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Abstract: In this paper, the photochemistry of glyoxal–hydroxylamine (Gly–HA) complexes is stud-
ied using FTIR matrix isolation spectroscopy and ab initio calculations. The irradiation of the Gly–HA
complexes with the filtered output of a mercury lamp (λ > 370 nm) leads to their photoconversion to
hydroxyketene–hydroxylamine complexes and the formation of hydroxy(hydroxyamino)acetaldehyde
with a hemiaminal structure. The first product is the result of a double hydrogen exchange reaction
between the aldehyde group of Gly and the amino or hydroxyl group of HA. The second product is
formed as a result of the addition of the nitrogen atom of HA to the carbon atom of one aldehyde
group of Gly, followed by the migration of the hydrogen atom from the amino group of hydrox-
ylamine to the oxygen atom of the carbonyl group of glyoxal. The identification of the products
is confirmed by deuterium substitution and by MP2 calculations of the structures and vibrational
spectra of the identified species.
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1. Introduction

Glyoxal, HCOHCO (Gly), the simplest α-dicarbonyl, plays a significant role in atmo-
spheric photochemistry. It is formed in the atmosphere as a product of the oxidation of
volatile organic compounds (VOCs) [1], and the direct photolysis of glyoxal is its main
removal route from the atmosphere [2,3]. The gas-phase photodissociation of glyoxal
involves several fragmentation channels, whose relative contributions depend on the
excitation wavelength and other factors such as the occurrence of intermolecular colli-
sions [4–10]. Moreover, glyoxal is also absorbed by cloud droplets, where it participates in
complex photochemical transformations [11–15].Our group has reported systematic study
of the photochemical behavior of molecular complexes of glyoxal with atmospherically
relevant molecules such as water, methanol and hydrogen peroxide isolated in cryogenic
matrices [16–18]. For the glyoxal–methanol complex, a very interesting photochemical
behavior was observed, namely, under irradiation in the visible range, glyoxal complexed
with methanol isomerized to the rather exotic hydroxyketene molecule, H(OH)C=C=O
(Equation (1)) [18].

CHOCHO· · ·MeOH→ H(OH)C=C=O· · ·MeOH (1)

This reaction only occurred for the complex with methanol. The complex of glyoxal
with H2O2 shows a different photochemical behavior, in which the hydrogen peroxide
molecule undergoes addition to glyoxal [17]. In contrast, the complex of glyoxal with water
does not undergo a photochemical isomerization reaction [16]. The complex of methanol
with glyoxal derivative, methylglyoxal, shows similar behavior to the glyoxal–methanol
complex [19]. Irradiation of this complex leads to the formation of methylhydroxyketene.
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An experimental study in argon matrices shed some light on the isomerization reaction
of glyoxal [18], and the mechanism of this reaction has also been extensively studied using
theoretical methods [20,21]. Irradiation of the complex with deuterium-enriched methanol,
CH3OD, produced deuterium-enriched ketene, H(OD)C=C=O. This experimental result
indicates that the isomerization occurs via a double hydrogen exchange reaction between
glyoxal and methanol (or hydrogen and deuterium in the case of CH3OD). Recent advanced
theoretical studies on the photoisomerization reaction in the CHOCHO· · ·MeOH complex
have revealed that it follows a complicated mechanism triggered by the excitation of
the complex to the lowest single excited electronic state. The mechanism involves two
complementary pathways. One of them takes place entirely in the singlet manifold, and
the other also involves the lowest triplet state (T1) [20,21].

Here, we present the results of a study of the photochemical behavior, under visible
irradiation, of the glyoxal complex with hydroxylamine, CHOCHO· · ·NH2OH (Gly–HA).
The structures and energetics of CHOCHO· · ·NH2OH complexes embedded in solid ar-
gon and nitrogen have recently been reported [22]. Studies of the CHOCHO· · ·NH2OH
complex provide new, interesting data on hydrogen exchange reactions in glyoxal com-
plexes. They also indicate the existence of an additional reaction channel by which hy-
droxylamine undergoes addition to glyoxal, forming a product of hemiaminal structure
(hydroxy(hydroxyamino)acetaldehyde). In this way, this unique product could be detected
and characterized spectroscopically.

Hemiaminals are important intermediate species in the formation of oximes, which
are created in a reaction between a carbonyl compound (aldehyde or ketone) and a nucle-
ophile (alkoxyamine or hydroxylamine). This reaction is stepwise: The first step involves
the formation of an unstable intermediate hemiaminal, and the next step, usually cat-
alyzed by acids or bases, proceeds via hydrolysis of the hemiaminal and oxime formation.
Oxime formation is employed in numerous scientific fields, e.g., chemical biology, or-
ganic synthesis and polymer chemistry [23–25], as a versatile conjugation strategy. Studies
on hemiaminals are relatively rare due to their low stability, but they can be observed
under special conditions. For example, hemiaminals have been observed in solutions
at low temperatures (−78, −30 ◦C in THF) [26] or detected with the help of host-guest
chemistry as molecules trapped in deep molecular cavities [27] or in a porous coordina-
tion network [28]. They have also been identified in a solid-state reaction as an unstable
compound [29]. The first stable open-chain hemiaminal, stabilized by an intramolecular
hydrogen bond, was obtained in a crystalline form by condensation of di-2-pyridyl ketone
with 4-cyclohexyl-3-thioosemicarbazide [30]. A recent study on a hemiaminal presents a
synthesis method for aminomethanol, the simplest of hemiaminals, in low-temperature
binary ices of methylamine and oxygen. This study demonstrated that aminomethanol can
be formed under astrophysical-like conditions [31]. In the case of our work, the elusive
hemiaminal formed in the addition reaction was stabilized by the inert environment of the
cryogenic matrix.

