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A new hand-held microfluidic 
cytometer for evaluating irradiation 
damage by analysis of the damaged 
cells distribution
Junsheng Wang1, Zhiqiang Fan1, Yile Zhao1, Younan Song1, Hui Chu1, Wendong Song1, 
Yongxin Song2, Xinxiang Pan2, Yeqing Sun3 & Dongqing Li2,4

Space radiation brings uneven damages to cells. The detection of the distribution of cell damage plays 
a very important role in radiation medicine and the related research. In this paper, a new hand-held 
microfluidic flow cytometer was developed to evaluate the degree of radiation damage of cells. The 
device we propose overcomes the shortcomings (e.g., large volume and high cost) of commercial 
flow cytometers and can evaluate the radiation damage of cells accurately and quickly with potential 
for onsite applications. The distribution of radiation-damaged cells is analyzed by a simultaneous 
detection of immunofluorescence intensity of γ-H2AX and resistance pulse sensor (RPS) signal. The 
γ-H2AX fluorescence intensity provides information of the degree of radiation damage in cells. The 
ratio of the number of cells with γ-H2AX fluorescence signals to the total numbers of cells detected by 
RPS indicates the percentage of the cells that are damaged by radiation. The comparison experiment 
between the developed hand-held microfluidic flow cytometer and a commercial confocal microscope 
indicates a consistent and comparable detection performance.

The effect of radiation on human health is a key issue, especially with the increase in human activities in the 
exploration of outer space1–6. Efforts have been made to study some biological materials in human body whose 
changes can be used to evaluate the degree of radiation damage. Currently, γ -H2AX is considered as one of the 
promising biomarkers for cell radiation damage7–13. γ -H2AX is formed from histone H2AX after being radiated at 
discrete nuclear foci that contain DNA repair factors like 53BP1. The quantities of these foci in cells are regarded 
as a valuable parameter to indicate the radiation damage. The amount of γ -H2AX can be detected by immuno-
fluorescence methods using primary γ -H2AX antibody and FITC fluorescent secondary antibody14–17, where 
the fluorescent intensity of FITC dye is proportional to the quantities of γ -H2AX foci and hence the radiation 
damage in cells.

However, space radiation brings uneven damages to cells, and the irregular distribution of radiation damage 
plays a very important role in radiation medicine and research18–20. Therefore, the immunofluorescence intensity 
of γ -H2AX alone is unable to provide the complete information to evaluate the radiation damage. At least two 
parameters are needed for this purpose: one is the immunofluorescence intensity to measure the degree of dam-
age for the damaged cells, and the other is the ratio of the number of damaged cells to the total number of cells in 
the sample under a given radiation dose.

The most common method of detecting fluorescence intensity of immunofluorescence is the use of flow 
cytometer21. The distribution of the foci with γ -H2AX can only be measured by a confocal microscope. However, 
these commercial equipments require well-trained operators, involve complex operation procedures, and con-
sume large volume samples and reagents. Furthermore, their large volume prevents them from applications for 
on-site or point-of-care detection22,23.
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The microfluidic chip technology enables the development of portable flow cytometers with many advantages 
such as handling small volume of sample and quick detection24–31. However, in order to achieve high sensitivity 
in fluorescent detection, microfluidic flow cytometers usually contain embedded optical fibers, which signifi-
cantly complicates the design of the device and increases its cost. Recently, a flow cytometer with a disposable 
microfluidic chip has been developed to detect the fluorescence intensity of immunofluorescence of γ -H2AX32. 
However, this device can only count the cells stained with fluorescence dyes and cannot obtain the number ratio 
of the damaged cells to all the cells.

Therefore, in order to completely evaluate radiation damage, a new hand-held microfluidic flow cytometer was 
developed in this paper. This device can measure two parameters: one is the number ratio of the damaged cells to 
all the cells under a given radiation dose, the other is the immunofluorescence intensity of damage cells. A resis-
tive pulse sensor (RPS) is used to measure the total number of cells. A miniaturized fluorescent detection module 
is used to detect the immunofluorescence intensity of γ -H2AX in cells and hence count the number of radiation 
damaged cells. The degree of radiation damage can be reflected by the distribution of the immunofluorescence 
intensity of γ -H2AX in the damaged cells. The number ratio of the cells with fluorescent dye to all the cells in the 
sample presents the percentage of the cells that are damaged. In order to evaluate the performance of the devel-
oped hand-held microfluidic flow cytometer, lymphocyte cells are taken as samples. The results from the devel-
oped hand-held microfluidic flow cytometer are compared with those from a commercial confocal microscope.

