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Antimicrobial growth promoters (AGPs) are commonly used in broiler production. There
is a huge societal concern around their use and their contribution to the proliferation of
antimicrobial resistance (AMR) in food-producing animals and dissemination to humans
or the environment. However, there is a paucity of comprehensive experimental data on
their impact on poultry production and the AMR resistome. Here, we investigated the
effect of five antimicrobial growth promoters (virginiamycin, chlortetracycline, bacitracin
methyl disalicylate, lincomycin, and tylosin) used in the commercial broiler production in
the Indian subcontinent and in the different parts of the world for three consecutive
production cycles on performance variables and also the impact on gut bacteria,
bacteriophage, and resistome profile using culture-independent approaches. There was
no significant effect of AGPs on the cumulative growth or feed efficiency parameters at
the end of the production cycles and cumulative mortality rates were also similar across
groups. Many antibiotic resistance genes (ARGs) were ubiquitous in the chicken gut
irrespective of AGP supplementation. In total, 62 ARGs from 15 antimicrobial classes
were detected. Supplementation of AGPs influenced the selection of several classes of
ARGs; however, this was not correlated necessarily with genes relevant to the AGP drug
class; some AGPs favored the selection of ARGs related to antimicrobials not structurally
related to the AGP. AGPs did not impact the gut bacterial community structure, including
alpha or beta diversity significantly, with only 16–20 operational taxonomic units (OTUs)
of bacteria being altered significantly. However, several AGPs significantly reduced
the population density of some of the potential pathogenic genera of bacteria, such
as Escherichia coli. Chlortetracycline increased the abundance of Escherichia phage,
whereas other AGPs did not influence the abundance of bacteriophage significantly.
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Considering the evidence that AGPs used in poultry production can select for resistance
to more than one class of antimicrobial resistance, and the fact that their effect on
performance is not significant, their use needs to be reduced and there is a need to
monitor the spread of ARGs in broiler chicken farms.

Keywords: amplicon sequencing, shotgun sequencing, chickens, gut microbiome, antimicrobial resistance,
antibiotic growth promoter, broiler–chicken

INTRODUCTION

Chicken is the cornerstone of animal agriculture worldwide and
represents one of the most efficient forms of animal protein
production with highly efficient feed conversion. Sustainable
poultry meat and egg production are important to provide safe
and high-quality protein sources for human nutrition.

The gastrointestinal tract of chickens is densely populated
with diverse and complex microbiota (bacteria, fungi, archaea,
protozoa, and viruses; dominated by bacteria), that play a
vital role in the digestion and absorption of nutrients, host
immune system development and pathogen exclusion, endocrine
activity, maintenance of normal physiological homeostasis, and
influencing the gut development, nutrient supply, and host
metabolism and detoxification (Sommer and Bäckhed, 2013;
Paul et al., 2021a). Antibiotics have been used as growth
promoters in poultry production to prevent diseases and to
improve growth, gut health, and feed efficiency for many
years. It is thought that antimicrobial growth promoters
(AGPs) alter the gut microbial community composition by
inducing populations favorable to growth, immunity, and gut
health. The use of AGPs, wherein antimicrobials are used
at sub-therapeutic doses for a longer duration, favors the
selection and spread of resistant genes of bacteria within
animals and in humans through the food chain or other
environmental pathways (da Costa et al., 2013). It has
been emphasized that there are no geographic boundaries
to contain the spread of antimicrobial resistance and if
preventive and containment measures are not applied locally,
nationally, and regionally, the limited interventions in one
country, continent, and for instance, in the developing world,
could compromise the efficacy and endanger antimicrobial
resistance containment policies implemented in other parts of
the world, including the best-managed high-resource countries
(Founou et al., 2016). Considering the gravity of the potential
threat to human and animal health, some countries have
banned the use of AGPs, while many countries including
India are still using various antimicrobials, such as AGPs.
Although different alternatives to antibiotic growth promoters
are now available in the market, AGPs are still commonly
being used by farmers due to their easy availability and
their cheaper cost than that of the alternatives as farmers
commonly believe that AGPs may prevent common pathogens
from being established in the gut at low cost. The use of
a particular antimicrobial may induce co-resistance to other
antimicrobials that were not administered, primarily due to
the co-selection of linked genes encoding otherwise unrelated

resistance mechanisms to different antimicrobials (Threlfall,
2000; Ciric et al., 2011).

