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Abstract

The last step of cysteine biosynthesis in bacteria and plants is catalyzed by O-acetylserine sulfhydrylase. In bacteria, two
isozymes, O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B, have been identified that share similar binding
sites, although the respective specific functions are still debated. O-acetylserine sulfhydrylase plays a key role in the
adaptation of bacteria to the host environment, in the defense mechanisms to oxidative stress and in antibiotic resistance.
Because mammals synthesize cysteine from methionine and lack O-acetylserine sulfhydrylase, the enzyme is a potential
target for antimicrobials. With this aim, we first identified potential inhibitors of the two isozymes via a ligand- and
structure-based in silico screening of a subset of the ZINC library using FLAP. The binding affinities of the most promising
candidates were measured in vitro on purified O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B from
Salmonella typhimurium by a direct method that exploits the change in the cofactor fluorescence. Two molecules were
identified with dissociation constants of 3.7 and 33 mM for O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B,
respectively. Because GRID analysis of the two isoenzymes indicates the presence of a few common pharmacophoric
features, cross binding titrations were carried out. It was found that the best binder for O-acetylserine sulfhydrylase-B
exhibits a dissociation constant of 29 mM for O-acetylserine sulfhydrylase-A, thus displaying a limited selectivity, whereas the
best binder for O-acetylserine sulfhydrylase-A exhibits a dissociation constant of 50 mM for O-acetylserine sulfhydrylase-B
and is thus 8-fold selective towards the former isozyme. Therefore, isoform-specific and isoform-independent ligands allow
to either selectively target the isozyme that predominantly supports bacteria during infection and long-term survival or to
completely block bacterial cysteine biosynthesis.
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Introduction

In bacteria and plants cysteine is the only source of sulfur that is

required for the synthesis of a variety of biomolecules, including

methionine, Fe-S clusters, thiamine, glutathione, and biotin [1,2].

In microorganisms, cysteine supplies the reducing power for

protection against oxidative stress, either directly [3] or indirectly

via reducing systems like glutathione/glutathione reductase,

mycothione/mycothione reductase [4] or trypanothione/trypano-

tathione reductase [5]. In bacteria, cysteine is synthesized via the

reductive sulfate assimilation pathway involving five enzymes

(Figure 1). The cysteine regulon of pathogenic microorganisms is

up-regulated, in vitro, under oxidative stress [6], in the presence of

nitric oxide [7], and in vivo, during infection or long term survival

[8,9]. It has been proposed and experimentally proved that

enzymes involved in sulfur metabolism, and specifically in cysteine

biosynthesis, are targets for the development of novel antibiotics

[4,6,10–23]. For example, S. typhimurium knock-out for cysteine

synthase showed an increased susceptibility to ciprofloxacin, with a

MIC 500-fold lower than wild type bacterium [24]. The

mechanism of action of antimonials in the treatment of

Leishmaniasis has been demonstrated to be linked to the

biosynthesis of trypanothione and to a marked decrease in cellular

thiol redox potential [25]. Furthermore, inactivation of enzymes

involved in cysteine and methionine biosynthesis in Mycobacterium

tuberculosis, significantly reduces bacterial virulence and persistence

during the chronic phase of infection in mice [22]. Therapeutic

strategies against microbes that rely heavily on sulphur metabolism

for efficient host infection and colonization, such as M. tuberculosis

and Entamoeba histolytica, have been proposed [4,11].
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In most bacteria and plants, cysteine biosynthesis culminates

with the b-replacement of an activated serine derivative, O-

acetylserine, by bisulfide, catalyzed by a family of enzymes known

as O-acetylserine sulfhydrylases (OASS) [26]. OASS is a member

of the cysteine synthase superfamiliy [26] and is a pyridoxal 59-

phosphate-dependent enzyme. Two OASS isozymes, OASS-A

and OASS-B, have been identified that are differentially expressed

depending on growth conditions. OASS-A is present at basal levels

and is favored under aerobic conditions and in rich media,

whereas OASS-B is expressed under anaerobic conditions [27].

The catalytic mechanism [27,28], spectroscopic properties [29–

32], and stability [33–35] of OASS-A have been characterized and

compared with those of OASS-B [36]. The enzyme belongs to the

fold type II of the PLP-dependent enzyme family [37], whose

prototype is tryptophan synthase [38,39]. The three-dimensional

structure of OASS from different species was determined,

including Haemophilus influenzae, Escherichia coli, S. typhimurium, E.

histolitica, Aeropyrum pernix, Thermotoga maritima, M. tuberculosis,

Leishmania major and Arabidopsis thaliana, either in the absence or

presence of ligands [16,36,40–54].