The products that were formed under irradiation of the Gly–HA complexes embedded
in cryogenic matrices were identified by FTIR spectroscopy and ab initio calculations. The
results of our study are described below.

2. Results and Discussion

A study on the interaction of glyoxal with hydroxylamine in solid argon and nitrogen
was published recently [22]. The study showed that the non-planar Gly–HA complex
IGH was formed in the argon matrix. In the nitrogen matrix, two types of complexes
were observed: a non-planar type, IGH, and a cyclic planar type, IIGH (see Figure 1). The
cyclic planar structure of Gly–HA complex was more favorable than the non-planar one.
The infrared spectra and experimental wavenumbers in comparison with the calculated
ones for the CHOCHO· · ·NH2OH and CHOCHO· · ·ND2OD complexes are given in the
Supplementary Materials (Figure S1 and Table S1).
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Figure 1. The MP2/6-311++G(2d,2p) optimized structures of the Gly–HA complexes identified in
argon and nitrogen matrices. The ∆ECP

(ZPE) binding energies in kJ mol−1 are given in parentheses.
The intermolecular distances are given in Å.

The UV photochemistry of hydroxylamine has not yet been studied in matrices.
Gericke et al. report that the end product of the photolysis of hydroxylamine vapor
at 193 nm is H2 + HNO [32]. The main dissociation channel leads to H + H + HNO with a
quantum efficiency of 1.7 for hydrogen atoms. According to Luckhauset et al., the single-
photon irradiation of hydroxylamine at 240 nm produces NH2 and OH radicals (mostly in
their vibrational ground state) [33]. The photolysis of glyoxal monomers and “cage” dimers
in an argon matrix leads to the formation of formaldehyde and carbon monoxide when they
are excited in the S2 ← S0 absorption region (320 nm > λ > 260 nm) [34]. No photoproducts
were observed under excitation in the S1 ← S0 absorption region (λ ~445 nm). Our present
study concerning the photolysis of glyoxal in argon and nitrogen matrices showed that
only trace amounts of formaldehyde and carbon monoxide were formed when glyoxal
was irradiated with a wavelength of λ ≥ 370 nm. Irradiation with the full output of a
medium-pressure mercury lamp led to the appearance of a small concentration of carbon
dioxide in addition to HCHO and CO. The exposure of the NH2OH/Ar(N2) matrices to the
λ ≥ 370 nm radiation led to the appearance of trace amounts of nitrogen oxide dimers [35]
as a result of hydroxylamine degradation, but no HNO was detected [36].

As can be seen in Figure 2, the exposure of Gly/HA/Ar(N2) to irradiation at λ ≥ 370 nm
led to a decrease in bands due to the glyoxal–hydroxylamine complexes, and simultane-
ously a set of new bands appeared. The new bands diminished when the matrices were
additionally irradiated with the full output of a medium-pressure mercury lamp. The bands
that appeared after irradiation were separated into three groups, 1a, 1b and 2, based on
their behavior in all the performed experiments. The wavenumbers of the bands assigned
to groups 1a, 1b and 2 are listed in Tables 1 and 2.

2.1. Formation of Hydroxyketene–Hydroxylamine Complexes

The sets of bands belonging to groups 1a and 1b (see Figure 2) involve a very intense
band in the 2140–2090 cm−1 region that is characteristic of a ketene group, which suggests
that the HCOHCO· · ·NH2OH complex undergoes a similar photoconversion reaction to
that of HCOHCO· · ·CH3OH, during which double hydrogen transfer occurs and then a
hydroxyketene–hydroxylamine complex is formed (Equation (2)).

HCOHCO· · ·NH2OH→ H(OH)C=C=O· · ·NH2OH (2)

For the H(OH)C=C=O· · ·CH3OH complex, the νas(C=C=O) band was observed
at ca. 2105 cm−1 .

Three new bands assigned to groups 1a and 1b appear in the ν(OH) region, one of
which has a close wavenumber to the νOH of HK in the H(OH)C=C=O· · ·CH3OH complex
(ca. 3400 cm−1) [18]. The other absorptions occur in the vicinity of δNOH, ωNH2 of HA
and δCH + νsCCO(νCO) vibrations of HK (see Table 1). These spectroscopic data support
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the conclusion that during the irradiation of the HCOHCO· · ·NH2OH complexes, their
photoconversion to H(OH)C=C=O· · ·NH2OH complexes (HK–HA) takes place.
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Figure 2. Selected regions of the difference spectrum of the CHOCHO/NH2OH/Ar(N2) matrix after
90 min of irradiation minus freshly deposited CHOCHO/NH2OH/Ar(N2) matrix at 11 K.

