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Abstract

The picture that emerges from phylogenetic gene content reconstructions is that genomes evolve in a dynamic pattern of

rapid expansion and gradual streamlining. Ancestral organisms have been estimated to possess remarkably rich gene

complements, although gene loss is a driving force in subsequent lineage adaptation and diversification. Here, we study

genome dynamics in a model of virtual cells evolving to maintain homeostasis. We observe a pattern of an initial rapid

expansion of the genome and a prolonged phase of mutational load reduction. Generally, load reduction is achieved by the

deletion of redundant genes, generating a streamlining pattern. Load reduction can also occur as a result of the generation

of highly neutral genomic regions. These regions can expand and contract in a neutral fashion. Our study suggests that
genome expansion and streamlining are generic patterns of evolving systems. We propose that the complex genotype to

phenotype mapping in virtual cells as well as in their biological counterparts drives genome size dynamics, due to an

emerging interplay between adaptation, neutrality, and evolvability.
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Introduction

Recent efforts to reconstruct the ancestral gene contents at
various evolutionary depths have provided evidence for the

existence of universal patterns in the evolution of genome

size. An initially surprising outcome of phylogenetic recon-

structions is the rich ancestral gene content inferred for

archaea (Snel et al. 2002; Cs}urös and Miklós 2009; David

and Alm 2010), bacteria (Snel et al. 2002), and eukaryotes

(Makarova et al. 2005; Zmasek and Godzik 2011) as well as

for a hypothetical last universal common ancestor (Ouzounis
et al. 2005). Although a large genome of Eden (Doolittle

et al. 2003) is generally considered an unwelcome

artifact of denying the importance of horizontal gene trans-

fer, accounting for such events (Snel et al. 2002; Cordero

and Hogeweg 2007) and using different methodologies

(Ouzounis et al. 2005; Tuller et al. 2010) has upheld the

notion of large ancestral genomes that are on a par with

those of present-day descendants. Complementing the re-
sults of gene-rich ancestors is the finding that ongoing gene

loss on diverging branches is a major contributor to genome

evolution (Snel et al. 2002; Makarova et al. 2006; Cs}urös

and Miklós 2009; David and Alm 2010).

It has been proposed that evolution can act in two fun-

damentally different modes (Koonin 2007). Extensive new

gene and functional repertoires originate in rapid inflation-

ary phases of evolution, while subsequent cooling phases

are characterized by divergence of species and a slowing

down of genome dynamics.

Although extensive genetic exchange has played a crucial

role in almost all inflations leading to major transitions in

evolution (e.g., the emergence of a repertoire of catalytic

RNAs and protein folds and protocells), other forms of

genetic turbulence, such as rapid genome expansions,

may not be fundamentally different in their dynamics. Rapid

genomic and intronic expansion was most likely the driving

force behind the radiation of the eumetazoan lineage

(Putnam et al. 2007; Harcet et al. 2010; Srivastava et al.

2010), playing out at an intermediate evolutionary depth.

In multiple plant species, whole genome duplications have

been associated with drastic changes in the environment

(Blanc and Wolfe 2004; Van de Peer et al. 2009), potentially

enabling these species to survive.

Looking at even shorter evolutionary distances, lineage-

specific expansions in eukaryotes and prokaryotes suggest
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that amplification of certain gene families plays an impor-
tant role in the adaptation of individual lineages (Jordan

et al. 2001; Lespinet et al. 2002; Dujon et al. 2004; Demuth

and Hahn 2009; Ames et al. 2010). There are, for example,

many cases known of fast adaptation toward novel resour-

ces and toxins in bacteria through the rapid increase in copy

number of specific genes (for an extensive review, see

Andersson and Hughes (2009)). Francino (2005) stresses

that an amplification and divergence model is a favorable
alternative to sub- and neofunctionalization models for

the evolution of genetic novelty because it can account

for prolonged retention of multiple gene copies due to

the direct adaptive advantage of increased dosage. Ampli-

fication of an, initially, low-efficiency enzyme consequently

broadens the scope for adaptive mutations to arise in the

enzymatic function in any of the gene duplicates. Once

the efficiency of a particular copy of the gene increases
due to some adaptive mutations, redundant copies may

be removed by a streamlining process.

Notwithstanding these adaptive effects of duplications

on short evolutionary timescales, long-term evolutionary

patterns of genome complexification, as seen most evi-

dently in multicellular eukaryotes, have been attributed to

neutral accumulation of excess DNA due to the increased

power of drift in populations with low effective population
sizes (Lynch and Conery 2003a, 2003b; Lynch 2006a, 2007),

although strong deletion biases in prokaryotes (Kuo and

Ochman 2009) may be a confounding factor in these

analyses.

Through computational modeling, important insights

have been gained in some of the driving forces behind ge-

nome size dynamics. Knibbe, Coulon, et al. (2007) showed

that organisms with spatial genomes can adapt to a given
mutation rate by changing their genome size and coding

density, whereas de Boer and Hogeweg (2010) found that

early genome expansion, limited by the per base mutation

rate, determines the success rate of evolving abstract path-

ways for resource consumption. At the microscopic level,

folding stability of essential proteins and the toxic effects

of misfolding can severely limit genome size under high mu-

tation rates (Zeldovich et al. 2007; Chen and Shakhnovich
2009), providing an explanation for differences in proteome

stability distributions of viruses and bacteria (Chen and

Shakhnovich 2010).

A second type of modeling has focused on the evolution

of gene regulatory networks (GRNs), letting fitness

depend on the network state relative to a given environ-

ment. Environmental heterogeneity can feed back on

the network structure, for example, due to the evolution
of modularity (Parter et al. 2008) and ultimately on the

spatial structuring of the genome itself (ten Tusscher

and Hogeweg 2009). In a simple model of a signaling net-

work, complexity remained significantly above the mini-

mum required due to neutral evolution of robustness,

avoiding lethal deletion of network components (Soyer
and Bonhoeffer 2006).

The above studies clearly show the need for simulating

genome dynamics explicitly in order to enhance our under-

standing of general structuring mechanisms acting on cells.

So far, fewmodels have combined an explicit genome struc-

ture with the evolution of a plausible biological function.

A notable exception is the model by Neyfakh et al.

(2006), who studied the evolution of homeostasis in virtual
cells. Fitness is attributed to genotypes in a natural way by

taking into account gene regulation and enzyme kinetics.

This model strikes a nice balance between a sufficiently

low level of description on the one hand and computational

feasibility and analyzability on the other hand.

Modeling a Virtual Cell

We adapted the model by Neyfakh et al. (2006) because its

natural definition of phenotypes combined with the explicit

coding of the genotype make it particularly suitable to an-

swer questions about genome size dynamics in general. In

particular, we used it to find mechanistic explanations for
the apparent complexity of early ancestors and the patterns

of fast genome expansion and steady streamlining that

emerge from the phylogenetic data.

In the virtual cell model, individuals have to maintain

homeostasis in two essential molecules under highly vari-

able environmental conditions. At their initial randomized

creation, cells invariably perform very poorly at the task

of reaching and maintaining the target concentrations for
the resource molecule, A and the energy carrier, X. Subse-
quently, populations evolve a wide variety of network struc-

tures with performance ranging from poor to near perfect

homeostasis in a wide range of environmental conditions.

