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OBJECTIVE—We previously showed that peroxisome prolif-
erator–activated receptor (PPAR)-� in �-cells regulates pdx-1

transcription through a functional PPAR response element
(PPRE). Gene Bank blast for a homologous nucleotide sequence
revealed the same PPRE within the rat glucose-dependent insu-
linotropic polypeptide receptor (GIP-R) promoter sequence. We
investigated the role of PPAR� in GIP-R transcription.

RESEARCH DESIGN AND METHODS—Chromatin immuno-
precipitation assay, siRNA, and luciferase gene transcription
assay in INS-1 cells were performed. Islet GIP-R expression and
immunohistochemistry studies were performed in pancreas-
specific PPAR� knockout mice (PANC PPAR��/�), normo-
glycemic 60% pancreatectomy rats (Px), normoglycemic and
hyperglycemic Zucker fatty (ZF) rats, and mouse islets incubated
with troglitazone.

RESULTS—In vitro studies of INS-1 cells confirmed that
PPAR-� binds to the putative PPRE sequence and regulates
GIP-R transcription. In vivo verification was shown by a 70%
reduction in GIP-R protein expression in islets from PANC
PPAR��/� mice and a twofold increase in islets of 14-day
post-60% Px Sprague-Dawley rats that hyperexpress �-cell
PPAR�. Thiazolidinedione activation (72 h) of this pathway in
normal mouse islets caused a threefold increase of GIP-R protein
and a doubling of insulin secretion to 16.7 mmol/l glucose/10
nmol/l GIP. Islets from obese normoglycemic ZF rats had twofold
increased PPAR� and GIP-R protein levels versus lean rats, with
both lowered by two-thirds in ZF rats made hyperglycemic by
60% Px.

CONCLUSIONS—Our studies have shown physiologic and
pharmacologic regulation of GIP-R expression in �-cells by
PPAR� signaling. Also disruption of this signaling pathway may
account for the lowered �-cell GIP-R expression and resulting
GIP resistance in type 2 diabetes. Diabetes 59:1445–1450,
2010

G
lucose-dependent insulinotropic polypeptide
(GIP) is a 42–amino acid incretin hormone that
binds to a seven-transmembrane G-protein–
coupled receptor (GIP-R) that is expressed in

numerous tissues including islet �-cells and �-cells (1,2).
Its best-known actions in �-cells are to augment meal-
related insulin secretion and over the long-term to in-
crease proinsulin synthesis and �-cell proliferation and
survival (3,4). Several downstream signaling pathways
from the �-cell GIP-R have been characterized. In contrast,
little is known about GIP-R expression. A cAMP response
element and SP1 and SP2 transcription factor binding sites
are present in the 5� promoter region, but no physiologic
modulators are known (4,5). As such, our understanding
of GIP physiology is based solely on regulated GIP secre-
tion and rapid metabolism to modulate its cellular actions.
The one exception is the lowered number of �-cell GIP-R
in animals (6,7) and humans (8) with type 2 diabetes, and
the resulting GIP resistance (9), which results from hyper-
glycemia through an unknown mechanism (7,10).

Our laboratory has studied the biologic actions of
PPAR� in �-cells and shown transcriptional regulation of
the prodifferentiation transcription factor Pdx-1 (11,12).
As part of our studies, we identified the PPAR response
element (PPRE) within the pdx-1 promoter (12). We now
report finding the same PPRE sequence within the rat
GIP-R promoter, followed by confirming physiologic and
pharmacologic regulation of GIP-R transcription in �-cells
by PPAR�. Also, we provide evidence that the lowered
�-cell GIP-R expression in hyperglycemic rats may result
from impaired PPAR� expression.

RESEARCH DESIGN AND METHODS

Animal models. All protocols were in accordance with the principles of
laboratory animal care and were approved by the University of Vermont
Institutional Animal Care and Use Committee.
60% pancreatectomy (Px) rats. The 5-week-old male Sprague-Dawley rats,
and Zucker fatty (ZF, fa/fa) or lean controls (ZL, fa/�or �/�), underwent 60%
Px or sham Px as previously described (11,13).
PANC PPAR��/� mice. Mice with PPAR� deficiency restricted to pancreatic
epithelium were generated by crossing Pdx-1 Cre mice and mice with two
floxed PPAR� alleles as previously detailed (12,14). Controls were littermate
Cre negative PPAR� floxed mice.
INS-1 cells. INS-1 (832/13) cells were cultured as previously described
(11,12).
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Experimental methods. See the online appendix, available at
http://diabetes.diabetesjournals.org/cgi/content/full/db09-1655/DC1.
Statistical analysis. Data are presented as mean � SEM. Each data point
from the animal studies was obtained from an individual rat or mouse.
Statistical significance was determined by the unpaired Student’s t test or
two-way ANOVA.