There is a paucity of data about the effects of sub-therapeutic
doses of antimicrobials on shifts in the gut microbial community
structure or density of various ARGs. A limited effort has been
made to evaluate the comparative effectiveness of commonly
used AGPs in modulating gut microbiota of chickens favorably
under controlled scientific feeding trials. Further, understanding
the effects of AGPs on the diversity and community structure
of the gut microbiome is important for devising strategies for
developing alternatives to AGPs for improving the chicken gut
microbiome. In addition, little or no information is available on
the effects of AGPs on gut bacteriophages (viruses of gut bacteria)
which are known to shape the gut bacterial composition and
facilitate horizontal gene transfer (Sutton and Hill, 2019), and
whether they influence the abundance of antimicrobial resistance
genes (ARGs) in gut microbial communities. Further, limited
information is available on the influence of one class of AGP on
the development of resistance for other classes of antimicrobials.
It is also important to assess if commonly used AGPs favor the
accumulation of ARGs related to critically important therapeutic
antibiotics for human or animal health.

There have been various approaches for investigating
the gut microbiome and resistomes. Valuable information
has been generated by culture-based approaches; however,
culture-independent methods utilizing shotgun sequencing of
metagenomic DNA extracted from gut contents have the
advantage of detecting and quantifying culturable as well as
unculturable microbes. In addition, they provide information on
the whole ARG complement; therefore this approach provide
a global view of both the microbial community and its
resistome profile. Although both the 16S rRNA gene amplicon
and shotgun sequencing methods allow for the profiling of
microbiome, many researchers have demonstrated that shotgun
sequencing allows for enhanced detection of bacterial species
as compared to amplicon sequencing (Jovel et al., 2016; Ranjan
et al., 2016). However, a large number of studies reported
that amplicon sequencing detects significantly more phylum
and family level diversity (Tessler et al., 2017). Microbiome
datasets generated by high throughput sequencing (amplicon
or shotgun) are compositional because they have an arbitrary
total imposed by the capacity of the instrument and the count
cannot be related to the absolute number of molecules in the
input sample (Gloor et al., 2017). Quantitative real-time PCR
(qPCR) is one of the most widely used methods to precisely
quantify bacteria or genes in a complex ecosystem. Hence, it
is expected that employing these three techniques together may
complement each other.

Frontiers in Microbiology | www.frontiersin.org 2 June 2022 | Volume 13 | Article 905050

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-905050 June 11, 2022 Time: 14:29 # 3

Paul et al. Antimicrobial Growth Promoters and Resistome

In the present study, we examined the influence of five
AGPs commonly used in the commercial broiler production in
the Indian subcontinent on the performance parameters and
community composition of bacteria and bacteriophages and
the abundance and selection of genes related to antimicrobial
resistance using 16S amplicon and shotgun sequencing and qPCR
assays of chicken hindgut metagenomic DNA.

MATERIALS AND METHODS

Animals, Treatments, and Experimental
Design
Three experimental feeding trials were conducted consecutively
with commercial broiler strain (Vencobb 430) to evaluate
the effect of five antimicrobial growth promoters (AGPs)
along with one negative control (C) group. Air-dried
litter of the preceding production cycle (trial) was offered
groupwise on chicks of the next cycle for 10 days, besides
a balanced diet, to simulate carry-over effects of ingestion
of built-up litters, as is expected in a deep litter system of
rearing broilers.