Both point mutations and large-scale duplications, deletions

and rearrangements occur, affecting among others the dos-

age and efficiency of enzymes and rewiring the regulatory

network. This results in a large degree of flexibility of the
evolving genotype–phenotype mapping enhancing the

evolvability of the system. The details of the model can

be found below in Materials and Methods.

Materials and Methods

Model Overview

In the virtual cell model, genes code for five basic protein

types (see fig. 1A). These proteins regulate the uptake

and conversion of two types of simple molecules. A resource
(A) that is present in the environment can be a source of

energy when it is enzymatically converted into the energy

carrier molecule X and can alternatively be made available

as a cellular building block in a second type of enzymatic

reaction. Both these reactions are carried out by specialized
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types of enzymes. The resource diffuses passively over the

membrane of a cell and can additionally be transported
inward by the action of pump proteins which requires the

consumption of X. Two protein types are transcription

factors (TFs) that can modulate gene transcription and that

are distinguished by their ligand, A and X, respectively.

Binding of a TF to a gene regulatory region requires a match

between the binding sequence of the TF and the operator

region of that particular gene. ATF may either upregulate or

downregulate its downstream genes, and it can have a dif-
ferent effect in its ligand bound form from the ligand-free

form (see fig 1B for an example of an evolved GRN).

The cellular dynamics are modeled by ordinary differential

equations (see below). Ligand-TF and TF-operator binding are

assumed to be fast processes and set to quasi steady state.

Fitness of cells is a measure of their ability to maintain ho-

meostasis at predefined target concentrations of intracellularX
and A. Deviations from the targets for [Ain] and [Xin] will result

in a fitness penalty. Because cells live in a variable environment

where fluctuates, cells can increase their competitiveness by

evolving regulatory circuitry that accommodates this variation.

The lifetime fitness of an individual cell is a function of fitness

measurements taken at three time points. Between these time

points, the [Aout] changes with a probability of 0.4 to a new

value chosen randomly from an exponential distribution that
ranges over four orders of magnitude.

Genotypes are subjected to two distinct types of muta-

tions. The first type alters the parameters of individual genes

and is comparable to a point mutation. Affected parameters

are the rate and binding constants of enzymes and binding

FIG. 1.—Schematic view and representations of the genome of virtual cells. (A) A permeates through the membrane (1) depending on relative

concentrations inside and outside of the cell. Pumps consume X (2) to pump in A from the environment (3). Catabolic enzymes can convert A (4) into X

(5) in a 1:4 ratio. Anabolic enzymes consume A (6) and X (7) to produce an unspecified end product. Protein expression (8) depends on the promoter

strength and additional regulation of upstream TFs of the corresponding genes. The regulatory effect of a TF changes upon binding of its ligand (either

A or X). (For reaction equations, see Materials and Methods). (B) GRN representation of a cell. Gene colors indicate the type as in (A), whereas color

intensity indicates basal expression rate. (C) Circular genome representation of cells at three time points in evolution. Intensity of the red coloring of

genes corresponds to fitness loss upon knockout of the gene. Colored arcs indicate syntenic regions that contain essential genes at different generation

time points. Several genomic regions have been duplicated and deleted in the line of descent between the time points. The network in (B) corresponds

with the middle circular genome at time 5 5,050.
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sequences of TFs and promoter regions as well as the ligand
that TFs have. The second type of mutation affects stretches

of the genome that can span multiple genes (e.g., see

fig. 1C). Duplications, deletions, and excision insertion

mutations may affect up to half of the total length of the

genome with an average of one quarter of the genome

per mutational event.

In a default run of the model, a population of 1,024 cells is

allowed to evolve for 10,000 generations. At initialization,
genomes contain a collection of geneswith randomly assigned

parameter values, with an average size of ten genes. Muta-

tional parameters are chosen such that individual genes are

equally affected by point mutations, duplications, deletions,

and rearrangements. We thus do not impose any explicit

mutational bias toward increasing or decreasing genome size.

Cellular Dynamics

Cellular dynamics are governed by the following ordinary

differential equations that correspond to the various cellular

processes (see fig. 1):

diffusion over the membrane

d½A�
dt

5 ð½Aout� � ½A�ÞPerm: ð1Þ

pumping

d½X�
dt

5
� d½A�
dt

; ð2Þ

d½A�
dt

5
½A�out½X�Vmaxp½Protp�

ð½A�out þKapÞð½X� þ KxpÞ
; ð3Þ

catabolism

d½A�
dt

5
� Protc½A�Vmaxc

½A� þ Kac
; ð4Þ

d½X�
dt

5 � N
d½A�
dt

; ð5Þ

anabolism

d½A�
dt

5
� Prota½A�½X�Vmaxa

ð½A� þ KaaÞð½X� þ KxaÞ
; ð6Þ

d½X�
dt

5
d½A�
dt

; ð7Þ

protein expression and degradation

d½Prot�
dt

5 Pr � Reg � Degr½Prot�: ð8Þ

The two small molecules A and X act as a resource and

an energy carrier, respectively. Five basic protein types play

a role in the described cellular processes. Their respective be-

haviors within the network depend on the values of several

parameters that determine, for example, basal transcription

rate, substrate binding constants, and TF binding sequence.

All types encode an operator sequence (o), represented by an

integer value, that determines which TFs can regulate its re-

spective expression. All genes encode a promoter strength

(Pr) determining basal transcription rate that can be
modulated by TF regulation (see below).

Pump enables the uptake of A from the environment by

using the energy stored in X.

Genes encoding pumps define the following binding
and rate parameters:

Kap binding constant for Aout: inverse of [Aout] where
half of the pumps are bound by A,

Kxp binding constant for Xin: inverse of [Xin] where
half of the pumps are bound by X,

Vmaxp rate constant determining maximum influx of
A through the pump.

Catabolic enzyme converts resource A into energy
carrier X.

Kac analogous to Kap,

Vmaxc determines maximum flux through the en-
zyme.

Anabolic enzyme synthesizes an unspecified building

block, consuming A and X.

Kaa analogous to Kap,

Kxa analogous to Kxp,

Vmaxa determines maximum flux through the
enzyme.

TF two types exist that haveA orX as their ligand, respectively.

A TF regulates the expression of a set of downstream

genes.

b A binding sequence type that determines binding to
downstream genes,

Kd constant of dissociation, inverse concentration at
which half of the TFs ligand is bound to it (see below),

Kb binding constant that describes the TFs affinity for
the downstream operators that it binds to, inverse
[TF] where half of the available binding sites are
bound (see below),

Effapo regulatory effect that the TF has in the ligand-
free state,

Effbound regulatory effect that the TF has in the
ligand-bound state.

The conversion ratio (N) determines the yield in X of

one molecule of A. In our default simulations, it is set

to 4. All proteins are degraded with the same fixed rate
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(Degr) 0.1. Regulation (Reg) of gene expression is a func-
tion of all the TFs that can bind that genes operator

sequence and calculated as follows:

Wtfbound 5
½ligand� � Kd

1 þ ½ligand� � Kd
; ð9Þ

Wtfapo 5 1 � Wtfbound ; ð10Þ

Votf 5
½W �tf�Kb

1 þ
Pstates

r

Pno
i ½W �ir �Kbir

; ð11Þ

Reggo 5
Xno

i

Voi � Effoi þ ð1 �
Xno

i

Voi Þ � 1: ð12Þ

Here, W gives the fraction of TF molecules that is bound

to or free from its ligand. V is the fraction of time that an
operator is bound by one particular TF out of all possible TFs

with a corresponding binding sequence (no). ‘‘states’’ are the
ligand-bound and ligand-free form of TFs. Reg for a partic-

ular gene with operator o is the sum of all regulatory effects

of upstream TFs in their respective states according to the

fraction of time they are bound to this operator þ the basal

transcription effect (1.) when it is not TF bound.