Figure 1. Cysteine biosynthesis. Upper panel: Intermediates of cysteine biosynthesis in mammals and bacteria. The red arrows indicate the
biosynthetic pathway in mammals and the yellow arrows the biosynthetic pathway in bacteria. Lower panel: Sulfur assimilation in bacteria. Sulfate
and thiosulfate are the most abundant forms of extracellular sulfur, the latter being predominant under less oxidizing conditions. Inorganic sulfur
enters the cells through specific transporters. In contrast to OASS-A, OASS-B can directly use thiosulfate for cysteine biosynthesis. The product S-sulfo-
L-cysteine is reduced by glutaredoxins to cysteine and sulfide that enters in the last step of the sulfate reduction pathway [120,121].
doi:10.1371/journal.pone.0077558.g001
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The interaction of OASS with serine acetyltransferase (SAT),

the preceding enzyme in the cysteine biosynthetic pathway, has

been characterized determining both the binding affinity and

kinetic mechanism [16,55–63]. OASS-A forms a tight complex

with SAT with a Kd in the nanomolar range [55,61], whereas

OASS-B does not interact with SAT [55,56]. SAT binds to the

OASS-A active site via its C-terminal peptide, resulting in a

competitive inhibition of OASS [45,61]. OASS-A forms a fast

encounter complex with SAT, followed by a slow conformational

change [64]. The structure of OASS-A from H. influenzae was

determined with the C-terminal decapeptide of SAT bound in the

active site [45]. Only the last four amino acids (NLNI) were

detected, suggesting that they have a specific role in the energetics

of the interaction. This conclusion is supported by extensive

mutational and computational analysis [16,61], also showing the

relevance of the C-terminal amino acid isoleucine for OASS-SAT

formation [51,65]. The contribution of individual amino acids

contained in the C-terminal sequence of SAT to complex

formation and to binding specificity towards OASS-A and

OASS-B was investigated using a small library of pentapeptides

[19,66]. Furthermore, recently, inhibitors for OASS-A have been

obtained via a classical medicinal chemistry approach [18] and by

virtual screening [11,67].

For the identification of ligands specific for either OASS-A or

OASS-B from S. thyphimurium we carried out complementary in

silico and in vitro investigations. Our approach is based on the in

silico screening of a subset of the ZINC library [68] with FLAP

[69], docking with GOLD [70,71] and re-scoring using HINT

[72]. Many different approaches are exploited for in silico

screening. As stated by Ma et al. [73] structure- or ligand-based

virtual screening methods, usually based on fingerprinting, are

used for simulating the interactions of a biomolecular target with

compounds libraries in a rapid and cost-effective manner. FLAP

belongs to this category of fingerprint methods, normally classified

according to their dimensionality ranging from 1D to 3D [74].

The main strength of these approaches lies in their ability of

comparing multiple fingerprints, i.e. a mathematical representa-

tion of a molecule, and computing their similarity using similarity

coefficients [75]. Given the increased availability of computer

power, docking approaches have been also exploited for screening

and for investigating the binding mode of small molecules into the

target binding pocket. Docking methods that have been developed

and successfully applied in virtual screening experiments include

AutoDock and AutoDock Vina [76–78]; DOCK [79–81]; FlexX

[82]; Glide [83]; GOLD [84,85]; Surflex [86,87]. Their strengths

and weaknesses, along with applications, have been reported by

Bielska et al. [75]. Our choice of using FLAP was based on the

available computational resource and on the positive results

previously obtained [88–97].

The binding affinities of the best hits were evaluated in vitro on

purified OASS-A and OASS-B, exploiting the change of PLP

fluorescence emission upon binding [30–32,55]. Ligands that bind

to either OASS-A or OASS-B with Kd of 4–34 mM were

identified. As a somewhat serendipitous result, ligands that bind

to both isoforms with Kds in the micromolar range were also

found. This result is fully explained by a few common

pharmacophoric features of the active site, in spite of the

completely distinct ability of interaction with SAT.

Materials and Methods

Virtual Screening
OASS-A and OASS-B structures from S. typhimurium were

retrieved from the PDB database (PDB codes 1OAS [47] and

2JC3 [36], respectively). Structures were checked for chemically

consistent atom and bond type assignments using the molecular

modeling program Sybyl 8.1 (www.tripos.com). Amino-terminal

and carboxy-terminal groups were set as protonated and

deprotonated, respectively. The PLP atoms were renamed

according to the GRID library (grub.dat) to allow the program

to properly recognize the cofactor. Hydrogen atoms were

computationally added using Sybyl Biopolymer and Build/Edit

menu tools and energy-minimized using the Powell algorithm,

with a convergence gradient # 0.5 kcal (mol s)21 and a

maximum of 1500 cycles.