A total of 360, 390, and 420 newly hatched chicks obtained
from a local hatchery (Venkateshwara Hatcheries Pvt Ltd.,
Hyderabad, India) were randomly divided into 72, 78, and 84
pens (clean stainless steel battery brooder cages) containing 5
birds in each pen measuring 6 ft2, respectively during the first,
second, and third cycles. Twelve, thirteen, and fourteen replicate
pens were assigned to each of the 6 treatments, respectively,
during the first, second, and third cycles in a completely
randomized design. All the groups received the same basal diet.
The negative C group was not supplemented with any AGP.
Five other groups were supplemented with one of the five AGPs
namely virginiamycin (V or VIR, 40 g/t feed), chlortetracycline
(CT or CTC, 330 g/t feed), bacitracin methylene salicylate (B
or BMD, 500 g/t feed), lincomycin (L or LIN, 40 g/t feed), and
tylosin (T or TYL, 500 g/t feed) at dose levels recommended by
respective manufacturers.

During all the three cycles/trials, all the chicken were fed with
the same maize and soybean-based balanced diet ad libitum as
per feeding standards for an intensive production system. The
detail of diet composition has been presented in Supplementary
Table 1. The Institute of Animal Ethics Committee of ICAR-DPR
approved the experiments (approval number IAEC/DPR/18/10)
and the methods were performed as per the guidelines of
animal experimentation. All the birds were housed in an open-
sided poultry house. The average minimum and maximum
temperatures in the house during the experiments range from
23.5 to 37.5, 23.1 to 37.1, and 25.9 to 35.5oC, respectively,
during the three cycles. Birds were wing-tagged, weighed, and
vaccinated with Marek’s disease vaccine on arrival. Brooding was
done with the help of incandescent bulbs for up to 21 days.
The feed was offered and made available in the feeders placed
in each pen to ensure the constant availability of feed for all the
birds throughout the period. Ad libitum access to the drinking
water was provided through separate drinkers in each pen.
Birds were vaccinated with the New castle disease Lasota strain

vaccine on 5th and 28th days and with infectious bursal disease
vaccine on the 10th and 16th days. Weekly body weight (BW)
was recorded for each pen and per bird average weight was
calculated for each pen. A weighed quantity of feed was offered
daily, and the leftover feed was weighted at weekly intervals.
Mortality was recorded daily, and the pen number, the wing
band number, and BW of the dead birds were recorded. The
feed conversion ratio was adjusted for mortality (Paul et al.,
2021b). Cages were placed distantly so that there was no fecal
contamination among pens.

Metabolism Trial
A metabolism trial was conducted during cycle 1 on birds in four
replicate pens from each group (20 birds per group) during the
4th week of age using the total collection method. Briefly, total
excreta were collected, weighed, and dry matter (DM) content
was estimated in each pen for 3 consecutive days, and the samples
were pooled penwise for chemical analysis. Daily feed intake in
each pen was also measured. Proximate composition nitrogen,
organic matter (OM), and ether extract (EE) in feed and excreta
were estimated as per procedures described by the Association
of Official Analytical Collaboration AOAC (1990). The nitrogen
retention and apparent digestibility coefficients of DM, OM, and
EE of the feed were calculated according to the standard formulae
for the total collection method (Maynard and Loosli, 1969).

Carcass Traits and Gut Content Sample
Collection
From each group, ten apparently healthy chickens in their
finishing (marketable age) stage (at the 36th day) were selected
(one per pen), caught, and euthanized by cervical dislocation.
The carcass weight, breast muscle, abdominal fat pad, the heart,
liver, spleen, bursa, and gizzard weight were recorded, and their
weights were calculated relative to their live body weight.

The gut was opened immediately using sterile scissors and
luminal contents of the hindgut (from the duodenum to cloaca
including ceca) were recovered into sterile cryovials. For every
1 g gut content, 5 ml of 1X phosphate buffer saline was added
and mixed thoroughly by vortexing to produce a uniform
homogenate. If necessary, a sterile 1 ml pipette tip was used
to break up any large particulate matter that may remain in
suspension while vortexing. The homogenated gut content was
immediately stored in a portable freezer at –20◦C, transported to
the laboratory, and stored at –80◦C.

DNA Extraction
Metagenomic DNA was extracted from the pooled hindgut
contents of individual chicken following the repeated
bead beating plus column method described by Yu and
Morrison (2004) using the DNA purification columns from
the commercially available QIAamp Fast DNA Stool Mini
kit (QIAGEN, Germany). DNA concentration and quality
were assessed using a Qubit 3.0 fluorometer (Thermo Fisher
Scientific, MA, United States; #Q33238) using DNA HS Assay
Kit (Thermo Fisher Scientific, MA, United States; #Q32851)
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and gel electrophoresis. The DNA was stored at –20◦C until
further processing.