All differential equations are solved by simple Euler inte-
gration, either until an equilibrium steady state is reached or

a maximum number of time steps (default 5 1,000) have

passed.

Population Initialization

We initialize each run with 322 5 1024 individual cells.

Individual genomes are randomly initiated with sizes distrib-

uted normally around 10. TFs are twice as abundant as the
pumps and enzymes in randomly created cells. All binding

parameters are bounded between 0.1 and 10 and initialized

as 10a with a normally distributed between �1 and 1. All

randomly initialized operators and binding sequences

2 f1; 2; . . . ; 10g.

Environmental Change

In our simulations, cells are essayed in three environments

every generation. Per environment the [Aout] changes to

a new value with a probability of 0.4, making the

chance that [Aout] remains constant during one
generation 0.6 � 0.65 0.36. [Aout] takes on values 10rwith

r drawn from a normal distribution over ½ � 1:5 . . . 1:5Þ,
thus ranging over three orders of magnitude.

Fitness Evaluation and Reproduction

As is described above, between one and three different en-

vironments are encountered per generation, which leads to

a sparse evaluation of fitness. Fitness of cells is calculated

according to their ability to reach steady-state levels of

[Ain] ([Aeq]) and [Xin] ([Xeq]) that approach predefined target
concentrations [ATARGET] 5 1. and [XTARGET] 5 1.. When no

steady state is reached within a maximum number of time

steps, a cell is assigned a fitness of 0. Otherwise, the

differences relative to the targets are recorded as

D½A�5 j½Aeq��½ATARGET�jþ½ATARGET�
½ATARGET� and similarly for D[X]. The perfor-

mance of a cell in an environment i is given by fi5
1

D½A�i �D½X�i
:

Its fitness potential Fp5
Qn

i fi given the set of environments

n seen it has seen. A cells fitness, defining its reproductive
chances, is the nondecreasing function 2FP � 1. Every gen-

eration all cells reproduce with a chance proportional to

their fitness, until the offspring completely replaces the pre-

vious population.

Mutation

After replication, the new cells are subjected to a round of

mutation, applying the different mutational operators in

a chance process, according to their relative rates. The ge-
nome is subjected to point mutations, affecting individual

parameters, as well as major mutations that act on stretches

of genes. We define an overall mutation rate per gene and

specify the relative ratio at which point mutations, duplica-

tions, deletions, and rearrangements take place. In our de-

fault settings, where the overall genic mutation rate is set

to 0.05 and the fractions are equal for rearrangements,

duplications, deletions, and point mutations, we expect
0:05 � 14 oint mutations per gene per round of mutation,

etc. Point mutations alter the various constants (c) with

the function cnew5csold with s drawn from a normal distribu-

tion over ½0:1; . . . ; 10Þ. The minimum and maximum values

that c can take on, however, are 0.1 and 10. Operators and

binding sequences, when mutated, take on a new value

2 f1; 2::10g.
The different large-scale mutations occur at most once

per generation and affect stretches of up to half the total

genome size with an average stretch size of one quarter

of the genome. The probability of an event is scaled to

match the per gene mutation rate.

Parameter Choices

We took a pragmatic approach in determining parameter

settings. For example, balancing the rate of gene duplica-

tions and deletions and choosing not to impose an explicit

penalty on genome size allowed for a transparent assess-

ment of factors contributing to the evolution of genome

size. We converged on parameters that gave good results

in terms of adaptation to homeostasis. Given the open-

ended and time-consuming nature of our simulations, we
could not be exhaustive in the search for optimal evolution-

ary parameters.

We chose to maintain the conversion (N 5 4) and deg-

radation (Degr5 0.1) parameters as they appear in the orig-

inal model by Neyfakh et al. (2006). Sparse fitness
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evaluation in the form of a stochastically changing sparsely

sampled environment significantly increases the success rate

of evolutionary runs in comparison with the original static

scheme, which evaluated just the three standard environ-

ments ([Aout] 5 0.1, 1, and 10). However, the rate with

which [Aout] changes in our setup makes a difference for
the ease with which populations adapt and gave the best

results when the chance of moving to a new environment

was 0.4.

The chance that a gene is affected by a mutation is 0.05.

This rate is then equally divided between point mutations,

duplications, deletions, and rearrangements. The rates of

the per genome, large-scale duplication, deletion, and rear-

rangement events are scaled to arrive at the prescribed per
gene mutation rates. Several things can be noted when

changing the form and the relative frequencies of these

large-scale mutations. In the first place, when large-scale

mutations are made less frequent relative to point muta-

tions, the genome expansion is less pronounced and the

success rate is lower. Second, when the mechanism of mu-

tations is changed such that only single genes are affected

by duplication or deletion, but keeping the per gene

mutation rates as they were, we also see less pronounced

genome expansions and a lower success rate. These same

shifts occur when we impose a bias toward the deletion
of genes. It is important to note, however, that these

parameters can be varied upon within a fairly large range,

without losing the characteristic patterns that we report.We

will elaborate on the effects of these parameters in the

Discussion.

Results

Evolution of Fitness and Genome Size

Figure 2 shows the fitness increase in a typical evolutionary
simulation reaching a high fitness state (.0.85). Here, the

fitness is measured within the line of descent using three

standard environments, where the outside concentrations

FIG. 2.—Typical evolution of fitness in the line of descent of a run reaching a high fitness state. (A) Evolution of fitness in each standard

environment separately (colored lines). The dotted black line is the standard fitness when the three environments are combined. (B and C) Snapshots of

the regulatory response of the network for individuals at generations 1,000 (B) and 8,000 (C) in a log-log scale. Plotted are [Ain] and [Xin] as a function

of [Aout]. For reference, the dashed vertical lines depict the [Aout] of the standard environments. The colors of reference lines correspond to those of the

fitness lines in the upper graph. Genome size evolution of this run is depicted in figure 3, third graph from the back.
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of A ([Aout]) are 0.1, 1, and 10, respectively. This measure-

ment is different from a cell’s lifetime fitness, which deter-

mines its reproductive success and depends on the

stochastically changing environmental [Aout] conditions that

it encounters. The standardized fitness is used to have a con-

sistent readout of performance of cells. Figure 2B and C
shows two snapshots at generations 1,000 and 8,000 of

response curves of [Ain] and [Xin] as a function of [Aout].
At the later time point, regulation has evolved to bring

[Ain] and [Xin] much closer to the target at 1. The increase

in fitness in the standard environments (fig. 2A) reflects this
increase in regulatory fine tuning. The displayed run is typ-

ical in that the initial fitness gain is fast and plateaus at

an intermediate fitness level. From there, a new round of

adaptation brings it close to the target optimum.

In our simulations, adequate regulation in the resource
poor environment ([Aout] 5 0.1) is invariably last to evolve,

as can also be seen in figure 2. In our default setting, but

using different random seeds per run, approximately half

of the populations evolve a high fitness (.0.85), compara-

ble to the example. We will refer to these runs as the fit set.

Almost all populations evolve some level of meaningful

regulation.

Figure 3 shows the evolution of genome size along the
line of descent for ten independent runs, ordered according

to final fitness. The dashed line shows the average initial ge-

nome size for this set of runs (see Materials and Methods).