Methods and Materials
Signal detection system.  Resistance pulse sensor (RPS) is based on Coulter principle and can be used 
to count the number of cells by detecting the impedance change when a cell is passing through a small sensing 
gate. The signal intensity of RPS is proportional to particle size for a given sensing gate. The fluorescent signals 
are detected by using a self-designed miniature optical detection system as shown in Fig. 1. The detection system 
is comprised of a microfluidic chip platform, an excitation light source, a photo-detector, optical filters, and a 
data acquisition and processing unit. In fluorescence detection part, according to the excitation and emission 
spectrum of lymphocyte cells stained by FITC fluorescent dyes (the excitation peak of 492 nm and emission 

Figure 1.  (a) Schematic diagram of the microfluidic flow cytometer with fluorescence and RPS detection. (b–f )
Pictures of the hand-held microfluidic flow cytometer.
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peak of 525 nm), a LED (LZ1-10B200, cental wavelength of 485 nm, LED Engin, Inc., San Jose, CA, USA)  
is chosen as the excitation light source. In order to obtain a stable light output from LED, a LED lighting driver 
(STCS2ASPR, STMICROELECTRONICS, GENEVA, Switzerland) is used to drive the LED. A photodiode 
(S8745-01, Hamamatsu, Bridgewater, NJ) is used to detect the fluorescence. The output voltage of the photo-
diode is positively correlated to the fluorescence intensity. In order to block other scattered light, an emission 
filter (ET535, passing central wavelength of 535 nm and width of 40 nm, Chroma, Bellows Falls, VT) is placed 
between the sample and the photodiode. A shift phase differential amplifier is designed to extract pulse signals of 
the fluorescence from the photodiodes. Another amplifier circuit is developed for PRS detection. An A/D con-
verter (AD7707, Analog Devices, Inc., Norwood, MA, USA) and an ARM board (OK6410, Forlinx Embedded 
Technology .Inc., Hebei, China) form a data acquisition hardware. A QT program in Linux OS embedded in 
ARM board is used to acquire and process the signals from the amplifiers. The operation process of the developed 
system is shown in the supplementary information.

Microfluidic Chip design and microfabrication.  The structural diagram of the designed microfluidic 
chip is shown in Fig. 2. This microfluidic chip has six reservoirs including one sample reservoir, one waste reser-
voir, two sheath reservoirs and two RPS reservoirs. The cell samples are put into the sample reservoir and the PBS 
buffer is placed into two sheath reservoirs for hydrodynamic flow focusing. The two laminar flow streams from 
the two sides will force the lymphocyte cells sample to move in a single line in the middle, and pass through the 
detection spot one by one along the main microchannel center line. The detection spot is the RPS sensing gate 
where the signals of fluorescence and RPS of the lymphocyte cells are detected simultaneously. The width and 
length of the main microchannel from the sample reservoir to the waste reservoir is 200 μm wide and 4 cm long, 
respectively. The width of the sensing gate is 15 μm. All the microchannels are 30 μm in height and all reservoirs 
have a diameter of 5 mm and a depth of 2 mm.

The microfluidic chip was fabricated by bonding a PDMS plate with a glass slide (24 mm ×  50mm ×  0.15 mm, 
Citotest Labware Manufacturing Co., Ltd., Haimen, China) by the following standard soft-lithography protocol33. 
A layer of SU-8 photoresist (MicroChem Co., Newton, MA) was spread on a bare silicon wafer (Lijing Co. Ltd., 
Quzhou, China) by a spin coater (G3P-8, Cookson Electronics Equipment, Indianapolis, IN). Then a photomask 
containing the designed microchannel pattern was mounted on the silicon wafer and excited with an OAI 150 
illuminator. The SU8 master was attained after post-baking and developing processes. Liquid PDMS and curing 
agent was mixed, degassed and poured on the master, and then heated at 75 °C for 5 hours in a vacuum oven 
(Isotempmodel 280A, Fisher Scientific, Pittsburgh, PA) under normal pressure. Finally, the PDMS duplicate was 
taken from the master. Wells were formed by punching holes on the PDMS layer. The PDMS layer with the micro-
channel pattern was bound onto a glass slide after being treated for 60 seconds in a plasma cleaner (PDC-30G, 
Harrick Plasma, Ithaca, NY).