16S rRNA Gene Amplicon Sequencing,
Sequence Processing, and Analysis
Hindgut microbiota from experimental cycle 1 was profiled
by sequencing the v3–v4 region of the 16S rRNA gene for
18 DNA samples (from 3 birds slaughtered at 36 days of
age, randomly taken from separate pens for each of the 6
groups). The extracted DNA was amplified using the primer pair,
S-D-Bact-0342-b-S-17 (5′-CCTACGGGNGGCWGCAG-3′) and
S-D-Bact-0785-1-A-21 (5′-GACTACHVGGGTATCTAATCC-3′)
recommended by Klindworth et al. (2012) as per the protocol
described earlier (Paul et al., 2021a). The amplified product
was checked on 2% of agarose gel and gel purification
was done to remove non-specific amplifications. In total, 5
ng of amplified product was used for library preparation
using the NEBNext Ultra DNA library preparation kit (New

England Biolabs, Ipswich, MA, United States). The library
quantification and quality estimation were done in an Agilent
2200 Tape Station. Sequencing was performed using an Illumina
HiSeq 2500 sequencer in 2 × 250 bp pair-end sequencing
mode. Samples were processed with three negative controls
per plate in the sequencing run. The raw reads obtained
after demultiplexing were subjected to quality screening using
FastQC (version 0.11.8) with default parameters. Primers and
adapters were removed using in-house Perl scripts and reads
with a Phred quality score (Q > 20) were considered for
consensus sequence generation. The reads were merged using
FLASH (Tanja and Salzberg, 2011) program (version 1.2.11)
and consensus reads with an average contig length of 350–
450 bp were obtained. Chimeras were removed using the
de novo chimera removal method, UCHIME (version 11)
as implemented in VSEARCH (Rognes et al., 2016). The
operational taxonomic units (OTUs) picking and taxonomic
assignments were performed using the quality-passed consensus
v3-v4 sequences using UCLUST program as implemented in

TABLE 1 | Effect of supplementing different antibiotic growth promoters on the performance of broiler chicken during three consecutive production cycles.

C V CT B L T SEM N P-value

Performance during cycle 1

1-14d

BWG 433.6 463.3 440.2 446.9 449.3 455.3 3.126 12 0.091

FE 1.106 1.086 1.112 1.095 1.129 1.126 0.008 12 0.616

1-21d

BWG 774.0c 868.0a 836.3ab 808.3bc 828.7ab 867.8a 7.211 12 0.001

FE 1.193 1.165 1.202 1.213 1.239 1.214 0.007 12 0.070

1-35d

BWG 2007 2046 1994 2022 2013 2040 12.50 12 0.843

FE 1.342 1.387 1.379 1.374 1.371 1.383 0.010 12 0.837

Performance during cycle 2

1-14d

BWG 412.0 434.2 418.2 434.8 427.2 419.0 3.99 13 0.489

FE 1.190 1.169 1.191 1.179 1.193 1.211 0.004 13 0.064

1-21d

BWG 854.2 880.6 856.2 860.4 878.6 825.5 7.826 13 0.368

FE 1.282 1.274 1.297 1.290 1.285 1.314 0.006 13 0.503

1-35d

BWG 2020 2016 2013 1960 1986 1931 18.76 13 0.701

FE 1.465 1.490 1.523 1.516 1.489 1.527 0.010 13 0.494

Performance during cycle 3

1-14d

BWG 379.1 392.1 377.8 385.5 386.2 362.2 3.373 14 0.163

FE 1.279 1.273 1.280 1.269 1.293 1.280 0.004 14 0.671

1-21d

BWG 792.6 829.9 795.3 810.7 806.0 767.3 6.637 14 0.137

FE 1.385 1.366 1.375 1.393 1.397 1.393 0.005 14 0.489

1-35d

BWG 1842 1807 1834 1876 1833 1798 14.34 14 0.691

FE 1.622 1.679 1.604 1.617 1.614 1.601 0.013 14 0.570

V, virginiamycin (40 g/ton); CT, chlortetracycline(330 g/ton); B, bacitracin methylene disalicylate (500 g/ton); L, lincomycin (40 g/ton); T, tylosin (500 g/ton); BWG, body
weight gain; FE, body weight gain/feed intake; P, probability, N, number of replicate pens; SEM, standard error of the mean; Means having common superscripts in a row
do not vary significantly (P < 0.05).