A striking pattern is the very rapid expansion of the genome

well within the first thousand generations. In a larger set of

74 completed runs (out of a total of 80 initialized runs), we

found that this increase is on average 8.3-fold (standard

deviation [SD] 6.7) within the first 1,000 generations,

relative to the genome size of the first common ancestor.

A second pattern that is visible in several runs is a compar-

atively slow genomic streamlining after the initial genome

expansion. The set of 74 runs shows that there is on average

a 4.7-fold (SD 2.6) maximum decrease in the remainder of
the run. A third pattern that can be observed several times in

the later phases of evolution is the gain and loss of substan-

tial amounts of genes in quick succession, an example of

which can be seen in the second half of the third run from

the front. The latter dynamics are more erratic than the

coordinated early expansions. The graphs in figure 3 are

ordered according to the maximum fitness attained in each

run. There is an intriguing trend of fitter runs showing larger
initial genome expansions (see below and table 1).

FIG. 3.—An example of ten independent runs to illustrate the evolution of genome size. Plotted is the genome size in the line of descent. In the

y-direction, the graphs of individual runs are ordered according to the fitness that the lineages have reached at the end of the run (fitness values in gray

scale). The dashed line marks the average genome size of ten genes in the initial populations of all runs. There is a trend for the runs with larger initial

genome expansions to be ordered toward the back.

Table 1

Larger Size But Not Higher Fitness in Fit Runs Compared with Unfit

Runs

Fitness Size

1–100 101–200 1–100 101–200

5(P > 0.1) 5(P > 0.1) þ(P , 0.05) þ(P , 0.05)

NOTE.—Equal signs denote a lack of significant difference in the fitness during

early evolution of runs in the fit set compared with unfit runs. Two cohorts are defined,

of generations 1–100 and 101–200, respectively. Plus signs indicate that in early

evolution, runs in the fit set have significantly larger genomes compared with unfit runs

(Mann–Whitney U test).
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The patterns that our model generates have a high

variability in onset, duration andmagnitude, due to the many
degrees of freedom in the mapping from genotype to

phenotype. We nevertheless set out to find common

mechanisms for each of the trends identified above. In

the following sections, we will first look at the causes

and consequences of early genome expansion. In partic-

ular, we examined how the local fitness landscape around

the initial population shapes subsequent evolution. Next,

we focus on the effects of long-term evolution on ge-
nome structure. We investigated the causes of streamlin-

ing and size fluctuations by analyzing how the distribution

and magnitude of mutational load in the GRN evolves.

Finally, by integrating the findings in these experiments,

we explore the relationship between expansion dynamics,

neutrality, and evolutionary potential. We asked how

adaptive and neutral processes interact and how this

shapes the evolutionary outcome.

Early Genome Expansion

Characterizing the Early Fitness Landscape

Many of the randomly created genomes of individuals in the

first population contain at least one copy of all enzymatic

gene types and are thus equipped to perform all necessary

cellular functions. However, initial production of enzymes

can be expected to be low, given randomized expression rates
of genes, potentially allowing copy number increases to have

immediate adaptive effects and explaining the observed rapid

expansions. To test if genome expansion can be explained by

a bias toward positive duplications relative to deletions, we

constructed mutational landscapes of cells in the line of

descent separating duplication and deletion mutants.

In figure 4, a distribution of the relative fitnesses ofmutants

with a duplication (upper panels) and deletion (lower panels)
in four subsequent periods. As individuals get fitter over time,

mutants are less likely to retain full fitness or increase their

fitness, which is visible as the lowering of the peak at 1

and less pronounced right tails of the distribution, for both

types of mutations in the later time intervals. The fraction

of lethal mutants, however, initially decreases for deletions,

whereas it monotonically increases over all intervals for dupli-

cations.
Except for the first interval, lethality of deletions remains

far below that of duplications. Lethality is due to cells not

reaching a steady state in all internal molecules before

the end of their life. Deletions may have drastic effects

on the cellular dynamics when the GRNs of cells are small,

as is still the case in the first time interval, because the small

networks are prone to lose all genes of a given type,

FIG. 4.—Large-scale duplication and deletion fitness landscapes. Mutant fitness data for 80 independent runs are created at 20 generation

intervals during the first 1,000 generations of simulation. At these time points, 50 deletion and 50 duplication mutants are created for all 80 lineages

and their fitnesses recorded in standard environments. Data of all runs are combined and lumped together into four time intervals (generations 1–100,

101–200, 201–400, and 401–1,000). Single duplication (deletion) events typically involve a stretch of adjacent genes of which we measure the net

effect. The upper, blue histograms are duplications showing the fraction of mutants per fitness bin. Fitness values are the fractions of wild-type fitness

that the mutants retain. For the lethal duplication mutants (fitnesses approaching 0), we annotate fractions separately in the last three time intervals.

Lower, red histograms are deletions.
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potentially losing the ability to reach a steady state in time.

This can cause a relatively high fraction of deletions to be

lethal in the first interval. In the second time interval, the

lethality of deletions decreases, most likely because redun-

dancy is higher due to the duplication of genes. Because in

some runs genome streamlining sets in as early as in the

401–1,000 generation interval, lethality of deletions in-

creases again in this last interval, due to the loss of redun-
dant coding.

For duplications, the story is quite different. Lethality in the

first interval is lower in the duplication mutants compared

with the deletion mutants because essential genes cannot

be lost in a duplication. Duplications can, however, cause dras-

tic increases in enzymatic products that can prevent timely

equilibration of the cellular dynamics. As cells adapt, regula-

tion tends to be strengthened by an increase in the basal ex-
pression levels of many genes in the network (data not

shown). This can explain the steady increase in lethality of du-

plications because they cause more severe overexpression.

The record of duplications and deletions that have been

fixed in surviving lineages (supplementary fig. S1, Supple-

mentary Material online) is largely in agreement with the

general shape of the early fitness landscapes, to the extent

that there is a surplus of duplications in early evolution
whose effects are more often slightly positive than negative.

There are, however, also large-scale mutations that become

fixed, despite fitness losses of up to 50%. Their survival can

be explained by the sparse evaluation of fitness in our

model, causing periods of relatively lenient environmental

conditions that allow for an extended period of time for

compensatory mutations to arrive (see supplementary

fig. S2, Supplementary Material online).

Predicting Fitness Evolution by the Shape of the Fitness
Landscape

We found that there is a sharp divide in fitness values between

lineages that either have a very good overall homeostasis

response or a response that is lacking in the low resource re-

gime (see fig. 5A). There appears to be a relationship between

the extent of genome expansion in the first generations of

a lineage and the maximum fitness that a lineage can reach

during evolution. Therefore, we wondered if certain features

of the fitness landscape of the early ancestors could be a pre-

dictor for the future success of lineages. More specifically, we

hypothesized that lineages in the fit set (final fitness . 0.85)

have higher fractions of duplications leading to fitness

increase (and lower fractions of mutants with decreased fit-

ness). We tested for significance of such over (under) repre-

sentation in fitness classes in a simplified representation of the

previously introduced fitness landscapes, where the fitness

effects are condensed into three bins. The results are shown

in figure 5B. Indeed, for lineages in the fit set, the early fitness

landscape is biased toward positive duplications. Neutral du-

plications are also overrepresented, while deleterious duplica-

tions are found less in the local fitness landscape. For

deletions, biases in the landscape are a secondary effect of

the increased genome sizes in the fit set, resulting in a larger

proportion of neutral deletions in the second time interval.