RESULTS

GIP-R promoter PPRE. We previously identified a func-
tional PPRE in the mouse pdx-1 promoter (12). Gene Bank
blast for this nucleotide sequence found a 100% identical
sequence in the rat GIP-R promoter at positions �871 to
�883 from the transcription start site (Gene Bank:
AF050667) (supplemental Fig. 1A, available in the online
appendix). MatInspector software (15) uncovered analo-
gous sequences in the mouse and human GIP-R promoters
(supplemental Fig. 1B).
INS-1 cell studies. Studies were performed in rat-derived
INS-1 cells to confirm functionality of this putative PPRE.
PPAR� binding was determined with the chromatin immu-
noprecipitation assay. Flanking primer pairs for a 213-bp
PCR product that included the GIP-R PPRE (schema in
supplemental Fig. 2A) generated the correct-sized PCR

band with input DNA and PPAR� antibody–precipitated
DNA, whereas only faint bands were observed with non-
immune serum (Fig. 1A). Representative negative and
positive controls are shown in supplemental Fig. 2.

PPAR� regulation of GIP-R expression was tested using
four pooled siRNA duplexes against PPAR� in INS-1 cells
that cause a 75% decrease in PPAR� protein (11). Cells
were treated with troglitazone or vehicle for 72 h (Fig. 1B).
GIP-R mRNA band intensity was markedly lowered in the
PPAR� siRNA cells (lanes 1 and 4). Troglitazone doubled
it in control cells (lane 2), whereas the increase was
eliminated when troglitazone and the PPAR� siRNA du-
plexes were used together (lane 3).

PPAR� regulation of GIP-R transcription was confirmed
with a luciferase reporter gene assay that used a wild-type
rat GIP-R promoter fragment and also those containing
mutations in the DR1 and DR2 hexamers of the GIP-R
PPRE (Mut-1 and Mut-2 fragments), subcloned into the
pTAL luciferase reporter vector. The DR1 and DR2 muta-
tions both lowered basal luciferase activity (Mut-1 63 � 9%
of wild-type GIP-R, P � 0.015; Mut-2 38 � 8% of wild-type
GIP-R, P � 0.002) (Fig. 1C). Also, 24-h incubation with
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FIG. 1. Experiments in INS-1 cells. A: Chromatin immunoprecipitation assay to assess PPAR� binding to the putative PPRE on the GIP-R gene.
Chromatin fragments (300–500 bp length) were generated. Representative gel showing chromatin preparations from two separate experiments
immunoprecipitated with rabbit polyclonal anti-PPAR� (lanes 2 and 3) or the negative control nonimmune serum (lanes 4 and 5). Lane 1 is
nonimmunoprecipitated DNA. Results show the expected 213-bp PCR product with the anti-PPAR� and input DNA, but not the control serum. B:
PPAR� siRNA. INS-1 cells underwent transfections with siRNA duplexes against the rat PPAR� gene or scrambled siRNA duplexes. Cells were
cultured with media that contained 10 �mol/l troglitazone or DMSO for 72 h, and the isolated RNA was assessed for GIP-R mRNA levels by
RT-PCR. Representative gels show scrambled siRNA cells cultured with DMSO (lane 1), scrambled siRNA cells cultured with troglitazone (lane

2), siRNA cells cultured with troglitazone (lane 3), and siRNA cells cultured with DMSO (lane 4). Cyclophilin B mRNA was used as an internal
control. C and D: Luciferase reporter transcription assay. INS-1 cells were transfected with wild-type or mutated pTAL-PPRE-rat GIP-R vectors,
and 24 h post-transfection, the cells were treated with 10 �mol/l troglitazone or DMSO for 24 h. WT � wild-type rat GIP-R PPRE
(CCCATG-G-AGGTCA). Mut-1 � mutation of the 5� DR1 half-site of the rat GIP-R PPRE (AAAATA-G-AGGTCA). Mut-2 � mutation of the 3� DR2
half-site of the rat GIP-R PPRE (CCCATG-G-ATTTTA). C shows the relative basal luciferase activity (DMSO-treated cells) compared with the
wild-type rat GIP-R PPRE construct as means � SEM of three separate experiments. D shows the troglitazone treatment effect on luciferase
reporter activity of the wild-type and mutated GIP-R PPREs. *P < 0.015 vs. DMSO-cultured wild-type GIP-R PPRE cells. #P < 0.001 vs.
troglitazone cultured wild-type GIP-R PPRE cells.
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troglitazone (Fig. 1D) stimulated expression of the wild-
type GIP-R construct (162 � 8% of vehicle-treated wild-
type cells, P � 0.002), whereas this effect was absent with
both mutations.
In vivo studies. In vivo testing of PPAR� regulation of
�-cell GIP-R expression was carried out using PANC
PPAR��/� mice that have a pancreas-specific deletion of
PPAR� from a Cre/loxP recombinase system with Cre
driven by the pdx-1 promoter (14). We previously reported
that 8-week-old male PANC PPAR��/� mice are modestly
hyperglycemic, with a normal �-cell mass and normal-
appearing pancreas histology and islet cytoarchitecture
(12). The current studies confirmed the expected defect in
GIP-R expression (Fig. 2A, mRNA; Fig. 2B, protein 29 � 5%
of control, P � 0.0001) in isolated islets from these mice.
Immunofluorescence studies of pancreas sections showed
markedly lowered GIP-R staining in islet �-cells and
non–�-cells of PANC PPAR��/� mice versus control mice
(Fig. 2C).