The Specs database (www.specs.net) was chosen as starting

library for performing virtual screening simulations. This database

is part of the ZINC archive [68] (www.zinc.docking.org) and,

according to previous experiences [89,93,98], contains molecules

with significant chemical and geometric diversity, good purity and

availability. A set of about 300,000 compounds was downloaded

and filtered according to their LogP values calculated by Moka

[99–101]. In order to assure sufficient solubility, only molecules

with LogP # 1 were retained, amounting, in this experiment, to

11,937. The pharmacophoric analysis and the virtual screening

were performed with FLAP (Fingerprints for Ligands and Proteins)

software [69], developed and licensed by Molecular Discovery

Ltd. (www.moldiscovery.com). FLAP is based on the Molecular

Interaction Fields (MIFs) calculated by GRID [102], used to

describe small molecules and protein structures in terms of 4-point

pharmacophoric fingerprints. FLAP MIFs provide a very accurate

and efficiently compressed description of 3D molecular features

and interactions modeled on the base of GRID MIFs. The

fingerprint makes the method extremely fast, and is used for pose

prediction and GRID MIFs similarity calculation, thus allowing to

evaluate the complementarities of the ligands to the receptor. The

algorithm calculates the GRID-MIFs for the template molecule

derived from ligands (Ligand-Based Virtual Screening, LBVS) or

from the pharmacophoric image of the binding site (Structure-

Based Virtual Screening, SBVS) and for the screened compounds.

The hotspots are combined in quadruplets (the-4 points). The

quadruplets of each molecule contained in the database are

compared with the quadruplets of the template. Matching

quadruplets are used to overlay the compounds 3D-structure onto

the template and, as determined by overlapping of the MIFs, the

similarity is assigned to generate a 3D pharmacophoric hypothesis

[69]. MIF similarity scores can be referenced to the best alignment

obtained with a single probe, when the product of two or more

probes is used. The ligand orientations simultaneously represent

the best MIF alignment for a given probe. The FLAP approach

has been successfully applied in several virtual screening analyses

[88–97]. This procedure allows the quick removal of molecules

with a low probability of interacting with the target and, thereby,

selects the most interesting candidates with chemical and structural

complementarities with the receptor binding site and/or its known

ligands.

Before starting any virtual screening analysis, the molecules

were minimized with the ‘‘mizer’’ module. Once screening was

completed, the compounds from SBVS and LBVS were ranked

according to the Global Sum score of FLAP and the distance to

the model (FLAP distance score) [103]. In the perspective of a

consensus scoring approach, the most promising candidates were

docked into the binding pocket of the respective targets with

GOLD, version 3.1 (www.ccd.cam.ac.uk), and then rescored with

HINT [72]. For each compound, 50 diverse poses were generated

and analyzed. A radius of 15 Å was used to direct site location. A

maximum number of 100,000 operations were performed for each

docking search, on a population of 100 individuals with a selection

O-acetylserine sulfhydrylase Ligands
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pressure of 1.1. Operator weights for crossover, mutation, and

migration were set to 95, 95 and 10, respectively. The number of

islands and the niche were set to 5 and 2. No constraints were

imposed. Polar hydrogen atoms in the binding pocket were

optimized for hydrogen bonding during docking simulations. The

default GOLDScore fitness was used as native scoring function

[71]. HINT was then used as post-docking processor scoring

function [104–108]. The HINT score provides a quantitative

evaluation of ligand-protein interaction as a sum of all individual

atom-atom interaction contributions that is proportional to the

free energy of binding, as previously described [16,104].

All calculations were run on a 8 CPU workstation Intel(R)

Xeon(R) CPU X5560 @ 2.80 GHz, with a 16 GB 1333 MHz

RAM, and a Linux operating system RHEL 5.4 x86_64, kernel

version 2.6.18–164.el5. Given the available computational re-

source, and good results previously obtained, the FLAP software

represented to us the best choice for performing rapid and

profitable virtual screening analysis. The application of other

Figure 2. Structural comparison of OASS-A and OASS-B. Panel A: Structure-based amino acid sequence alignment of OASS-A and OASS-B
from Salmonella typhimurium. The alignment, carried out on the PDB entries 1OAS and 2JC3 using the Flexible structure AlignmenT (FATCAT) method
[122], gave an overall identity of 40.32% and a similarity of 56.51%. Identical residues have a red background and residues with similar
physicochemical properties are shown in red. Similarity scores were calculated by the ESPript program [123] using the Blosum62 matrix set at global
score of 0.2. Residues of the first active site shell are indicated by dark circles below the alignment. Panel B: Active site of OASS-A. Residues of the
first active site shell and PLP are shown in ball and stick style, colored pink and yellow, respectively. Panel C: Active site of OASS-B. Residues of the
first active site shell and PLP are shown in ball and stick style, colored cyan and yellow, respectively.
doi:10.1371/journal.pone.0077558.g002
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methods, such as docking, might result in the identification of

different compounds, given their powerful search in the confor-

mational space [75].