FIG. 5.—Relationship between fitness, size, and the early fitness landscape. (A) The distribution of fitness values in 74 independent runs. (B) Biased

fitness landscapes for future fit lineages. Runs were classified as fit if their final fitness exceeded 0.85. Fitness landscapes for mutants with duplications

and deletions, respectively, were constructed for individuals in the line of descent during early evolution. At 20 generation intervals, 50 deletion and 50

duplication mutants of the lineages were created, and the fitness effects expressed as a fraction of the ancestral fitness. Fitness landscapes of fit and

unfit lineages were combined and the time points lumped into two time intervals: generations 1–100 and 101–200, respectively. Plus and minus signs

denote over- and underrepresentation of a class of fitness effects in a given time interval for the fit set, as measured with Mann–Whitney U tests. Dark

signs are significant (P, 0.05) and grayed signs denote a bias under a lower threshold (P, 0.1), whereas equal signs denote no bias. (C) (early) genome

size affects late fitness. In 40 runs with a fixed genome size (see main text for details), the late fitness is plotted as a function of the genome size.
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Having observed these differences in shape of early fit-
ness landscapes for fit and unfit runs, we wanted to know

if the future fit lineages capitalized on the subtle differences

in the landscape immediately, in other words, if future fit

runs are fitter from the start. Table 1 shows that this is

not the case. The lifetime fitness and standard fitness do

not become significantly elevated. Interestingly, the two sets

can be clearly distinguished on genome size even in the first

time interval. We thus see that the higher likelihood of pos-
itive duplications in future fit lineages promotes the expan-

sion pattern, providing the building blocks for their

successful future adaptation. Put differently, the fitness

landscape of the early ancestors of lineages that become

very fit much later in evolution promotes adaptation by

dosage increases, which initially causes larger genome

expansions that only secondarily increase their adaptive

success.

Genome Size and Evolvability

To study the effect of genome size on the evolutionary po-

tential more directly, we created populations with different

initial genome sizes and disabled the duplication and dele-

tion of genomic stretches. For average genome sizes of 10,

20, 40, and 80 genes, respectively, we created ten popula-
tions each and let them evolve. Figure 5C shows that the

final fitness correlates strongly with the number of genes

in the genome, where larger fixed genome sizes lead to

higher final fitnesses. Clearly, the evolutionary potential is

positively influenced by having a larger initial genome size

in the population. When gene stretches are allowed to be

duplicated and deleted, as is the case in our default setup,

this evolutionary potential increases as a consequence of the
expansion phase, that is, largely driven by positive dosage

increases and duplicated genes that hitchhike on the posi-

tive effects. Evolution via dosage effects can thus accelerate

subsequent adaptation and innovation by increasing the

evolvability of organisms.

The analyses of the early fitness landscape and the con-

sequences of genome complexity for evolvability of lineages

show that the evolution of fit lineages depends on immedi-
ate as well as secondary effects of genome expansion.

When the early fitness landscape harbors more adaptive

duplications, genome expansions will tend to have a larger

magnitude. The increased gene content, in turn, improves

further adaptation of homeostasis.

Long-term Evolution

Genome expansion is a relatively short-term evolutionary

pattern, predominantly occurring within, although not
strictly limited to the first 2,000 generations of evolution.

Mostly, size dynamics will slow down at the end of a period

of fitness increase, giving way to long-term evolutionary

dynamics. However, the exact timing of the onset and

duration of these expansion patterns is variable, complicat-

ing a statistical analysis over multiple runs of the long-term

evolutionary dynamics. Therefore, we resorted to analyzing

individual runs and report on a typical run that displays the

characteristic that we wished to describe in a clear way. Be-

cause we aimed to explain phylogenetic patterns of extant

lineages that have, de facto, been successful on earth, we
also selected lineages from our simulations that were suc-

cessful in evolving homeostasis.

Streamlining

Mostly, we observed that after a rapid growth of the genome

in early evolution, the ensuing dynamics slowed down and

shifted to a clear downward trend. Because no explicit bias
in the rates of gene adding and removing mutations exists

in our full model, we wondered whether a bias in the fitness

landscape toward neutral deletions, relative to neutral dupli-

cations could be causing the streamlining pattern. This would

imply that the bias changes in the opposite direction of that

during genome expansion. To test this, we extended the anal-

ysis of the fitness landscape to the timescale of the whole run.

In figure 6, we plot the fractions of neutral duplications and
deletions, respectively. We do not observe that deletions are

neutral more often than duplications during the streamlining

period. Counter to expectation, the most significant size

decrease (generations 1,000–3,000) occurs when the fraction

of neutral duplications is consistently above that of neutral

deletions. Thus, for the run under investigation, there is no

bias in the neutrality of major mutations that could explain

the downward trend in genome size. In the following sections,
we investigate other factors that could bring about the

streamlining pattern.

Specialization of Genes

We examined how functionality is distributed through the

GRN to see how evolution toward a more compact coding

FIG. 6.—Fractions of neutral duplications and deletions in random

mutation essays. The fraction of mutants with either duplication or

deletion mutations that show no fitness effect is plotted over

evolutionary time in the line of descent at ten generation intervals, as

a 50 point running average. For reference, the genome size is plotted in

the background.
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in combination with streamlining takes place. As a proxy for

the contribution of individual genes, we measure the effect
of their knockouts. The genes are then assigned to contri-

bution bins according to the residual fitness fraction of their

respective knockout mutants. Note that these contributions

cannot be considered additive because fitness is a network

property. In figure 7, we plotted the fractions (a) and sizes

(b, c) of a set of contribution bins. Several large-scale trends

can be identified when we look at the fractions of genes in

the depicted bins in figure 7A over evolutionary time. First,
the bulk of genes (over 90%) constituting the early expan-

sion contribute only marginally (,5%) to fitness, but this

fraction then decreases to about 0.5 at the end of the

run. In the first half of the run, the fraction of genes in

the ,20%-bin are significantly higher than that of the

subset ,5%-bin. However, in the second half of the run,

the bins increasingly overlap, indicating that the fitness con-

tributions of genes in the ,20%-bin are slowly marginal-
ized. At the same time, highly essential genes (.80%)

slowly start to dominate the GRN at the expense of the

intermediate classes (20–80%).

Together, these trends constitute a process in which the

network functionality evolves from being widely distributed

over many, mostly lowly contributing genes to a state with

a confined, highly specialized subset of genes performing

the network function. This results in an increase in lethality
of mutations that target essential network components but

can at the same time serve to decrease the amount of

ongoing mutations due to deletion of neutral genes.

Figure 7B illustrates the discrete changes of gene contribu-

tions in more detail. From generation 4,700–4,725 we see

that, while the total gene number remains constant, several

genes move at the same time to different contribution classes.

By a constant streamof pointmutations, there canbe a restruc-
turing of the contributions that individual genes have in the

network, something that has been observed in real regulatory

circuits of various yeast species (Ihmels et al. 2005; Tsong et al.

2006; Martchenko et al. 2007; Lavoie et al. 2010). Genes that

move into the low contribution bins (black and gray) during

this resorting process risk being irreversibly removed from

the network by a deletion. Figure 7C is further testimony that

function drift is a continuous process with an apparently neu-
tral character on the intermediate timescale.

