was initially dissolved in DMSO, and subsequently
diluted with broth media to reach the desired final concentration. Five-fold dilutions were
prepared in a 96-well plate. The microbial suspensions were added into each well, then
incubated at 37 ◦C for 24 h for bacteria and at 28 ◦C for 72 h for fungi. The MIC value was
determined as the lowest concentration of the sample that inhibited microbial growth. The
assay was carried out in nutrient broth medium for bacteria and potato dextrose broth
medium for fungi. The assay was performed according to Hammer et al. (1999) [29],
with slight modifications. Briefly, 1 mg of the pure compound was dissolved in 50 µL
DMSO, and 10 µL was added as the initial concentration in the first column of the sterile
polystyrene 96-well plates. Then, 190 µL of the tested microbial suspension adjusted to
5 × 105 CFU/mL was added. Serial dilutions were performed by the addition of 100 µL
of the first column to the second one, and so on. The final volume was adjusted to 200 µL
on each well by the addition of the microbial suspension to obtain final concentrations of
the tested compounds ranging from 100 to 3.125 µg. Microbial growth controls were made
by replacing the tested compound with the same volume of DMSO (in order to eliminate
the possible antibacterial effect of the solvent). Sterility controls were prepared by using
broth media alone. The plates were covered with a sterile plate sealer, carefully mixed and
incubated at 37 ◦C for 24 h for bacteria and 28 ◦C for fungi. Microbial growth was indicated
by the turbidity. The absence of microbial growth was interpreted as antimicrobial activity.
The MIC value was taken as the lowest concentration of the test agent that caused complete
inhibition (100%) of microbial growth [30].

4. Conclusions

A P. thyrsoide extract afforded two new neolemnane-type sesquiterpenoids, paralem-
nolins X, Y (1, 2) and ten known secondary metabolites (3–12). Chemical structures were
elucidated based upon spectroscopic analyses. Only compound 5 exhibited antimicrobial
activity against all test microorganisms, followed by compound 9. Other compounds
showed varying activities against different test microorganisms.

Supplementary Materials: The following are available online https://www.mdpi.com/article/10.3
390/antibiotics10101158/s1, Figures S1–S48: NMR spectra for compounds 1–12.
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