Chemicals
Chemicals, purchased from Sigma-Aldrich, were of the best

available quality and used as received. Experiments, if not

otherwise indicated, were carried out in 100 mM Hepes buffer,

pH 7.0, at 20 uC.

Determination of ligand binding affinity to OASS-A and
OASS-B

OASS-A and OASS-B were expressed and purified as

previously described [19]. The binding affinity of selected ligands

to OASS-A and OASS-B was determined by monitoring the

increase in fluorescence emission of the bound PLP at 500 nm

following excitation at 412 nm [16,55]. Emission spectra were

collected at increasing ligand concentrations in the presence of

0.05–1 mM OASS, 100 mM Hepes buffer, pH 7.0 at 20uC.

DMSO and/or potassium hydroxide were added when needed to

solubilize the compounds and pH was checked to be between 7

and 8.5. Spectra were corrected for the buffer contribution.

Fluorescence measurements were carried out using a FluoroMax-3

fluorometer (HORIBA-Jobin Yvon), equipped with a thermostat-

ed cell-holder.

The dependence of fluorescence intensity at 500 nm on ligand

concentration was fitted to a binding isotherm:

I~I0z
Imax

:½L�
Kdz½L�

ð1Þ

where I is the fluorescence intensity at 500 nm in the presence of

the ligand, I0 is the fluorescence intensity in the absence of ligand,

Imax is the maximum fluorescence change at saturating ligand

concentrations, [L] is the ligand concentration, and Kd is the

dissociation constant of the OASS-ligand complex. This measure-

ment is a direct determination of ligand dissociation constant in

the absence of substrate, thus it coincides with Ki, independently

from the inhibition mechanism.

Results and Discussion

The biochemical investigation of OASS-A and OASS-B

reactivity [36] and active site specificity probed by pentapeptides

[19] indicate that, despite an overall 40% sequence identity and a

70% sequence identity for the first active site shell (Figure 2A), the

two isozymes exhibit subtle but significant structural differences

(Figure 2B,C). Most of the residues of the first active site shell are

conserved, with residues belonging to the N-terminal domain

(residues 1–12 and 35–145, OASS-A numbering [47]) showing a

90% identity, residue P67 being substituted by A69 in OASS-B.

The larger divergence is observed in the loop around G228 in the

front of PLP that has been suggested to undergo minor

conformational changes during catalysis [47]. In particular,

substitution Q227RP207 leaves one side of the pocket more

accessible in OASS-B. In addition, as already discussed [19], G230

is substituted by R210, a residue that in some microorganisms

plays a role in the selection of O-phosphoserine as the preferred

substrate of the B isoform [53,109]. The higher conservation

degree of the residues belonging to the N-terminal domain with

respect to those of the C-terminal domain allow the last two

residues of pentapeptides docked in the active sites of OASS-A and

OASS-B to occupy similar positions [19]. In spite of these

Figure 3. LigPlot of the wild type tetrapeptide ligand in the active site of Haemophilus influenzae OASS. The interactions between the
Asn-Leu-Asn-Ile tetrapeptide and the active site residues of H. influenzae OASS-A (PDB code: 1Y7L) are reported. The figure was drawn with LigPlot
program version 4.5.3 [124].
doi:10.1371/journal.pone.0077558.g003
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common features, only OASS-A is able to interact with high

affinity with SAT [55,56].

Ligand-Based Virtual Screening on OASS-A
The structures of OASS-SAT or OASS-C-terminal peptide

complexes from S. typhimurium are not available. Therefore, the

LBVS was performed using the crystallographic structure of the

two last residues of SAT, i.e. Asn266 and Ile267, complexed with

OASS-A from H. influenzae (PDB code 1Y7L [45]) as a template.

This choice is justified by the relatively high sequence (70%) and

structural identity [110] between OASS-A from H. influenzae and

from S. typhimurium, and the comparable affinity of the two

enzymes for the H. influenzae SAT C-terminal pentapeptide

(MNLNI), 44 mM and 120 mM, respectively [16,19]. In particular,

the main binding contribution is provided by hydrogen bonds

formed between the peptide Ile carboxylate group and Thr69 and

Thr73 (Thr68 and Thr72 in S. typhimurium), and by hydrophobic

contacts between the PLP cofactor and Phe144 with the Ile side

chain. (Figure 3). Asn at peptide position P4 is hydrogen bonded

with Ser70 (Ser69 in S. typhimurium) and a water molecule and

Figure 4. Compounds selected by SBVS/LBVS-docking procedures for OASS-A and OASS-B.
doi:10.1371/journal.pone.0077558.g004

O-acetylserine sulfhydrylase Ligands
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contributes more than 15% of the total interaction energy [16].