Table 1. Comparison of the observed and calculated anharmonic wavenumbers (cm−1) for
H(OH)CCO–NH2OH.

H(OH)CCO–NH2OH

Approximate DescriptionExp. Calc. a Exp. Exp. Calc. a

1a (Ar) IHKH 1b (Ar) 1b (N2) IVHKH

3608.0 3607.1 3667 (70) ν(OH) HA, IVHKH
3537.2 3533(365) ν(OH) HA, IHKH

3400.0 3394.5 3488 (548) ν(OH) HK, IVHKH
3260 (697) ν(OH) HK, IHKH

2116.4 b 2114 (431) 2116.4 b 2119.7 2115 (391) νasCCO HK, IHKH
1360.3 1358.5 1349 (34) δNOH HA, IVHKH

1339.6 1353 (47) δCH + νsCCO HK, IHKH, IVHKH

1153.7 1159 (128)
1154 (26) 1158.6 1158.8 1167 (144)

1126 (43) ωNH2 + δCH HA, HK, IHKH, IVHKH

799.8 sh
792.2 752 (119) 623 (102) τ(OH) HK, IHKH

a MP2-calculated harmonic intensities (km mol−1) are given in parentheses; b broad band maximum (see in the text).
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Table 2. Comparison of the observed and calculated anharmonic wavenumbers for
CHOCH(OH)NHOH.

CHOCH(OH)NHOH

Exp. a Calc. b

2 (Ar) 2 (N2) IHHA IIHHA IIIHHA

3623.8 3676 (63) 3655 (73) 3677 (73)
3558.0 3656 (71) 3578 (71) 3656 (66)
1769.2, 1758.7, 1750.0,
1745.8, 1733.4 1754.3 1718 (85) 1720 (87) 1721 (92)

1390.9 1393 (7) 1416 (46) 1385 (16)
1373.5 1358 (32) 1394 (12) 1363 (12)
1302.5 1306.3 1293 (29) 1299 (37) 1303 (19)
1228.7, 1226.5, 1204.6 1203.7 1208 (50) 1249 (29) 1224 (90)
1185.1, 1179.4, 1176.5 1169 (55) 1162 (85) 1153 (23)
1089.3, 1080.4, 1075.7,
1052.5 1081.7, 1060.0 1060 (72) 1036 (29) 1073 (68)

1038.5, 1021.2, 1014.7 1013.6 1036 (10) 998 (59) 1042 (17)
996.4, 990.2 984 (94) 953 (14) 990 (59)
920.8, 893.1, 887.3, 884.0 916 (34) 871 (68) 951 (3)
835.7, 827.5, 824.0 806 (36) 806 (31) 884 (66)

a the wavenumber of the most intense line is in bold; b the MP2-calculated harmonic intensities (km mol−1) are
given in parentheses.

The bands assigned to groups 1a and 1b are attributed to two different types of
HK–HA complexes as discussed below. Bands of group 1a are only identified in an argon
matrix, while bands of group 1b are observed in both solid argon and nitrogen.

The structures of HK–HA complexes of 1:1 stoichiometry were optimized by the
MP2/6-311++G(2d,2p) method. The calculations resulted in twelve stationary points
(IHKH–XIIHKH), whose structures and ∆ECP

(ZPE) binding energies are shown in Figure S2
in the Supplementary Materials. The six most stable structures, IHKH–VIHKH, are also
presented in Figure 3. The geometrical parameters for these structures are given in Table
S2 in the Supplementary Materials. The three most stable structures, IHKH–IIIHKH (with
similar binding energies from −26.16 to −24.10 kJ mol−1), are stabilized by the OH . . . N
hydrogen bond between the hydroxyl group of HK and the N atom of the amino group
of HA. Structures IIHKH and IIIHKH are additionally stabilized by OH . . . O interactions,
where the hydroxylamine OH group serves as a proton donor and the O atom of the
hydroxyl group of hydroxyketene serves as a proton acceptor. The next three structures,
IVHKH–VIHKH, are stabilized by the OH . . . O hydrogen bond that occurs between the
hydroxyl group of HK and the oxygen atom of the hydroxyl group of HA. Complex VHKH
is additionally stabilized by the NH . . . O interaction of the amino group of HA and the
hydroxyl group of HK. Structures IVHKH–VIHKH are predicted to be about 6–7 kJ mol−1

less stable than structures IHKH–IIIHKH.
In Tables S3–S5 in the Supplementary Materials, the harmonic and anharmonic

wavenumbers predicted at the MP2/6-311++G(2d,2p) level for HA and HK monomers and
HA–HK complexes (IHKH–VIHKH) are listed. In Table 1, the experimental wavenumbers
observed for the photoproducts 1a and 1b are compared with their corresponding calcu-
lated wavenumbers of structures IHKH and IVHKH, respectively. Because the wavenum-
bers and intensities of the vibrational bands of complexes IHKH–IIIHKH are quite similar
(see Table S5 in the Supplementary Materials), in Table 1 we only present the data calcu-
lated for the most stable structure in the group, IHKH. The same applies for complexes
IVHKH–VIHKH, as in Table 1 we only present the data for the structure IVHKH. Comparison
of the experimental and calculated wavenumbers suggests that the bands of group 1a are
due to HA–HK complexes stabilized mainly by an OH· · ·N bond and represented by
structure IHKH, while the bands assigned to group 1b correspond to complexes stabilized
by an OH· · ·O bond and represented by structure IVHKH. The bands of the ν(OH) and
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τ(OH) vibrations provide the most information on the structure of the complexes. For
complex IHKH, anharmonic MP2 calculations predict intense bands of ν(OH) at 3533 cm−1