Mutational Load

Because duplication and deletion rates of genes are equal in

our full model, we considered the role of mutational load in

the occurrence of the streamlining pattern. To visualize how

FIG. 7.—Specialization of genes in the GRN. Genes have been assigned to bins according to the fitness loss of the cell after knockout of the gene.

Five main bins exist for all 20% fitness partitions. The ,5%-bin (gray line) is a subset of the ,20%-bin (black line). (A) shows fractions that the

respective bins take up in the whole network. (B and C) show the actual bin sizes in numbers of genes. In (B), between generation 4,700 and 4,725, we

see that one gene moves to the ,20%-bin (black) from the 20%- to 40%-bin (brown), whereas a second gene from the brown bin increases its

contribution, moving into the 40%- to 60%-bin (yellow). At the same time, two genes from the 60%- to 80%-bin (orange) also move down to the

yellow bin. In (C), the.20%-bin (blue dashed line) sums over all main bins that have a higher than 20% fitness loss. This remains constant, whereas the

contributions of individual genes are continuously changing.
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mutational load evolves in the redundant part of our net-

works, we performed additional mutational analysis on sur-

viving lineages. Using knockout analysis as described above,

we focused on the neutral contribution class of genes with

less than 5% fitness loss. For this gene set, we created 50

mutants per gene with a point mutation. In figure 8, we plot
all individual fitness scores of these mutants next to a simple

measure of mutational load, being the sum of the average

residual fitnesses over all neutral genes, overlayed on the

total genome size and size of the neutral gene pool. It

can be clearly seen that the spread of the mutant fitness val-

ues as well as the load measure decrease toward the end of

the simulation.

Also, the size of the neutral gene set seems to roughly
correlate with the mutational load, showing a similar trend

to decline toward the end of the simulation. However, mu-

tational load can fluctuate quite strongly when the neutral

gene set is more or less stable (e.g., between generations

6,500 and 7,000). This illustrates that mutational load

can vary due to changes in the genetic background and

that individual genes that drift in and out of the set of neu-

tral genes by traversing the 5% essentiality cutoff can have

strongly differing contributions to mutational load. These
effects are exacerbated in the early generations, when

adaptive evolution is the dominant mode and temporary

drops in standard fitness occur relatively frequently, due to

short-term selection pressures in particular (extreme) lifetime

environments. However, it is still clear that the high levels of

mutational load associated with early genome expansion

(generations 1–1,000) are alleviated by subsequent stream-

lining (generations 1,000–2,000).
The fact that the average fitness in the population in-

creases while the fitness does not increase in the line of

descent (fig. 8B, generations 3,800–9,000) indicates that

robustness is evolving neutrally in the population (van

Nimwegen et al. 1999). Streamlining, by decreasing the

mutational load of neutral genes, contributes directly to this

increase of robustness.

Population Size Effects and Neutral Size Fluctuations

Streamlining is a robust pattern that appears to bemost pro-

nounced in high fitness populations and has slow dynamics

relative to the timescale of a simulation. In some runs, we

see a radically different pattern overlayed on the slow dy-

namics of streamlining, characterized by fast erratic fluctu-

ations in genome size, generally in the absence of variation

in fitness. Upon close inspection, these transient fluctuation
patterns derive from highly neutral stretches of the genome

that can be duplicated and deleted without fitness effect

(see fig. 9). The potential to be duplicated without costs

stems from the very low mutational load from the (stretches

of) neutral genes. In fact, the streamlining pattern and the

generation of highly neutral elements contribute to the neu-

tral evolution of robustness. In the case of these transiently

fluctuating genomic stretches, neutral genes, instead of
being eliminated by a deletion, are rendered ‘‘harmless’’

by a suppressing point mutation that quenches the effect

of most subsequent point mutations of the neutral gene.

These elements are then free to drift to higher copy num-

bers. Since we consider only tandem duplications in our full

model, the process has the potential to create an expanding

stretch of highly neutral elements.

If size fluctuations are indeed an effect of the indirect evo-
lution of robustness, it could be expected that larger popu-

lation sizes enhance both the streamlining and the fluctuation

pattern. To test this, we first performed additional simulations

where population sizewas increased 2-fold. Of ten large pop-

ulation runs, seven reached high fitness within 5,000 gener-

ations, providing enough time for streamlining, whereas

23 runs in the standard set met the same criteria. The average

of minimum genome sizes in the 10-fold larger populations
was significantly lower than that for populations in the stan-

dard set (22 vs. 37, P, 0.05, Mann–Whitney U test). On the

other hand, the ancestor in three of seven large population

runs reaches a maximum genome size above 200, subse-

quent to reaching the size minimum, whereas in only 1 of

FIG. 8.—Evolution of the mutational load associated with neutral

genes. (A) Individual mutant fitness fractions (black dots), illustrating the

breadth of mutational effects, and a simple mutational load measure

(gray graph) are shown together with the total genome size (brown

graph) and the set of neutral genes (cyan). (B) The corresponding

evolution of the fitness of the ancestor (red) and that of the population

as a whole (orange, averaged).
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23 standard runs, this maximum lies above 100. This shows

that larger effective population sizes enhance not only the

efficiency of streamlining but also the, apparently, opposite
pattern of neutral size fluctuations (e.g., see supplementary

fig. S3, Supplementary Material online). The explanation lies

in the mechanism of mutational load reduction that was

explained above.

As may be expected, when we reduced population size

10-fold, relative to the standard runs, amuch lower percent-

age of runs reached the high fitness regime. When we

increased the simulation time for these populations by
10-fold, the percentage of runs crossing the threshold

(0.85) to be in the fit set approximated that of the standard

set (�50%). In small populations, ancestor lineages that

belong to this, the fit have slightly but significantly lower

fitness than those in the standard populations. An average

2-fold higher standard variation in the running fitness of

ancestors further illustrates that small populations have more

difficulty in maintaining their high fitness. Nevertheless, we

see the same trend of streamlining and neutral fluctuation

in small populations but on a much longer timescale. While

after 5,000 generation streamlining, average minimum
genome size is significantly higher than in the standard runs

(59 vs. 37, P, 10�2, Mann–Whitney U test), after increasing

evolutionary time for the small populations by 10-fold,

streamlining is even more effective, and neutral fluctuations

are more pronounced compared with the standard runs

(minimum: 21 vs. 37, P , 10�3 and maximum: 126 vs. 45,

P, 0.05, Mann–Whitney U test). Thus, more effective selec-

tion, either by increasing population size or increasing evolu-
tionary time, leads first to minimal size genomes, which than

can expand and shrink by neutral processes.