Frontiers in Microbiology | www.frontiersin.org 4 June 2022 | Volume 13 | Article 905050

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-905050 June 11, 2022 Time: 14:29 # 5

Paul et al. Antimicrobial Growth Promoters and Resistome

the bioinformatics software suite, “Quantitative Insights into
Microbial Ecology” (QIIME) (Caporaso et al., 2010a) (version
2) software using a similarity cutoff of 0.97. A total of
1,68,910 OTUs with less than 5 reads were removed and the
remaining 12,210 OTUs were further used for analysis. The
representative sequences from each clustered OTUS were aligned
against the SILVA core set of sequences using the PyNAST
program (Caporaso et al., 2010b). Taxonomic classification
was performed using the RDP classifier (Cole et al., 2014)
by mapping each representative sequence against the SILVA
database (138.1, 2020) (Quast et al., 2013). The BIOM file
obtained from QIIME2 along with the sample metadata files
were uploaded to the METAGENassist website (Arndt et al.,
2012), where samples were normalized using the total sum
(sample vs. sample) and Pareto scaling (taxon vs. taxon; mean
centered and divided by the square root of the standard
deviation of each variable). The processed data were used for
the generation of taxonomic bar plots. The BIOM file along
with the metadata file was also uploaded to MicrobiomeAnalyst
(Dhariwal et al., 2017) for the analysis of alpha diversity,
beta diversity, rarefaction curve, and differential abundance
analysis. For the analysis of alpha diversity, beta diversity and
rarefaction curve data were rarefied to the minimum library size
(at 66,694 sequences per sample). For analysis of differential
abundance, the data were normalized using the cumulative sum
square scaling method.

Shotgun Metagenomic Sequencing,
Sequence Processing, and Analysis
For shotgun metagenomic sequencing, 24 DNA samples (4
individual birds slaughtered at 36 days of age were sampled per
group; each bird from a separate pen) from the third cycle were
selected randomly. QC-passed DNA samples (100 ng DNA per
sample) were fragmented and tagged with sequencing adapters
using the TruSeq Nano Library preparation kit (Illumina,
San Diego, CA, United States; #20015964), and the extracted
DNA samples resulted in libraries of the appropriate size
and concentration to be sequenced. Shotgun metagenomic
sequencing was performed using the NovaSeq 6000 sequencer
(Illumina) at 150 bp in paired-end mode.

Following sequencing, all reads were assessed for quality
parameters and were subjected to trimming, adapter removal,
host genome sequence removal (using Bowtie (Langmead
and Salzberg, 2012), SAMtools (Danecek et al., 2021), and
BEDTools (Aaron et al., 2010) against Gallus (taxonomy
is 9031)) and pair-end read merging using fastp (version
0.23.1) program (Chen et al., 2018). The Kaiju webserver
was used in default mode for the taxonomic assignment of
sequences. Kaiju translates reads into amino acid sequences
and then compares them to a reference database containing
bacterial, fungal, viral, and microbial eukaryotic protein
sequences using the Burrows–Wheeler algorithm and
assigns each read to a taxon in the NCBI taxonomy. By
using protein level classification, Kaiju has been shown to
achieve a higher sensitivity compared with methods based
on nucleotide comparison (Menzel et al., 2016). Kaiju output

was converted to OTU table and taxonomy table using a
python script1.