(calculated intensity I = 365 km mol−1) originating from disturbed hydroxylamine as well
as ν(OH) at 3260 cm−1 (I = 697 km mol−1) and τ(OH) at 752 cm−1 (I = 119 km mol−1) due
to perturbed hydroxyketene. In the spectra of the argon matrices, we observed two bands
of group 1a at 3537.2 cm−1 and 792.2 cm−1 corresponding to the disturbed ν(OH) vibration
of HA and τ(OH) vibration of HK, respectively. The ν(OH) absorption of disturbed HK
was not identified. This is most probably due to the fact that the absorption is broad and
diffuse, which is a commonly observed feature for the ν(OH) stretch of the relatively strong
O–H· · ·O or O–H· · ·N bonds [37]. Moreover, possible overlapping of this band with the
ν(OH) absorption of the HA dimer that occurs in this region [38] makes identification of
the band even more difficult. Two additional bands are identified for IHKH at 1339.6 and
1153.7 cm−1. The first one is attributed to the δCH + νsCCO mode of HK and the second
one to the perturbed ωNH2 mode of HA, in accordance with the calculations (see Table 1).
The calculations predict that for complex IVHKH, the ν(OH) bands due to disturbed HA
and HK are located at 3667 cm−1 (I = 70 km mol−1) and 3488 cm−1 (I = 548 km mol−1), re-
spectively. These bands are identified at 3608.0, 3607.1 cm−1 (HA) and 3400.0, 3394.5 cm−1

(HK) in the spectra of the argon and nitrogen matrices, respectively. The ν(OH) band of
HK in IVHKH is observed at a very similar wavenumber to the corresponding band of the
HK–Me complex (3395.7 cm−1) [18], which confirms that group 1b belongs to a complex in
which HK plays the role of proton donor toward the oxygen atom of the OH group of HA,
forming an O–H· · ·O bond (which is the case for structures IVHKH, VHKH and VIHKH).
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hydroxylamine complexes. The ∆ECP

(ZPE) binding energies in kJ mol−1 are given in parentheses. The
intermolecular distances are given in Å.

The shape of the very broad band of the νasC=C=O vibration of HK with few sub-
peaks (or folds) on the band (see Figure 4) suggests that different structures of the HA–HK
complex with similar wavenumbers of the νasC=C=O mode are probably isolated in the
argon and nitrogen matrices. This band is broader in the Ar than in the N2 matrix, which is
in accordance with the fact that in solid argon all six structures IHKH–VIHKH of HA–HK
may contribute to its broadness whereas in solid nitrogen it is only the three IVHKH–VIHKH.
The MP2 calculations predict that the position of this band in each particular struc-
ture differs by a few wavenumbers (from 2114 cm−1 to 2123 cm−1, see Table S5 in the
Supplementary Materials).
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To obtain some information about the mechanism of photoconversion of Gly–HA
to HK–HA, we performed experiments with deuterated hydroxylamine, ND2OD (HAd).
The isotopic enrichment was ca. 90% as estimated from the measured and theoretically
predicted intensities of the bands due to the ν(OH) and ν(OD) vibrations. The spectra of
the matrices doped with Gly and HAd indicate that the complexes Gly–HAd formed in
solid argon and nitrogen have the same structures as those observed for non-deuterated
hydroxylamine. The spectra are presented in Figure S1, and the wavenumbers of the bands
of Gly–HAd complexes are listed in Table S1 in the Supplementary Materials. The irradia-
tion (λ > 370 nm) of the Gly/HAd/Ar(N2) matrices leads to a decrease in bands due to the
Gly–HAd complexes and due to the formation of the new bands of the photoproducts. Like
in the experiments with non-deuterated Gly–HA complexes, the bands of photoproducts
can be separated into three groups: 1a, 1b and 2. The difference spectra presented in
Figure 5 show the bands attributed to all three groups. The identified 1a and 1b bands
evidence the formation of the HKd–HAd complexes of hydroxyketene with hydroxylamine,
with structures analogical to those observed in the experiment with the non-deuterated HA
(IHKH and IVHKH). The wavenumbers of the identified bands assigned for the HKd–HAd
complexes are listed in Table 3.