Evolution of Robustness

What are the effects of long-term evolutionary process on

the fitness landscape along the line of descent? Up until

now, we have considered various mutational protocols to
highlight particular aspects of the mutational landscapes

for cells along the line of descent. On the one hand, special-

ization of genes suggests that lethality of mutations can

increase in long-term evolution, whereas on the other hand,

the slow increase of population fitness when adaptation has

FIG. 10.—Long-term fitness landscape evolution. A set of aver-

aged fitness landscapes of 2,000 generation intervals in the line of

descent of a single run is plotted. Fitness landscapes are constructed by

inducing rounds of mutations in individuals in the lineage at ten

generation intervals. The mutation scheme is identical to that used in

standard evolutionary runs, except that a 5-fold higher mutation rate is

used, resulting in a 0.5 chance for all mutational operators to affect an

individual gene. Colors of graphs correspond to the colored section in

the inset, showing the evolution of fitness.
FIG. 9.—Neutral genome fluctuations. As in figure 8, A shows

mutational load of neutral genes (black dots), total genome size

(brown), the subset of neutral genes (cyan), and the mutational load

measure (gray), but this time overlayed with fitness in the line of descent

(red). In the highlighted area (seen in more detail in B), fitness remains

initially constant, whereas the neutral gene complement increases

drastically. The most significant size increases occur after the mutational

load has gone down a very low level. Subsequently, when the genome

has shrunk but is still at a significantly higher level than before the

sudden increase, fitness starts to go up, eventually reaching the high

fitness regime after a 1,500 generation phase of adaptive evolution. It

appears that the new adaptive phase is triggered by the initially neutral

genome size fluctuations.
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halted indicates that robustness is increasing. We saw that
an increase in robustness is facilitated by removal of load

generating neutral genes. Figure 10 shows how rounds

of random mutations, identical to those experienced in

the full model, but with 10-fold increased mutation chance,

affect the fitness of mutants created along the line of de-

scent. For all of the ancestors at ten generation intervals,

we created 50 mutants and measured their residual fitness.

We plotted distributions that are lumped together for 2,000
generation intervals. We indeed see an increase in the lethal-

ity, both during adaptive and neutral evolution. Meanwhile,

the fraction of near neutral mutants is remarkably constant

after the first interval, despite an increase in fitness of over

50% (from 0.56 to 0.87) in the second interval. The

compensatory mechanism by which increasing lethality

can coincide with steady neutrality seems to be a decrease

of the number of near neutral mutants. This leads to the in-
teresting observation that the selection coefficient increases

over time, which in turn facilitates the maintenance of the

fittest phenotype in the population. Although our modeling

was not aimed at accurately predicting the shape of an or-

ganism’s mutational landscape, to our surprise we found

a remarkable correspondence with in vitro data of this dis-

tribution in the yeast Saccharomyces cerevisiae (Wloch et al.

2001; fig. 5A) (Sliwa 2005; Hall and Joseph 2010). Although
in our simulations intermediate effects diminish over

time, the u-shape of the distribution is even more pro-

nounced in the experimental results, suggesting that the

absence of intermediate effects is an evolving property of

the underlying genotype to phenotype mapping.

Discussion

Large ancestral genomes, genome expansion, and differen-

tial loss of genes are some of the most striking recurring

observations from a rapidly growing body of phylogenetic

reconstruction studies. All three trends arise within a frame-

work of populations of organisms whose structured ge-

nomes are shaped by, and at the same time dictate

adaptive and neutral evolutionary processes within

a changeable environment. A suitable modeling approach
can give vital insights into the generic patterns that can

be generated in biological evolving systems. To this end,

we evolved populations of virtual cells with structured ge-

nomes and a flexible genotype to phenotype mapping

and studied the evolution of their genomes.

It has been extensively shown that an interplay between

neutral and adaptive evolution is an important property of

complex genotype–phenotype maps (Huynen et al. 1996;
van Nimwegen et al. 1999; Soyer and Bonhoeffer 2006;

Ciliberti et al. 2007a, 2007b; Aldana et al. 2007) and that

given a high degree of freedom in the mapping, the coding

structure itself will evolve adaptive features (Crombach and

Hogeweg 2007, 2008; Knibbe, Coulon, et al. 2007;

Knibbe, Mazet, et al. 2007; de Boer and Hogeweg 2010).
In our virtual cell model, which exhibits a high degree of flexi-

bility in the evolving genotype to phenotype mapping, it

proved crucial to analyze the interplay between adaptive

and neutral evolutionary processes in detail in order to under-

stand the evolutionary dynamics of genome structuring and

the evolutionary potential of the different lineages.

In our model, we observe dynamic patterns of genome

structuring that operate on different evolutionary time-
scales. We have found the following scenario for a typical

evolutionary run of our model: A population of cells that

starts out ill-adapted goes through a phase of fast adapta-

tion that is initially accompanied by a large increase in

genome size and that is generally followed by rounds of

adaptive gene loss. After this fast adaptive phase, the

evolution takes on a neutral character, with long periods

of fitness stasis. During this phase, mutational load due
to secondary effects of neutral genes is alleviated. Stream-

lining but also quenching of the mutational effects of

neutral genes are important in load reduction. As a conse-

quence, the average fitness but not the maximum fitness in

the population steadily increases due to the neutral evolu-

tion of mutational robustness (van Nimwegen et al. 1999).

When the evolving neutrality of the genome structure leads

to the formation of highly neutral stretches of genes, this
improves the evolvability of the systemby providing a flexible

repertoire of potentially adaptive genes.

This scenario mimics the major patterns in gene content

evolution, inferred from phylogenetic analysis. Because we

showed that these patterns emerge as generic properties of

evolving populations of cells with structured genomes and

a flexible functional mapping, our scenario gives a possible

unifying explanation for the observations in the data. We
argue that genome complexification followed by gene loss

is to be expected and is achieved by an alternation of rapid

bursts of duplications during adaptive phases and long

phases with slow streamlining dynamics.

A striking feature of our model of genome size evolution

is the highly predictable occurrence of genome expansions

during early adaptive evolution. Although size variation in

our model is a governed by duplication patterns of a limited
set of gene types, our observation can help explain the re-

markably large gene complements of common ancestors of

the major kingdoms (Snel et al. 2002; Makarova et al. 2005;

Ouzounis et al. 2005; Cs}urös and Miklós 2009; David and

Alm 2010; Zmasek and Godzik 2011). The expansion

dynamics that we describe are in agreement with big bang

dynamics during the major transitions in evolution (Koonin

2007, 2010). Within the big bang hypothesis of evolution,
fast inflationary dynamics are a generic property of an evo-

lutionary process that exploits unparalleled new levels of

complexity. There are indications that big bang type events

have been triggered by dramatic changes in environmental

conditions (De Bodt et al. 2005; Fawcett et al. 2009; David
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and Alm 2010). Specifically in eukaryotes, whole genome
duplication events have been linked to the occupation of

new niches (Scannell et al. 2006; Van de Peer et al.

2009; van Hoek and Hogeweg 2009) and the survival of lin-

eages during drastic environmental changes (De Bodt et al.

2005). Taken together, the pattern that we observe in our

model and that has been postulated by Francino (2005) as

an important mechanism for short-term adaptation,

appears to be generic and occurring on many different
evolutionary timescales.

Our virtual cells can also be seen as rising to the challenge

of a drastic change in the environment for which they start

out ill-equipped. We found that a combination of adaptive

and neutral aspects of genome complexification explains

why inflationary dynamics are prevalent in successful surviv-

ing lineages. A bias in the early fitness landscape of ill-

adapted cells with small genomes accounts for a net fixation
of duplications in the line of descent. Moreover, lineages

stemming from an early common ancestor with a larger bias

toward beneficial duplications have larger genome expan-

sions. Lineages that had the largest early expansions had

the best chance to adapt fully. An important contributing

factor to the future success of lineages in our simulations

is extensive hitchhiking to higher copy numbers of genes

that are adjacent to the primary targets of dosage increasing
duplications on the genome. Indeed, results of runs where

duplications and deletions have been implemented as

mutations affecting individual genes instead of connected

stretches, but otherwise equal mutation rates, show almost

no expansion pattern and amuch lower success rate (further

discussed below). This suggests that the hitchhiking due to

spatial linkage in gross chromosomal rearrangements ( GCRs)

is crucial in supplying the building blocks for successful adap-
tation. Interestingly, a mechanism of short-term adaptation

by GCRs in yeast (Ferea et al. 1999; Dunham et al. 2002)

has been explained by structuring of the genome on an

evolutionary timescale (Crombach and Hogeweg 2007).