Analogous studies were performed in normoglycemic
Sprague-Dawley rats 14 days after 60% Px when islet
nuclear PPAR� expression is 2.5-fold increased (11). Com-
parable increases in GIP-R mRNA (Fig. 3A) and protein
(Fig. 3B, 1.9 � 0.2-fold of sham, P � 0.02) were found in Px
versus sham rat islets. Also, GIP-R staining intensity was
increased in islet �-cells and non–�-cells versus the sham
rats (Fig. 3C).
Troglitazone studies. Thiazolidinedione (TZD) stimula-
tion of GIP-R expression was tested by incubating normal
mouse islets for 72 h with troglitazone or vehicle. Trogli-

tazone caused a near-tripling of the GIP-R protein level
(supplemental Figs. 3A and B, 2.7 � 0.4-fold of DMSO
islets, P � 0.02). Also the insulin response to 16.7 mmol/l
glucose/10 nmol/l GIP peptide was nearly doubled (P �
0.05), whereas insulin responses to 2.8 mmol/l glucose
with or without GIP peptide, and to high glucose alone,
were unchanged (supplemental Fig. 3C).
Hyperglycemic rats. We speculated that impaired PPAR�
expression caused the �-cell GIP-R depletion in animal
models of type 2 diabetes (6,7). Accordingly, we per-
formed PPAR� and GIP-R Western blots on islet extracts
from 3-week postsurgery 60% Px and sham-operated ZF
and ZL rats, based on our report that Px ZF rats are
hyperglycemic (	15 mmol/l) with the same degree of
obesity and serum levels of nonesterified fatty acids and
GIP as normoglycemic sham ZF rats (13). Figure 4 shows
that islet PPAR� and GIP-R protein levels are doubled in
the sham ZF versus sham ZL rats (1.9 � 0.1-fold, P � 0.001;
2.2 � 0.3-fold, P � 0.01, respectively). In contrast, both are
lowered by 60% in Px (hyperglycemic) ZF islets versus the
sham (normoglycemic) ZF islets (0.7 � 0.1-fold and 0.8 �
0.1-fold of sham ZL islets, respectively).

DISCUSSSION

We used in vitro and in vivo techniques to show for the
first time that GIP-R transcription in �-cells is regulated by
PPAR�. Also, that pharmacologic activation of PPAR� by
TZDs induces the same effect resulting in greater GIP
potentiation of glucose-induced insulin secretion. These
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FIG. 2. Islet GIP-R mRNA and protein expression, and pancreas immunostaining for GIP-R, in 8-week-old male PANC PPAR��/� mice with a
pancreas-specific knockout of PPAR� (KO) and littermate floxed control mice (Cre�). Representative gels showing PCR products for islet GIP-R
and cyclophilin (A) and immunoblots for GIP-R and �-actin from two separate PANC PPAR��/� and two floxed control mice (B) are shown. C:
Representative islet fields on a pancreas section from a male PANC PPAR��/� and floxed control mouse stained with rabbit GIP-R antiserum in
the left panels, costained with insulin antiserum in the middle panels, and insulin antiserum alone in the right panels. The scale bar is 20 �m.
(A high-quality digital representation of this figure is available in the online issue.)
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results add to our prior studies of PPAR� signaling in
�-cells that showed 40% of adult mouse islet pdx-1 expres-
sion is PPAR� regulated (11,12) by our now finding a
second gene with the identical PPRE and functional
characteristics.

There are several noteworthy implications to these
results. First, Pdx-1 is considered the most important
transcription factor in �-cells related to its essential role
for normal �-cell function, viability, and compensation
capacity (16). Also, studies of incretin receptor knockout
mice and in vivo usage of GIP-R peptide agonists have
demonstrated a necessary role for GIP in normal mealtime
glucose tolerance and insulin secretion (17,18). Clinical
trials have found a particularly high success rate of TZDs
in pre-diabetes and early type 2 diabetes, with the mech-
anism believed to be the peripheral insulin sensitization
lowering the drive for insulin secretion (so-called “�-cell
rest”) (19). However, given the importance of the identi-
fied PPAR�-regulated genes in �-cells, our results raise the
possibility that direct PPAR�-mediated effects on �-cells
also account for some of the clinical benefits. Indeed,
others have shown a direct effect of TZDs to restore Pdx-1
levels and reduce endoplasmic stress in islets from dia-
betic rats (20).