The spectra recorded after irradiation of the matrices with deuterated hydroxylamine
involve numerous bands due to a number of species. The HKd–HAd complexes are
formed with relatively low yield, and the identification of their absorptions is quite
a difficult task. However, we were able to unequivocally identify in the photolyzed
CHOCHO/ND2OD/Ar matrices four bands corresponding to group 1a (3536.1, 2614.2,
~2113 and 1000.0 cm−1) and eight bands belonging to group 1b (2661.4, ~2113, 1360.4,
1153.6 (subpeaks 1161.2, 1157.2 cm−1), 1136.8 and 1017.6 cm−1). In the spectra of pho-
tolyzed CHOCHO/ND2OD/N2 matrices, only bands due to group 1b occurred (3349.6,
2664.5, 2495.7, 2116.7, 1360.3, 1160.7, 1155.6, 1137.2 and 1021.4 cm−1). The wavenumbers of
all bands belonging to groups 1a and 1b are listed in Table 3.
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One may expect that the hydrogen and deuterium exchange between glyoxal and
deuterated hydroxylamine in the CHOCHO· · ·ND2OD complexes (both non-planar, IGHd,
and planar, IIGHd, ones) would lead to the formation of H(OD)CCO· · ·ND2OH and
H(OD)CCO· · ·NHDOD characterized by similar structures to the non-deuterated com-
plexes IHKH and IVHKH. The additional subscript d4 or d2 is applied to mark whether
the complex formed involves ND2OH, IHKH-d4, IVHKH-d4 or NHDOD, IHKH-d2, IVHKH-d2
(i.e., whether in the exchange process the OD or ND2 group of hydroxylamine participates).
Among the four identified bands for group 1a in solid argon, the most informative are
those observed at 3536.1 and 2614.2 cm−1. The first one appears in the OH stretching
region of hydroxylamine and shows very good agreement with the wavenumber calculated
for complex IHKH-d4 (3533 cm−1), which provides strong evidence that in the exchange
reaction with the hydrogen atom of CH, the deuterium of the OD group of hydroxylamine
participates, leading to the formation of H(OD)CCO· · ·ND2OH, complex IHKH-d4. In turn,
the wavenumber of the identified 2614.2 cm−1 band has practically the same value as that
calculated for the OD stretch of NHDOD in complex IHKH-d2 (2615 cm−1). The appearance
of this band indicates that one of the deuterium atoms of the ND2 group participates in
the exchange reaction and the H(OD)CCO· · ·NHDOD complex IHKHd-2 is formed. The
broad, intense νasC=C=O absorption at ca. 2113 cm−1 probably involves the corresponding
band for both complex IHKH-d2 and complex IHKH-d4. The band observed at 1000 cm−1

is attributed to the δCOD vibration of IHKH-d4 in accordance with calculations, and the
corresponding band is also observed for the 1b complex.
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Table 3. Comparison of the observed and calculated anharmonic wavenumbers (cm−1) for the
H(OD)CCO–ND2OH, H(OD)CCO–NHDOD complexes.

H(OD)CCO–NHDOD/
H(OD)CCO–ND2OH H(OD)CCO–NHDOD

Approximate DescriptionExp. Calc. a Calc. a Exp. b Exp. b Calc. a

1a (Ar) IHKH-d2 IHKH-d4 1b (Ar) 1b (N2) IV HKH-d2

3536.1 3533 (305) ν(OH) HAd4, IHKH-d4
3349.6 3356 (43) ν(NH) HAd2, IV HKH-d2

2614.2 2615 (184) 2661.4 2664.5 c

2658.4 2710 (38) ν(OD) HAd2, IHKH-d2, IVHKH-d2

2432 (382) 2472 (261)
2410 (148) 2495.7 2579 (278) ν(OD) HKd, I HKH-d2, IHKH-d4,

IVHKH-d2

2113 c 2114 (441) 2116 (438) 2113 c 2119.6
2116.7 2118 (394) νasCCO HK, IHKH-d2,d4, IV HKH-d2

1360.4 1360.3 1381 (30) δCH + νsCCO HKd, IVHKH, IV HKH-d2
1161.2
1157.2
1153.6

1160.7
1155.6 1179 (32) γNHD HAd2, IV HKH-d2

1136.8 1137.2 1169 (25) δCH + νCO HKd, IVHKH-d2

1000.0 1029 (45) 1028 (49) 1017.6 1026.5
1021.4 1009 (53) δ(COD) HKd, IHKH-d2, IV HKH-d2

a MP2-calculated harmonic intensities (km mol−1) are given in parentheses; b the most intense line of the 2 or
3 lines is in bold; c broad band maximum (see in the text).

Numerous bands were identified for the 1b complexes in both solid argon and nitrogen,
and they have close wavenumbers in the spectra of the two matrices. Comparison of
the identified wavenumbers with the calculated ones for various types of deuterated
complexes shows good agreement with the wavenumbers calculated for complex IVHKH-d2
(Table 3). Strong evidence for IVHKH-d2 formation is provided by the band observed at
2661.4, 2664.5 cm−1 in the spectra of solid argon and nitrogen, respectively, which is due
to the νOD vibration of perturbed hydroxylamine. Its wavenumber is ca. 45 cm−1 higher
than the ν(OD) of complex IHKH-d2 (2614.2 cm−1), as expected when the OD group of HAd
serves as a proton acceptor. The appearance of this band also shows that in the process
of exchange with the H atom of glyoxal, one of the deuterium atoms of the ND2 group
participates. The bands identified at 3349.6, 1155.6 cm−1 (solid nitrogen) and at 1153.6 cm−1

(solid argon) are attributed to the νNH and γNHD vibrations according to calculations
and are direct evidence for the formation of NHDOD. The other four bands identified for
complex IVHKH-d2 are attributed to perturbed HKd vibrations (see Table 3).