Analyses of the docking models of several pentapeptides and of

some of the corresponding crystallographic structures indicate that

a good OASS-A binder contains two hydrogen bond acceptor

groups, i.e., the side chain of Asn and the carboxylate of Ile, and a

hydrophobic moiety, i.e., the Ile side chain [16].

The LBVS set was initially composed of 1200 molecules

showing Global Sum scores higher than 1.5. After individual

inspection, molecules with at least one hydrogen bond acceptor

group and a hydrophobic moiety were selected, docked into the

binding site of OASS-A with GOLD, rescored with the HINT

force field and again individually inspected. A HINT score value

of 3000 was chosen as threshold, indicative of an energetically

stable complex [111]. On the basis of: i) the generated

conformations, ii) the interactions with the surrounding residues

and iii) the HINT score value, seven compounds were selected for

purchase and assays (Table 1 and Figures 4–5).

Structure-based Virtual Screening on OASS-A
The structure-based analysis was performed using the OASS-A

structure to generate the template [47]. On the basis of the Global

Sum score, 600 compounds composed the initial SBVS set. These

were inspected and analyzed as previously described. Following

the pharmacophore hypothesis reported for OASS-A [16],

compounds with two hydrogen bond acceptor groups were

preferentially chosen, docked and re-scored with the HINT

algorithm. The five molecules exhibiting higher scores and better

pharmacophore profiles were selected for purchase (Table 1 and

Figure 4–5) and assays.

Structure-based Virtual Screening on OASS-B
A structure-based analysis was also performed to identify

potential ligands of OASS-B, with a template based on the

OASS-B crystal structure [36]. Eleven compounds were identified

as potential binders (Table 2). The chemical structure of the

selected molecules and their orientations in the active site of

OASS-B are reported in Figure 4 and Figure 6. Since the SAT C-

terminal peptide does not bind to OASS-B [55,56], and no other

OASS-B ligands are known to date, the LBVS approach was not

performed for OASS-B.

Selected OASS-A and OASS-B ligands
The twenty-three compounds selected as above described are

characterized by at least a hydrogen acceptor group, i.e., a

carboxylic group able to bind into the groove containing Asn71

and Thr72 (OASS-A numbering), and a hydrophobic moiety

occupying the hydrophobic cleft lined by PLP, Phe143 and

Thr177. Most of them also contain a second hydrogen acceptor

Figure 5. Best HINT scored conformations of the compounds
selected by the SBVS/LBVS-docking procedures for OASS-A.
The images were prepared with PyMOL (The PyMOL Molecular Graphics
System, Version 1.5.0.4 Schrödinger, LLC.)
doi:10.1371/journal.pone.0077558.g005

Table 1. List of compounds selected from virtual screening
and tested against OASS-A.

Compound Specs code Kd (mM)

1 AO-623/14653116 3.7 6 0.4

2 AK-968/12383180 82 6 18

3 AQ-390/43356434 95 6 10

4 AD-232/25000151 103 6 9

5 AG-690/36829059 218 6 61

6 AK-968/15253078 283 6 19

7 AG-690/11214033 558 6 131

8 AK-968/41922818 732 6 72

9 AG-690/34035030 1300 6 400

10 AG-690/11665608 . 1500

11 AG-664/25040003 . 1500

12 AP-060/40977348 . 1500

doi:10.1371/journal.pone.0077558.t001

O-acetylserine sulfhydrylase Ligands
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group oriented towards Ser69 or Arg99. These features are

consistent with the chemical properties of SAT peptides previously

analyzed [16]. The identified molecules exhibit a molecular weight

of 160-320 Da and most possess an aromatic moiety, except for

compounds 1, 12, 13, 15, 17 and 21. Many compounds in the set

have one or two carboxylate groups.