Sample preparation.  Lymphocyte cells preparation.  1 mL fresh anti-coagulation human blood from 
healthy donors was mixed with 1 mL PBS buffer and 2 mL lymphocyte cells separation solution. The milky white 
lymphocyte cells at the second layer were obtained after the mixture was centrifuged for 15 minutes at 1800 rev-
olutions/min. Then the lymphocyte cells were mixed with 5 mL cells washing liquid and centrifuged again for 
20 min at 1800 revolutions/min. The 1 mL grey white cells precipitation was extracted and mixed with PBS buffer 
to obtain 5 mL lymphocyte cells samples.

UV Irradiation.  The 5 mL lymphocyte cell sample was divided into 5 equal portions for blank control and irra-
diation under the four different radiation doses. A UVC light source (F6T5, 240 nm, Hitachi, Ltd. Japan) was used 
to irradiate the 1 mL cell samples in a culture dish. The radiation doses are 0 J/m2, 4 J/m2, 8 J/m2, 16 J/m2, and 32 J/
m2, respectively.

Immunofluorescent labeling and assay.  The immunofluorescent labeling of γ -H2AX with FITC was conducted 
by using the H2AX phosphorylation assay kit (Abcam, Cambridge, MA, USA) according to the manufacturer’s 
instructions. A commercial confocal microscopy (TCS SP5 II, Leica Microsystems GmbH, Wetzlar, Germany) 
was used for standard immunofluorescence assay. The analysis using the confocal microscopy was performed 
according to the standard operation manual.

Figure 2.  Diagram of structure and dimensions of the microfluidic chip used in this study. 
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Results and Discussion
Signal detection of fluorescent particles.  In order to demonstrate that the developed system in this 
study can detect both the fluorescent signal and the RPS signal of the same particle simultaneously, four commer-
cial polystyrene particles were chosen as sample to be tested. Typical signals of individual fluorescent particles 
(8.3 μm, fluorescent particle, 0.18% intensity, Dragon Green, Bangs Laboratories, IN, USA) are shown in Fig. 3(a). 
As can be seen from Fig. 3(a), a fluorescence pulse of a particle is generated when a fluorescent particle is passing 
through the detection spot. Correspondingly, a RPS pulse occurs. Every pulse represents a particle and the num-
bers of fluorescence pulses are equal to those of RPS pulses in Fig. 3(a). The amplitudes of both the fluorescence 
pulses and RPS pulses of the fluorescent particles fluctuate slightly, most likely due to the fluctuation in particle 
size. To clearly show the independence of both sensors of RPS and fluorescence detection, other three com-
mercial polystyrene particles with different sizes and different fluorescent emissions were also tested using the 
developed microfluidic cytometer, the signals of individual particles are shown in Fig. 3(b) (5.8 μm, fluorescent 
particle, FICP-50-2, Spherotech, IL, USA), (c) (8.3 μm, fluorescent particle, 0.85% intensity, Dragon Green, Bangs 
Laboratories, IN, USA) and (d)(10 μm, non-fluorescent particle, PPX-100-10, Spherotech, IL, USA). As can be 
seen from these results, both sensors are independent and the average amplititude of PRS signals of the particles 
is proportional to the average size of the particles. While the average fluorescence intensity of the particles is 
related to the total intensity of the fluorescent dye coated on the surface of the particles. These results show that 
the developed microfluidic cytometer can reliably and independently detect the fluorescent and RPS signals of 
the same particles simultaneously.

Signal analysis of lymphocyte cells after being radiated.  To verify the performance of the devel-
oped microfluidic cytometer for evaluating the radiation damage, lymphocyte cells were adopted as sample to be 
assayed. Figure 4(a) shows the signals of the fluorescence and RPS of the lymphocyte cells after being radiated 
under 32 J/m2 and then stained by FITC fluorescent dyes. The results show that the amplitude of these pulses are 