As discussed above, the experiments with ND2OD prove that the irradiation of
CHOCHO· · ·ND2OD leads to the formation of H(OD)CCO· · ·NHDOD and
H(OD)CCO· · ·ND2OH complexes as bands due to perturbed NHDOD and ND2OH molecules can
be clearly identified in the spectra. This fact demonstrates that in the hydrogen and deuterium exchange
reaction between glyoxal and hydroxylamine, the deuterium atom of the OD group or one of the deu-
terium atoms of the ND2 group participates: (i) CHOCHO· · ·ND2OD→H(OD)CCO· · ·ND2OH
or (ii) CHOCHO· · ·ND2OD → H(OD)CCO· · ·NHDOD. In the argon matrix, three complexes
are probably formed, namely IHKH-d2, IHKH-d4 and IVHKH-d2, but in the nitrogen matrix only the
latter. Whereas the formation of IVHKH-d2 is very well documented by a number of bands identified
for this complex, the presence of IHKH-d2 and IHKH-d4 is evidenced by one band characteristic of
the particular complex (νOD HAd2 at 2614.2 cm−1 for IHKH-d2 and νOH HAd3 at 3536.1 cm−1 for
IHKH-d4). The other two identified bands of group 1a (2113, 1000 cm−1) attributed to νasC=C=O and
δCOD vibrations may be due to both complex IHKH-d2 and complex IHKH-d4.

The obtained data show that the non-planar complexes of glyoxal with hydroxylamine,
Gly–HAd, IGH (stabilized by the OH· · ·O bond), that are formed in the argon matrices
may photoconvert to the IHKH-d2, IHKH-d4 and IVHKH-d2 HKd–HAd complexes of hydrox-
yketene with hydroxylamine. In the nitrogen matrices, both the non-planar, IGH, and
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planar, IIGH (main product), Gly–HAd complexes are present (the latter stabilized by OH
. . . O and CH . . . N bonds), and after conversion the IVHKH-d2 HKd–HAd complexes are
formed. These data suggest that irradiation of the non-planar Gly–HA, HAd complexes
stabilized by the OH . . . O hydrogen bond, IGH, leads to double hydrogen exchange (or
hydrogen and deuterium exchange) between glyoxal and hydroxylamine in which the
hydroxyl or the amino group of HA, HAd may be involved. The irradiation of the planar
complex, IIGH, stabilized by OH . . . O and CH . . . N hydrogen bonds, proceeds by double
hydrogen exchange between the CH group of glyoxal and the amino group of HA only.

In the case of the CHOCHO–CH3OD complex, the photoconversion resulted in an
exchange of proton and deuterium between the CH group of glyoxal and the OD group
of methanol, and finally the H(OD)CCO–CH3OH complex was formed. According to the
coupled-cluster calculations, the non-hydrogen-bonded (non-planar) glyoxal–methanol
complex photoconverted initially to a planar hydrogen-bonded complex, which then
converted to the final photoproduct (hydroxyketene–methanol complex) [18,20].

2.2. Formation of Hydroxy(hydroxyamino)acetaldehyde (Hemiaminal)

Irradiation of Gly/HA/Ar(N2) matrices with a wavelength of λ ≥ 370 nm also leads
to the appearance of the group of bands labeled as group 2 (see Figure 2 and Table 4). This
group is assigned to different conformers of the product of the addition of hydroxylamine
to one of the CHO groups of glyoxal, namely, hydroxy(hydroxyamino)acetaldehyde, HHA.
The formation of HHA proceeds via the addition of the nitrogen atom of the amino group
of hydroxylamine to the carbon atom of the carbonyl group of glyoxal and the subsequent
migration of the hydrogen atom (from the NH2 group of HA) to the oxygen atom of the
carbonyl group of glyoxal, as presented in Scheme 1. This molecule is formed readily in an
argon matrix, but we only observe trace amounts of this photoproduct in a nitrogen matrix.
The molecule has not been characterized so far, and its infrared spectrum is unknown. The
three most stable structures of this compound predicted at the MP2 level are presented
in Figure 6. All forms and their geometrical parameters are given in the Supplementary
Materials (Figure S3 and Table S7).

Table 4. Comparison of the observed and calculated anharmonic wavenumbers for
CHOCH(OD)NDOD.