Recently, virtual screening using the natural compounds subset

of the ZINC database identified ten inhibitors of E. histolytica

OASS, two of which possess dissociation constants in the

micromolar and submicromolar range [11]. These inhibitor

molecules are glycosides (gossypin and vitexin), aromatic com-

pounds (pyrrole and pyrimidine derivatives) or polyhydroxylated

compounds. Surprisingly, only three of them contain a carboxylate

group and, of these, only one was found to be a good binder to

OASS. Furthermore, the carboxylate group of these compounds

is, in the reported models, surprisingly bound to a different site

from that occupied by the carboxylate of the amino acid substrate

[52]. The second best ligand is proposed to make hydrogen bonds

with residues of the substrate-binding loop via a ketone carbonyl

group. Similarly, virtual high-throughput screening on M.

tuberculosis OASS-A led to the identification of fluoro- and nitro-

substituted aromatic compounds [67]. The higher affinity com-

pound from this search places a trifluoromethyl substituent in the

binding pocket where the carboxylate of the amino acid substrate

is bound. This compound was shown to be effective in inhibiting

M. tuberculosis growth with a MIC of 7.6 mM. Very recently,

structure-based and rational design approaches have led to the

optimization of a thiazolidine inhibitor of M. tuberculosis OASS-A

with IC50 in the nanomolar range [112].

Determination of the dissociation constant of selected
ligands towards OASS-A and OASS-B

A total of 12 compounds for OASS-A (Table 1) and 11

compounds for OASS-B (Table 2) predicted to be potential ligands

were experimentally tested by determining their dissociation

constants exploiting PLP fluorescence changes as a function of

ligand concentration [55]. The observed increases in coenzyme

fluorescence and the concomitant blue shifts of the peaks upon

ligand binding result from the closure of the active site – thus

altering the coenzyme microenvironment [29,55]. It is important

to point out that the evaluated dissociation constants for these

compounds correspond to their inhibition constants, Ki, because

they occupy the enzyme active site [18,19], and, therefore, are

purely competitive inhibitors [113].

Figure 6. Best HINT scored conformations of the compounds
selected by the LBVS/docking procedures for OASS-B. The
images were prepared with PyMOL (The PyMOL Molecular Graphics
System, Version 1.5.0.4 Schrödinger, LLC.)
doi:10.1371/journal.pone.0077558.g006

Table 2. List of compounds selected from virtual screening
and tested against OASS-B.

Compound Specs code Kd (mM)

13 AK-564/25068019 3362

14 AI-204/34859016 8106110

15 AP-402/41884919 .1500

16 AG-664/25098006 .1500

17 AH-262/34614012 .1500

18 AC-776/15493018 .1500

19 AE-848/08323031 .1500

20* AG-690/12134163 n.d.

21 AG-205/34690008 .1500

22 AO-080/42837941 . 1500

23 AK-968/41172226 .1500

*due to the strong emission at 500 nm for excitation at 412 nm, this compound
was assayed at concentrations lower than 100 mM and no binding was
observed.
doi:10.1371/journal.pone.0077558.t002

O-acetylserine sulfhydrylase Ligands
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Representative fluorimetric titrations at increasing concentra-

tions of 1 are reported for OASS-A (Figure 7a) and at increasing

concentrations of 13 for OASS-B (7b). Four compounds exhibited

Kd for OASS-A equal to or lower than 100 mM, four between

100 mM and 1 mM, and four exhibited a Kd higher than 1.5 mM

(Table 1). Compound 1 shows the lowest dissociation constant for

OASS-A, 3.8 mM. Analysis of the docked model for 1 in the

OASS-A active site predicts that the compound is well positioned

in the pocket and is able to contact Thr72 with one carboxylic

moiety, Arg99 with the second, and to fill the hydrophobic cleft

with its byciclic moiety (Figure 5/1 and Figure 8a). The proper

location of each moiety is also testified by the superposition with

the corresponding GRID MIFs reported in Figure 8a, where both

carboxylic groups lie in H-bond acceptor regions (red contours),

and the byciclic moiety in a hydrophobic-favorable area (green

contour). Interaction with Arg99 was not predicted for the wt

peptide docked in StOASS-A active site, whereas contacts between

Arg99 and the tyrosine at position P4 were predicted in the docked

pose of MNYDI, the highest affinity peptide for StOASS-A

(Kdiss = 220 nM) [19]. Compound 2 still exhibits a reasonable

affinity towards OASS-A, i.e., Kd = 82 mM, but lacks a stable salt

bridge with Arg99 (Figure 5/2). Compound 3 shows a similar Kd

(95 mM), and in spite of its not perfectly predicted localization in

the binding pocket, it completely fits the pharmacophoric

requirement, with a carboxylic and a sulfonamide group, as well

Figure 7. Binding of ligands to StOASS. Panel A. Fluorescence
emission spectra upon excitation at 412 nm (slitex = 6 nm, slitem =
6 nm) of a solution containing 50 nM StOASS-A and increasing
concentrations of Compound 1 in 100 mM Hepes buffer, pH 7.0, at
20uC. Inset: Dependence of the fluorescence emission intensity at
500 nm on the ligand concentration. The line drawn through data
points is the fit to a binding isotherm with Kd = 3.7 6 0.4 mM. Panel B.
Fluorescence emission spectra upon excitation at 412 nm (slitex = 4 nm,
slitem = 4 nm) of a solution containing 1 mM StOASS-B and increasing
concentrations of Compound 13 in 100 mM Hepes buffer, pH 7.0, at 20
uC. Inset: Dependence of the fluorescence emission intensity at 500 nm
on the ligand concentration. The line drawn through data points is the
fit to a binding isotherm with Kd = 33 6 2 mM.
doi:10.1371/journal.pone.0077558.g007