Second, there is the possibility we have uncovered an
unknown feature of incretin physiology, i.e., variable
GIP-R expression, related to our finding increased islet
GIP-R expression in two rat models of �-cell compensa-
tion from unrelated causes: reduced �-cell mass in 60% Px
Sprague-Dawley rats (21) and mutated leptin receptors
resulting in obesity, insulin resistance, and hyperlipidemia

in ZF rats (13). This shared observation is particularly
interesting, since there is no precedence for GIP-R hyper-
expression except in the adrenocortical tumors of some
individuals with Cushing’s syndrome (22). Also, our find-
ing that the GIP-R hyperexpression in both models was
paralleled by increased �-cell expression of PPAR� (11;
Fig. 4) is consistent with the main conclusions of this
study regarding PPAR� regulation of �-cell GIP-R expres-
sion. On the other hand, an in vitro study reported PPAR�
regulates �-cell GIP-R expression and speculated this
effect occurs in vivo related to the �-cell fatty acid load
(23). This mechanism seems unlikely in the 60% Px
Sprague-Dawley rats, since serum triglyceride and free
fatty acid levels are unchanged post-Px in lean rats
(13,21), plus islet PPAR� expression is reduced (13). In
contrast, ZF rats are markedly hyperlipidemic (13),
making this a potential mechanism. Also the lack of a
post-Px increase in PPAR� and GIP-R expression in ZL
rats (Fig. 4) may reflect the different times of study—3
weeks post-Px in ZL rats versus 2 weeks post-Px in
Sprague-Dawley rats.

The third implication of our results is our speculation
that aberrant PPAR� signaling is a new mechanism for the
lowered �-cell GIP-R expression and GIP resistance in
animal and human type 2 diabetes (6–9). Hyperglycemia
causes this effect in animals (7,10), but no mechanistic
details are known except for a study that reported accel-
erated GIP-R degradation in islets cultured at high glucose
conditions (24). Figure 4 supports our proposal by show-
ing parallel reductions in islet expression of PPAR� and
GIP-R in the hyperglycemic ZF rats. However, Px ZF rats
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FIG. 3. Islet GIP-R mRNA and protein expression, and pancreas immunostaining for GIP-R, in 14-day postsurgery 60% Px and sham-operated
Sprague-Dawley rats. Representative gels showing PCR products for islet GIP-R and cyclophilin (A) and immunoblots for GIP-R and �-actin from
two separate Px and sham rats (B) are shown. C: Representative islet fields on pancreas section from a Px rat and a sham-operated rat stained
with rabbit GIP-R antiserum in the left panels and costained with insulin antiserum in the right panels. The scale bar is 20 �m. (A high-quality
digital representation of this figure is available in the online issue.)
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also have a reduction in islet PPAR� mRNA expression
(13), so the exact mechanism is unknown. A related issue
is the lowered �-cell expression for the other incretin
hormone receptor (GLP-1) in animals and humans with
type 2 diabetes (7,8). However, the molecular mechanism
is likely different from the GIP-R depletion based on the
study by Xu et al. (7) that performed 96-h glucose infusions
in conscious rats and found islet GLP-1R mRNA levels fell
50%, whereas GIP-R mRNA levels modestly increased, plus
they noted the same divergence in 2-day high glucose
cultured islets. Also, it is likely that the lowered islet
incretin receptor expression in type 2 diabetes is multifac-
torial, with recent interest in disrupted TCF7L2 signaling
(8). Thus, our results suggest that �-cell PPAR� regulation
of GIP-R expression is a newly identified feature of incre-
tin (patho)-physiology and TZD therapeutics. Also the
lowered islet PPAR� expression in Px ZF rats (glycemia 15
mmol/l) may provide a new understanding why TZD
therapy is so powerful in pre-diabetes and early type 2
diabetes as opposed to the more modest efficacy with
advanced type 2 diabetes (19,25).

In summary, GIP-R is a newly described PPAR�-regu-
lated gene in �-cells. Expression of both genes is increased
in rat models with �-cell adaptation to diverse stimuli.
Also, TZDs augment GIP potentiation of glucose-induced
insulin secretion through this mechanism. In contrast, this
expression system is downregulated in diabetic rats. As
such, our studies have uncovered a new mechanism for
regulatory control of the �-cell GIP-R expression and may
have added a new understanding to incretin (patho)-
physiology and TZD therapy.
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