CHOCH(OD)NDOD

Exp. a Calc. b

2 (Ar) 2 (N2) IHHA-d IIHHA-d IIIHHA-d

2674.2 2713 (39) 2702 (40) 2715 (41)
2624.3 2702 (39) 2642 (41) 2702 (40)
1764.2, 1749.6,
1745.4, 1744.0 1761.9, 1745.0 1719 (84) 1711 (88) 1721 (90)

1339.3 1346.6 1347 (3) 1367 (12) 1341 (18)
1254.9, 1245.4,
1233.0

1255.9, 1251.8,
1246.0 1143 (67) 1176 (40) 1169 (20)

1094.0 1136 (29) 1101 (29) 1143 (9)
986.2 1013.3, 1010.5 990 (8) 974 (41) 992 (2)
788.5, 785.3,
782.9

800.3, 788.0,
783.4 750 (58) 729 (35) 745 (43)

a the wavenumber of the most intense line is in bold; b the MP2-calculated harmonic intensities (km mol−1) are
given in parentheses.
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Tables S8 and S9 in the Supplementary Materials show the harmonic and anharmonic
wavenumbers and band intensities predicted at the MP2/6-311++G(2d,2p) level and the
potential energy distribution (PED) for the two most stable forms of HHA. In Table S10,
the calculated wavenumbers and band intensities of IHHA–VIHHA structures are given for
comparison. In Table 2, the experimental wavenumbers observed for photoproduct 2 are
compared with the calculated wavenumbers (and intensities) of the bands predicted for
the three most stable conformers of HHA (IHHA–IIIHHA).

The appearance of several bands in the νC=O region and other distinct spectral regions
indicates that more than one form of HHA is trapped in the argon matrix. The data suggest
that one form probably dominates, and another few are isolated in smaller amounts. In
the νOH region, we only observe two bands assigned to this group located at 3623.8
and 3558.0 cm−1, which, according to the calculations, most suit the IIHHA form. Other
identified bands in group 2 also mostly agree with the wavenumbers calculated for the
conformer IIHHA. However, we are not able to unequivocally assign the experimental bands
to a specific structure because all the structures have similar vibrational characteristics and
the amounts of the photoproducts in the matrices are small. Furthermore, the result of
the experiment using deuterated hydroxylamine does not give clear evidence as to which
conformers of HHA are formed in the matrices. The results of this experiment are presented
in Figure 5 and Table 2 and in Tables S8, S9 and S11 in the Supplementary Materials.

A photoaddition reaction was also observed as a result of the irradiation (at λ > 345 nm)
of the glyoxal–hydrogen peroxide complex in an argon matrix [17], in which 2-hydroxy-
2-hydroperoxyethanal was formed. The formation of this photoproduct proceeds via the
addition of one of the oxygen atoms of hydrogen peroxide to the carbon atom of the
carbonyl group of glyoxal and the subsequent migration of the hydrogen atom (from H2O2)
to the oxygen atom of the carbonyl group of glyoxal.

3. Experimental and Computational Methods

Gaseous hydroxylamine (NH2OH, HA) was prepared from hydroxylamine phosphate
salt (95%, Fluka) by heating the salt powder (at 50–65 ◦C) directly in the deposition line.
Deuterated hydroxylamine (ND2OD, HAd) was prepared by heating hydroxylamine phos-
phate salt in deuterated water (D2O) solution and then evaporating off the water under
a vacuum. This procedure was repeated several times until the deuteration degree was
about 90%. Monomeric glyoxal (CHOCHO, Gly) was obtained from solid trimer dihydrate
(98%, Sigma) topped with phosphorus pentoxide (P4O10) powder by heating the materials
to 120 ◦C under a vacuum and then collecting the gaseous glyoxal in a liquid nitrogen trap.

The glyoxal/hydroxylamine/argon (or nitrogen) matrices were prepared by simultaneous
deposition of CHOCHO/Ar(N2) and NH2OH vapor on a cold gold mirror kept at 11–17 K by
a closed cycle helium refrigerator (Air Products, Displex 202A). The CHOCHO/Ar(N2)
matrix concentration was varied in the range of 1/200–1/2000. The absolute concentration
of hydroxylamine in the matrices could not be determined, but its concentration was varied
by changing the rare gas flow rate and the heating temperature of the hydroxylamine salt.
Infrared spectra (4000–600 cm−1) with a resolution of 0.5 cm−1 were recorded in reflection
mode using a Bruker 113v FTIR spectrometer and a liquid N2-cooled MCT detector.
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The samples deposited in matrices were subjected to the radiation of a 200 W medium-
pressure mercury lamp (Philipps CS200W2). A 5 cm water filter (to reduce the infrared
light) and a glass long-wavelength pass filter (WG370) were used.

The MP2 method with 6-311++G(2d,2p) basis set was used for geometry optimization
of all the monomers and complex structures and calculation of harmonic and anharmonic
vibrational spectra of the monomers, complexes and photoproducts [39,40]. Glyoxal under
standard conditions exists in a trans form [34,41,42], so this conformer was considered ex-
clusively in our study in terms of the nature of its interaction with hydroxylamine. Binding
energies were corrected using the Boys–Bernardi full counterpoise procedure [43]. The
calculations were performed using the Gaussian 03 program (version C.02) for geometry
optimization and Gaussian 16 (version B.01) for frequency calculations [44,45]. The po-
tential energy distribution (PED) of the normal modes was computed using the Gar2ped
program [46].