Figure 8. Docking pose of best binders to the two isozymes
placed into the active sites. Panel A: Docking pose of 1 in the
OASS-A binding pocket. Red and green contours identify the hydrogen
bond acceptor and hydrophobic GRID MIFs. Hydrogen bond donor hot
spots have not been shown for clarity. Panel B: Docking pose of
compound 13 in the OASS-B binding pocket. Red and green contours
identify the hydrogen bond acceptor and hydrophobic GRID MIFs.
Hydrogen bond donor hot spots have not been shown for clarity.
doi:10.1371/journal.pone.0077558.g008
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as an isopropyl hydrophobic moiety (Figure 5/3). Models of

Compound 4 predict that it places both one carboxylic moiety and

a hydrophobic group in the good positions, but the short distance

between the two carboxylic groups does not allow the second to

reach Arg99 (Figure 5/4). Compounds 5 and 6 (Figures 5/5 and

5/6, respectively) are similarly predicted from models to be located

in the binding pocket, contacting both Thr72 and Arg99, but the

second H-bond acceptor moiety, i.e. a nitro group in 5 and a

pyridine nitrogen in 6, appears to be less effective than that of 1. A

slightly different orientation is predicted for 7, whose carboxylic

moiety interacts with both Thr72 and Gln142, while the furan ring

oxygen barely reaches Asn71 (Figure 5/7). Compounds 8 and 10
(Figure 5/8 and 5/10, respectively) – the latter showing significant

less affinity towards the target – are modelled to occupy the

binding site in a different orientation, as they interact with Asn71,

Thr72 and Gln142, and with Ser69. Compound 9 (Figure 5/9)

was selected from the virtual screening because of the presence of a

carboxylic group and a nearby aromatic hydrophobic ring, and

compound 11 was selected because our docking model suggests

that it is properly located and able to contact both Thr72 and

Ser69 (Figure 5/11). However, neither of them binds to OASS-A

in our assay. Likewise, no binding was observed for 12 (Figure 5/

12), probably due to the presence of the additional hydrophobic

moiety that might prevent complex formation.

Of the 11 molecules predicted to bind to OASS-B (Table 2),

two, 13 and 14, exhibited Kds of 33 6 5 mM and 810 6 110 mM,

respectively. Compound 13 is characterized by its small size, high

hydrophobicity, and the presence of a chlorine that docking

models (Figure 6/13 and Figure 8b) predict as properly located in

the pocket hydrophobic region. The model also shows hydrogen

bonds formed by the ligand carboxylate moieties with residues

Thr272 and Gln140 on one side and Arg210 on the other. A

similar interaction profile is also exhibited by compound 1, the

best OASS-A binder. While models of 13 show that it does not

completely fill the large binding cavity of OASS-B, both hydrogen

bond acceptor groups and the hydrophobic chlorine correspond to

hot spots of the binding pocket, i.e., the red and green GRID

contours, respectively (Figure 8b). Compound 13 is structurally

similar to the cyclopropane-1-carboxylic acids derivatives identi-

fied by some of us [18] and displaying high affinity for the A

isozyme from H. influenzae (HiOASS-A). This structure-activity

relationship study showed that trans-2-substituted cyclopropane-1-

carboxylic acids were better binders than cis-2-substituted

molecules. Docking of (6)-trans-2-[(1E)-prop-1-en-1-yl]cyclopro-

panecarboxylic acid in the binding site of HiOASS-A revealed that

the hydrophobic pocket of the enzyme was occupied by the

propenyl moiety in a pose similar to the binding pose of 13, with

the chlorine substituent, also placed in trans configuration with

respect to the carboxylic moiety, properly located in the pocket

hydrophobic region. In agreement with the computational results,

a significantly higher Kd value was measured for 14 (Figure 6/14),

which is predicted to interact with Thr72 and Arg210 through its

tetrazole ring, and places the hydrophobic nicotinic ring in front of

Arg99. No binding was detected for any other of the selected

molecules, i.e., 15–23 (Figure 6/15-6/23), possibly because of

their bulkier substituents, or the absence of strong salt bridges with

Arg210.