Figure 3.  RPS and fluorescence signals of individual particles (a) (8.3 μm, fluorescent particle, 0.18% intensity, 
Dragon Green); (b) (5.8 μm, fluorescent particle, FICP-50-2); (c) (8.3 μm, fluorescent particle, 0.85% intensity, 
Dragon Green); (d) (10 μm, non-fluorescent particle, PPX-100-10).
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not even because the degree of damage caused by the radiation for different cells is different so that the fluorescent 
intensities of lymphocyte cells are different. These different fluorescence intensities can be used to represent the 
damage distribution among the damaged cells. Theoretically, the fluorescence intensity of non-radiated cells is 
zero, however, it is worth noting that the real fluorescent intensity of non-radiated cells is not zero but a certain 
value owing to the diffusion of the fluorescent dye. Figure 4(b) shows that the corresponding voltage of the flu-
orescence intensity of non-radiated cells is less than 0.4 V, therefore, it is necessary to obtain a net fluorescence 
intensity by subtracting this value from the gross fluorescence intensity of the radiated cells as background noise. 
In order to show the peaks clearly, Fig. 4(b) shows an enlarged view of Fig. 4(a) from 120 s to 210 s. As seen in 
Fig. 4(b), each peak of fluorescence signals corresponds to a peak of RPS signals; however, not every RPS peak has 
a corresponding fluorescence peak. That is, the numbers of RPS signals–the total number of cells (NRPS) are more 
than those of fluorescence signals–the number of cells with radiation damage (Nfluo). In other words, the ratio of 
these two numbers (Nfluo/NRPS) can be used to measure the percentage of cells with radiation damage. To verify 
the differences in fluorescent intensity correlate with radiation damage, the actual confocal images of the γ -H2AX 
fluorescent marker in imaged cell under four typtical radiation conditions are given as comparison, which are 

Figure 4.  Typical signals of individual lymphocyte cells (a) radiated under 32 J/m2; (b) enlarged view of Fig. 4(a) 
from 120 s to 210 s. The actual confocal images of the γ -H2AX fluorescent marker in imaged cell radiated for 
different time under 32 J/m2 (c) for 1.25 minutes; (d) for 2.5 minutes; (e) for 5 minutes; (f) for 10 minutes.
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shown in Fig. 4(c–f). From these actual images, we can see that the number of radiation damaged cells and the 
fluorescence intensity in cell both increase with the increase of the radiation intensity.

Comparison experiments between the commercial confocal microscope and the developed 
microfluidic cytometer.  The fluorescence intensities of a group of lymphocyte cells after being radiated 
under 32 J/m2 were measured by a confocal microscope. When taking 100 cells that were detected to have flu-
orescent signals as sample, Fig. 5(a) shows their fluorescence intensities distribution. Under the same radiation 
treatment, the fluorescence intensities distribution of 100 cells that were detected to have fluorescent signals 
measured by the developed microfluidic cytometer is also shown in Fig. 5(a). The y-axis “the distribution ratio %”  
means the percent of the number of cells within a certain range of fluorescence intensity to the total number of 
cells. The results show that the fluorescence distributions measured by these two different instruments are con-
sistent. Furthermore, it is easy to understand that the higher fluorescent intensity indicates stronger radiation 
damage. The developed microfluidic cytometer can detect the different degrees of damage among the radiation 
damaged cells. In Fig. 5(b), the y-axis “the detection ratio %” shows that the ratio of the number of radiation 
damaged cells to the total number of cells in the sample at the different radiation dosage rates. The results show 
that, with the increase of radiation dosage rate, the percentage of radiation damaged cells will increase. There is 
a good agreement between the results measured by the commercial confocal microscope and that by developed 
microfluidic cytometer.

Conclusion
A handheld microfluidic flow cytometer has been developed in this work. The developed device is capable of eval-
uating the radiation damage of cells by measuring both the ratio of the number of cells with γ -H2AX fluorescence 
signals to the total numbers of cells in the sample and the distribution of γ -H2AX fluorescence intensities in the 
damaged cells. The number ratio indicates the percentage of the cells that are damaged by the radiation. The dis-
tribution in the fluorescent intensities points to different degrees of damage among the radiation damaged cells. 
The simple prototype of the developed microfluidic flow cytometer can detect fluorescent signals corresponding 
to a radiation dose rate as low as 0.95 J/m2, close to the detection limit of using a commercial confocal microscope, 
0.75 J/m2. The developed device has many advantages such as low cost, easy operation and portability, and hence 
holds potential for onsite evaluation of radiation damage.

Figure 5.  Comparison experiments between a commercial confocal microscope and the developed 
microfluidic cytometer. (a) Fluorescence intensity distribution for 100 cells after being radiated under 32 J/
m2; (b) the ratio of the number of radiation damaged cells to the total number of cells in the sample at different 
radiation doses.
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