Although we assume no explicit bias in the rate of gene

deletion comparedwith duplication, loss of genes is a prom-

inent feature in our model, occurring in an adaptive as well

as a neutral context. Differential gene loss following species
radiation is an often observed pattern in phylogenies

(Scannell et al. 2006; Zmasek and Godzik 2011), although

the mechanisms behind it are not well understood. Conver-

gent gene loss is particularly prominent in the evolutionary

histories of obligate endosymbionts (van Ham et al. 2003;

Sakharkar et al. 2004; Khachane et al. 2007) and is usually

ascribed to a manifestation of Muller’s ratchet. In contrast,

in our model, gene loss does not necessarily entail a loss of
functional capacity. This is illustrated in our networks, where

streamlining always proceeds with full preservation of

fitness. Even genes with significant fitness contributions

can later drift to redundancy and become subject to stream-

lining due to compensatory effects.

In computational modeling, choosing reasonable param-
eters for simulations is an important issue. In the case of

evolutionary modeling, one can make a distinction between

the parameters of the model universe, invariant conditions

that the system evolves to cope with, and those parameters

that bear on the problem that is being studied, in our case

mutational parameters. The former type of parameters, such

as resource conversion rate, protein degradation rate, etc.,

have been kept constant in all simulations. By performing
additional simulations, varying mutational parameters in an

informative way, we found that our main results of the infla-

tion and streamlining pattern remain valid whenwe varied the

rates ofmutations but could not be fully reproducedwhen the

nature of genome scale mutations was changed from target-

ing stretches of genes to single genes, (See supplementary

table S1, SupplementaryMaterial online). The lack of adaptive

success when the spatial structure of duplications and dele-
tions is ignored, underlines the importance of the hitchhiking

mechanism in our standard runs for the rapid expansion pat-

tern as well as its long-term adaptive effect.

Another issue in computational modeling is the question

to which extent simplifications may influence the observed

phenomena. In order to focus on regulatory mechanisms

in cells, we have ignored microscopic processes like protein

stability, which has the potential to restrain genome size,
due to toxic effects of misfolding. We have shown that in

our model, strong negative selection on longer genomes is

present, due to the associated mutational load, triggering

a streamlining process. Only after prolonged evolution does

neutrality evolve, which sometimes leads to neutral size

fluctuations. In our opinion, adding protein stability would

not qualitatively (although possibly quantitatively) alter the

pattern of expansion and streamlining that we have
presented in this work.

Focusing on population size, the scenario that we pre-

sented has pronounced differences as well as interesting

parallels with theories that consider the lower efficacy of

purifying selection in organisms with small population sizes

to be the primary cause of the expansion of their genomes

(Lynch and Conery 2003a, 2003b; Teichmann and Babu

2004; Lynch 2006b, 2007). Instead of a gradual increase
in genome size as a result of a reduced selection against

slightly deleterious mutations, we see sudden expansions

due to rounds of duplications of adaptive, as well as hitch-

hiking, neutral genes. Counter to the expectation from the

latter theory that an increase in selective power should nec-

essarily lead to streamlined genomes, we found that in

10-fold larger populations neutral size fluctuations occur

more frequently and are much more pronounced. In agree-
ment, however, streamlining prior to these large fluctua-

tions proceeds significantly faster in larger populations.

Small populations, on the other hand, have similarly

enhanced streamlining and fluctuation trends when evolu-

tionary time is increased.
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Taking a leap of faith, we may attempt to understand the
specific case of the genomic complexity in the eukaryotic

kingdom in the light of the scenario that we have outlined.

Endosymbiogenesis undoubtedly presented a major adaptive

challenge to the functional capacities of the newly fledged

symbiotic organism. It is telling that the gene content of the

last eukaryotic common ancestor was estimated to have

increased to almost twice the size of the first common an-

cestor of eukaryotes by extensive paralogization (Makarova
et al. 2005). At least two more inflation events have been

characterized in the eukaryotes at the roots of eumetazoa

and vertebrata, respectively (Zmasek and Godzik 2011).

At the same time, streamlining is an ongoing process in

eukaryotes.

Typically, timescales of eukaryotic diversification aremuch

shorter than those of prokaryotes (Sheridan et al. 2003;

Battistuzzi et al. 2004; Chernikova et al. 2011). For example,
the ancestor of mitochondria is inferred to cluster within

the a-proteobacteria within close range of rickettsiales

(Sicheritz-Pontén et al. 1998; Kurland and Andersson

2000), which, given a minimal age of the eukaryotic lineage

of 1 G years (Chernikova et al. 2011) amounts to a diver-

gence time that is in stark contrast to the, in evolutionary

terms, extremely short divergence times of the large

mammalian divisions of approximately 100 Myr (Archibald
1999). We have stressed that streamlining is a slow process

compared with genome expansion. For eukaryotic evolu-

tion, the possible implication is that inflationary bouts have

come in such quick succession that not enough time has

passed to bring eukaryotic gene content back to the levels

seen in prokaryotes. On the other hand, similar to the

evolution of neutral size diversity in a subset of our simula-

tions, eukaryotes appear to have evolved a coding structure
that supports a high level of neutrality in genome size

variation, with closely related species showing many fold

differences in genome size (Gregory 2005, p. 12–24) and

evidence for significant levels of within-species variation

(Redon et al. 2006).

Concluding Remarks

An interplay of adaptive and neutral evolutionary processes
leads to a characteristic pattern of genome expansion and

gradual streamlining of genomes. More specifically, genome

structuring and evolutionary adaptation in a population of

cells to a fluctuating environment feed back on each other

to accommodate robustness to ongoing mutations as well

as evolvability in terms of genetic variability on a population

level. A perfect example of this interplay is the evolution of

neutral genetic material that serves as potential building
blocks in subsequent adaptive evolution. Early expansions,

although driven by adaptations to environmental condi-

tions, increase evolutionary potential due to neutral hitch-

hiking of stretches of genes. No biases in large-scale

mutations nor explicit costs on genome size were assumed,

leading to the conclusion that patterns are entirely depen-
dent on the interplay of the adaptive and neutral processes

described above. This interplay depends crucially on a flexi-

ble mapping that yields a high degree of freedom for the

evolving coding structure.

Our work makes the case for sufficiently complex models

to study a problem that is as large and as far reaching as the

evolution of genome sizes. At the same time, it should be

possible to fully analyze and interpret the mechanisms that
lead to pattern formation in silico. Here, we find general

principles of evolving biological systems that can be used

to interpret a range of remarkable patterns found in phylo-

genetic data.

The challenges in future modeling efforts lie in facilitating

true species radiation and niche occupation in our model

without sacrificing the possibility for detailed analysis. Suc-

ceeding in this approach can link our work even closer to
specific standing puzzles, such as the unparalleled diversifi-

cation of species during the Cambrian explosion, multifur-

cating patterns of radiation of the eukaryotic phyla, and

the impact of drastic environmental changes on rates of

genome evolution.

Supplementary Material

Supplementary tables S1 and figures S1–S3 are available at
Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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