Ligands for both OASS-A and OASS-B
The common MIFs generated by GRID for OASS-A and

OASS-B are reported in Figure 9A. The similarity of the scaffold

identified for the two OASS isozymes reflects the pharmacophoric

similarity of the two binding sites. Hydrogen bond acceptor and

donor MIFs (red and blue contours, respectively) are nearly

Figure 9. GRID MIFs calculated for OASS-A and OASS-B. Red,
blue and green contours identify the hydrogen bond acceptor,
hydrogen bond donor and hydrophobic MIFs, respectively, calculated
for OASS-A (pink cartoons) towards OASS-B (cyan cartoons). In Panel B
compounds 1 and 13 are shown in ball and stick.
doi:10.1371/journal.pone.0077558.g009

Table 3. List of compounds tested against both OASS-A and
OASS-B.

Compound Kd OASS-A (mM) Kd OASS-B (mM)

1 3.7 6 0.4 50 6 5

2 82 6 18 . 1500

3 95 6 10 . 1500

13 29 6 3 33 6 2

14 . 1500 810 6 110

doi:10.1371/journal.pone.0077558.t003
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conserved, with the exception of a small red contour in OASS-B

placed over the PLP, just in front of Arg210 (Ala231 in OASS-A)

(Fig 9A). This observation led us to test the compounds

characterized by the lowest dissociation constants for OASS-A

against OASS-B and vice versa (Table 3). The three compounds

showing dissociation constants lower than 100 mM towards

OASS-A, i.e., 1, 2 and 3, were tested against OASS-B. Only 1
was able to bind OASS-B, with a dissociation constant of 50 mM.

Of the two compounds that bind to OASS-B, i.e., 13 and 14,

compound 13 binds to OASS-A with a dissociation constant of

29 mM, thus exhibiting similar affinity for both isozymes. These

findings deserve notice, due to the previous observation that

peptide ligands [19] always showed a higher affinity for the A

isoform with respect to the B isoform. This was explained as a filter

mechanism that evolved to prevent binding of SAT to OASS-B.

The identification of a ligand specific for the A isoform (1) and a

ligand that binds with good affinity to both isoforms (13) opens the

way to the development of more potent inhibitors of cysteine

biosynthesis in pathogenic bacteria. In particular, 13 has the

properties of a good lead as it is completely unadorned and has

accessible chemistry. In addition, although the presence of a vinyl

halide moiety could in principle confer reactivity towards residues

of the active site, similarly to the chemistry observed, e.g., for c-

vinyl-GABA [17], no reaction or time-dependent inactivation of

OASS was observed under our experimental conditions.

Our computational/experimental procedure has been quite

successful in identifying OASS inhibitors from a relatively small

library. However, the affinities of compound 1 and 13 are still in

the micromole range. According with the orientation assumed by

the ligands into the model provided by GOLD and, most of all,

with the extension of the MIFs calculated by FLAP, modifications

might be introduced in order to optimize compounds towards the

corresponding target. For instance, in the case of compound 1, the

bicyclo heptene moiety could be extended towards Met119,

Phe143 and Ala231, and functionalized with a H-bond acceptor

group for contacting Gln142 on one side or with a H-bond donor

group on the other side for contacting the PLP phosphate group.

Also in the case of compound 13, a H-bond donor group could be

added to contact the PLP phosphate. Moreover, a more bulkier

substituent bearing a H-bond acceptor moiety like a carboxylate,

could be introduced on carbon 2, to reach Arg99 and form a salt

bridge.

Conclusions

The biological roles of OASS-A and OASS-B in S. typhimurium

virulence and persistence in the host are still unclear despite the

large number of studies dealing with their detailed biochemical

and biological characterization [27,28,35,47,114–116]. The

knowledge of the relative abundance and regulation by effectors

of the two isozymes during infection is a relevant missing

information that can contribute to the pharmacological exploita-

tion of these targets. For example, it has been recently shown that

the activity of OASS-B on thiosulfate could represent an energy

saving path to cysteine biosynthesis and could be preferred in

metabolic conditions where the conservation of ATP and NADPH

is important [117]. In addition, very recently, works by Hayes and

coworkers [118,119], identified OASS as the activating factor for a

toxin that controls contact-dependent growth inhibition in E.coli.

Surprisingly, the interaction between OASS and the toxin exploits

the same mechanism of SAT-OASS complex formation, e.g.

insertion of the C-terminal peptide in the OASS active site. Hence,

OASS is a multifaceted enzyme whose function may indirectly

influence processes such as long-term survival inside the host and

biofilm formation.
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