The OTU table and consensus taxonomy files along with the
metadata file were converted to phyloseq object and analyzed
using R (R Core Team., 2020). OTUs classified as taxons other
than bacteria were removed. For alpha diversity and rarefaction
analysis, the data were rarified to even depth (at 7607352
sequences per sample). For the analyses of differential abundance
(using DESeq2), the creation of stacked bar plots and upset
diagram data were filtered for the low count and low variance
OTUs (OTUs with <5 members or appearing in <2 samples
were removed; this process removed 14,893 OTUs out of 3,3891
bacterial OTUs), OTUs with ambiguous phylum level annotation
were also removed (this process removed 835 OTUs) to focus
on important features and to improve the downstream statistical
analysis, and then data were normalized using cumulative sum
scaling (CSS) method. Taxonomic assignments (for the top 15
taxa) were presented as stacked bar plots from CSS normalized
relative percent abundance data.

Beta diversity profiling and significance testing were
carried out at the OTU level using principal coordinate
analysis (PCoA) as well as non-metric multidimensional
scaling (NMDS) ordination based on different distance
methods, such as Bray–Curtis dissimilarities, Jaccard index, and
Jensen–Shannon diversion, using statistical methods, such as
permutational multivariate analysis of variance (PERMANOVA)
and homogeneity of group dispersion (PERMDISP) using the
MicrobiomeAnalyst web server after disabling default settings
for data filtering for the low count and low variances but data
were rarefied to minimum library size before analysis.

For bacteriophage detection, sequences were analyzed using
FastViromeExplorer (Tithi et al., 2018).

For the estimation of the abundance of AMR genes,
Groot, a tool to profile antimicrobial resistance genes in
metagenome (resistome profiler software) and the “groot-db”
a preclustered database derived from ResFinder, ARG-annot,
and CARD databases provided with the software were used
(Rowe and Winn, 2018).

Bubble plots were created using R. All data presented in
Figures 6, 7 are untransformed but the data are normalized
(normalized to per million reads)

PCR and Quantitative Real-Time PCR
Analyses
Quantification of Population Sizes of Escherichia coli
and Lactobacillus spp.
The population sizes of E. coli and Lactobacillus spp. were
quantified (in 6 replicate samples per group in the first as well
as third cycle) using Maxima SYBR-Green based qPCR master
mix (Genetix Biotech Asia Pvt Ltd., New Delhi, India), respective
specific primers (Hermann-Bank et al., 2013; Torok et al., 2013),
and an ABI StepOne quantitative PCR instrument (Thermo
Fisher Scientific, MA, United States). The specificity of the
primers was checked in silico against RefNR sequence collection

1https://github.com/gisleDK/Biopythonpieces/blob/master/Scripts/
kaiju2phyloseq.py

Frontiers in Microbiology | www.frontiersin.org 5 June 2022 | Volume 13 | Article 905050

https://github.com/gisleDK/Biopythonpieces/blob/master/Scripts/kaiju2phyloseq.py
https://github.com/gisleDK/Biopythonpieces/blob/master/Scripts/kaiju2phyloseq.py
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-905050 June 11, 2022 Time: 14:29 # 6

Paul et al. Antimicrobial Growth Promoters and Resistome

FIGURE 1 | Barplots of the average normalized relative abundance of the 15 most abundant bacterial taxa identified to class level, found in different groups.
“Not-assigned” are taxa identified to a lower taxonomic level than class, “Others” taxa not included in the 15 most abundant taxa.

FIGURE 2 | UpSet diagram visualizing intersections of sets of OTUs between different groups.
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FIGURE 3 | Rarefaction curves based on Chao1, ACE, and observed OTUs. Bacterial sequences were rarefied to the minimum library size (at 76,07,352 sequences
per sample) without data filtering for rare OTUs.