4. Conclusions

The photochemistry of glyoxal–hydroxylamine complexes isolated in argon and nitro-
gen matrices has been investigated using FTIR and MP2/6-311++(2d,2p) calculations. The
irradiation of the studied complexes in the visible range (λ > 370 nm) leads to the formation
of two types of photoproducts: (i) hydroxyketene–hydroxylamine complexes, HK–HA,
and (ii) hydroxy(hydroxyamino)acetaldehyde, HHA.

The HK–HA complexes are formed in the exchange reaction of two hydrogens between
two complex subunits, namely, the CH group of Gly and the NH or OH group of HA. The
experiments with deuterated hydroxylamine, ND2OD, provide evidence that hydrogen
atoms from both the OH and NH2 groups of hydroxylamine may participate in the exchange
process. The H(OH)CCO . . . NH2OH complexes exist in two forms in the matrices. The
first type is stabilized by the OH . . . N interaction between the hydroxyl group of HK and
the amino nitrogen of HA. In the second type, the OH . . . O hydrogen bond is formed
between the hydroxyl group of HK and the oxygen atom of the hydroxyl group of HA.
These two types of HK–HA complex are formed in an argon matrix in noticeable amounts,
but in nitrogen only HK–HA complexes bonded by the OH . . . O interaction are created.

Hydroxy(hydroxyamino)acetaldehyde, HHA, belonging to the hemiaminals family,
is formed by the addition of HA to the carbon atom of one aldehyde group of Gly and
the subsequent migration of the hydrogen atom from the NH2 group of HA to the oxygen
atom of the carbonyl group of Gly. In an argon matrix, the HHA hemiaminal conformers
are observed in noticeable amounts, whereas in a nitrogen matrix the yield of HHA is
low. The difference in the yield of the products, both HK–HA complexes and the HHA
adduct, in the argon and nitrogen matrices may relate to the fact that different types of
glyoxal–hydroxylamine (Gly–HA) complexes exist in argon and nitrogen before irradiation.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules27154797/s1, Table S1: Comparison of the ob-
served wavenumbers (cm−1) and wavenumber shifts (∆ν = νGH − νM) for the Gly–HA (GH) com-
plexes present in the Ar and N2 matrices with the corresponding calculated values for the complexes
IGH and IIGH. The calculated band intensities are given (in km mol−1) in parentheses; Figure S1:
Spectra of the CHOCHO/Ar(N2) (a), NH2OH/Ar(N2) (b) and CHOCHO/NH2OH(ND2OH)/Ar(N2)
(c) matrices recorded after matrix deposition at 11 K. The bands of Gly–HA complexes are indi-
cated by arrows. Dashed and solid arrows correspond to the IGH and IIGH structures, respectively;
Figure S2: The MP2/6-311++G(2d,2p) optimized structures of the hydroxyketene–hydroxylamine
(IHKH–XIIHKH) complexes. The ∆ECP

(ZPE) binding energies (in kJ mol−1) are given in parentheses.
The intermolecular distances are given in Å; Table S2: Selected geometrical parameters of the hydrox-
ylamine and hydroxyketene subunits in their binary complexes (IHKH–VIHKH). For comparison, the
corresponding parameters of the monomers (M) are also given. The complexes are numbered in the
same way as presented in Figure S2. Bond distances are given in Å, angles in ◦; Table S3: Calculated
harmonic (ν) and anharmonic (νanh) wavenumbers (cm−1) and intensities (I, km mol−1) for HA and
HAd; Table S4: Calculated harmonic (ν) and anharmonic (νanh) wavenumbers (cm−1), intensities
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(I, km mol−1) and potential energy distribution (PED) for HK and HKd; Table S5: Calculated har-
monic (ν) and anharmonic (νanh) wavenumbers (cm−1) and intensities (I, km mol−1) for HK–HA
complexes (IHKH–VIHKH); Table S6: Calculated harmonic (ν) and anharmonic (νanh) wavenum-
bers (cm−1) and intensities (I, km mol−1) for deuterated hydroxylamine–hydroxyketene complexes
(IHKH-d–VIHKH-d); Figure S3: Optimized structures of hydroxy(hydroxyamino)acetaldehyde (HHA).
The computed ∆E(ZPE) energies of HHA conformers with respect to the energy of the most stable
conformer, IHHA, are given in parentheses (in kJ mol−1); Table S7: Selected geometrical parameters of
the conformers of (hydroxy(hydroxyamino)acetaldehyde (IHHA–XIHHA). The atoms are numbered
in the same way as presented in Figure S3. Bond distances are given in Å, angles in ◦; Table S8:
Calculated harmonic (ν) and anharmonic (νanh) wavenumbers (cm−1), intensities (I, km mol−1) and
PED for IHHA and IHHA-d; Table S9: Calculated harmonic (ν) and anharmonic (νanh) wavenumbers
(cm−1), intensities (I, km mol−1) and PED for IIHHA and IIHHA-d; Table S10: Calculated harmonic (ν)
and anharmonic (νanh) wavenumbers (cm−1) and intensities (I, km mol−1) for conformers of HHA
(IHHA–VIHHA); Table S11: Calculated harmonic (ν) and anharmonic (νanh) wavenumbers (cm−1)
and intensities (I, km mol−1) for the deuterated conformers of HHA (IHHA-d–VIHHA-d).
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