FIGURE 4 | Beta diversity among treatments. Beta diversity plots visualized using Non-metric multidimensional scaling-based ordination at OTU level for different
beta diversity metrics (A) Jaccard index, (B) Jensen-Shannon. A stress value of less than 0.1 represents a satisfactory-quality ordination. C, control; V, Virginiamycin;
CT, Chlortetracycline; B, Bacitracin Methylene Disalicylate; L, Lincomycin; T, Tylosin.
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of silva SSU r 138.1 database using the tool, TestPrime available
in the SILVA website2. The qPCR reaction was performed in
triplicate, along with no-template controls as per the master-
mix manufacturer’s instruction. To minimize the potential bias,
instead of a single strain, sample-derived qPCR standards were
prepared using the respective specific PCR primer set and a
composite metagenomic DNA sample that was prepared by
pooling equal amounts of all the metagenomic DNA samples, and
a standard curve was developed as described earlier (Stiverson
et al., 2011). The absolute abundances were expressed as the
number of rrs gene copies/50 ng DNA samples.

Screening of Antimicrobial Resistance Genes Using
Conventional PCR
For the screening of AMR genes using conventional PCR, 6
samples per group from the first as well as the third cycle were
utilized. A detailed list of primers and protocols used for the
detection of some of the important and commonly found AMR
genes in hindgut metagenomic DNA samples is presented in
Supplementary Data Sheet 1. Briefly, bla genes were screened
using multiplex PCR as per Dallenne et al. (2010). The blaCTX−M
genes were screened initially using universal primers as per Boyd
et al. (2004) followed by the analysis of positive samples using
multiplex PCR involving primers for different subgroups as per
Dallenne et al. (2010). Quinolone resistance genes were screened
using multiplex PCR as per Ciesielczuk et al. (2013). Colistin
resistance genes (mcr 1 to 4) were screened using multiplex PCR
as per Lescat et al. (2018).

Quantitative Real-Time PCR Based Quantification of
Antimicrobial Resistance Genes
All the samples that tested positive for any of the above-
mentioned AMR genes by conventional PCR were further
analyzed for copy number estimation using qPCR using primers
and protocols as listed in Supplementary Data Sheet 1.

Statistical Analysis
The data on performance variables, slaughter data, digestibility,
and qPCR data on E. coli and Lactobacillus spp. were analyzed
by one-way analysis of variance (ANOVA) using the general
linear model univariate procedure available in SPSS (2008). At
the detection of overall significant difference, specific differences
between pairs of means were tested using Duncan’s multiple
range test at P < 0.05.

For both the 16S amplicon sequencing and shotgun
sequence data, at the detection of significant difference in
the overall abundance between groups on DESeq2 analysis,
followed by Benjamini–Hochberg false discovery rate (FDR),
correction of p-Values for multiple comparisons, groups were
compared pairwise using non-parametric Mann–Whitney U-test
(Wilcoxon rank-sum test) as implemented in SPSS (2008).
Alpha diversity matrices were compared at the OTU level
using the non-parametric Wilcoxon test, as implemented in the
MicrobiotaProcess library3 in R. Beta diversity profiling and

2https://www.arb-silva.de/
3https://github.com/YuLab-SMU/MicrobiotaProcess/

significance testing were carried out using NMDS as well as
PCoA ordination based on different distance methods, using
statistical methods, such as PERMANOVA and homogeneity
of group dispersion of permutational analysis of multivariate
dispersions (PERMDISPs).

Data on bacteriophage and AMR genes were normalized to
per million reads and tested for normality (Shapiro–Wilk test
and univariate normal plots) and equal variance (Levane’s test).
For statistical analysis, normalized data on bacteriophage and
AMR genes were transformed to the square root to fulfill the
equal variance condition of the ANOVA test. These data were
statistically analyzed using an ANOVA test followed by Duncan’s
multiple range test as implemented in SPSS.

RESULTS

Effects on the Performance Parameters
and Digestibility
During Cycle 1, body weight gain (BWG) was significantly higher
in some of the groups with AGPs during the first 21 days, but by
the end of the trial (at 35th day), there was no significant effect
of AGPs on the growth performance or feed efficiency (Table 1).
During cycle 2 as well as cycle 3, there was no significant
effect of AGPs on the growth performance or feed efficiency in
any of the phases.

There was no significant difference in the slaughter parameters
(carcass weight, breast weight, the heart, liver, and abdominal fat
weights) among the groups (Supplementary Table 2).

Overall, there were 4.16, 2.46, 2.38, 4.2, 1.97, and 3.88%
cumulative average mortality in the groups C, V, CT, B, L, and
T, respectively, and the mortality was random between pens, with
no significant treatment effect.

There was no significant difference in the digestibility of dry
matter (DM), ether extract (EE), and retention of crude protein
(CP) among the groups (Supplementary Table 3).

Microbiome Sequencing
The 16 S amplicon sequencing generated 82,35,312 raw reads
with 44,46,248 quality-passed (after chimera removal and
merging of quality-passed reads) consensus sequences or contigs
(ranging from 74,090 to 3,73,945 per sample and an average of
2,47,013 per sample).

The shotgun sequencing generated about 1 billion raw reads
corresponding to 157 GB of raw data from the gut content of the
24 chickens. After merging paired-end reads, filtering low-quality
sequences, and host sequence removal, the average number of
quality-controlled sequences per sample was 149,59,665 (range,
81,19,571-295,54,488).

Operational Taxonomic Unit Occurrence
From the 16 S amplicon sequencing data, a total of 181,120
similarity-based operational taxonomic units (OTUs) were
identified from 44,46,248 quality-passed chimera checked
consensus reads. From 181,120 OTUs, 168,910 OTUs with less
than 5 members were removed and 12,210 OTUs were selected
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FIGURE 5 | Differential abundance of gut microbiota in different groups at OTU level. OTUs with significant difference in abundance among groups identified with
DESeq2 and passing false discovery rate (FDR) filter, were plotted. The size of the bubbles in the bubble plot indicates the log- transformed (LN(2)) normalized
(cumulative sum scaling) abundance of each OTU.

for further analysis to focus on important OTUs only, to remove
potentially spurious OTUs, and to improve the downstream
statistical analysis.

From the shotgun sequencing data, a total of 39,986 phylotype
OTUs were detected, out of which 33,891 phylotype OTUs were
bacterial OTUs. The average number of bacterial taxonomic
OTUs detected in different groups was comparable (ranging from
16,701 to 17,862; P > 0.05). In total, 18,163 OTUs contained ≤ 4
members or were prevalent in only 1 sample and 835 OTUs
had ambiguous phylum-level classification. The average number
of non-rare (having at least 5 members per OTU and with
prevalence greater than 1 sample) bacterial taxonomic OTUs
having valid phylum-level classification were also comparable
between the groups (ranging from 13,918 to 14,730).

Based on Good’s coverage index, more than 99.9% of gut
bacterial diversity was covered in all the groups.

Taxonomy Assignment
Based on the shotgun sequence data, Clostridia were the most
dominant class in all the groups (Figure 1). The average
proportion of Bacteroidia was lower in the L, CT, and B groups

as compared to the other groups including the C group. Whereas
the proportion of Verrucomicrobia was higher in the L, CT, and
B groups as compared to the other groups including C. The
average abundance of unclassified Firmicutes and Flavobacteria
was higher in the B group as compared to others. The average
abundance of Epsilonproteobacteria and Chlamydia was higher
in the CT group as compared to other groups. The average
relative abundance of Bacilli was higher in the CT group as
compared to others including the C group.

The taxonomic assignment of amplicon data (after removing
OTUs with less than 5 members) resulted in the identification
of 17 phyla, 157 genera, and 476 phylotype-OTUs (phylotype
OTUs were obtained after merging distance-based OTUs
with the same consensus taxonomy) being represented
across the gut samples. In the C group, the gut microbiota
was dominated by Lactobacillus (18.1%), Akkermansia
(15.3%), Faecalibacterium (15%), Peptostreptococcaceae
(13.5%), Lachnospiraceae (8.5%), Ruminococcaceae other than
Faecalibacterium (7%) Methanobrevibacter (4.9%), E. coli (2.8%),
and Desulfovibrio (2.3%) (Supplementary Presentation 1). In
the BMD group, the proportion of Lachnospiraceae (22.8%),
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FIGURE 6 | Differential abundance of gut bacteriophages in different groups. The size of the bubbles in the bubble plot indicates the normalized (normalized to per
million reads) abundance.

Faecalibacterium (18%), and Lactobacillus (15%) were higher
with proportionately lesser populations of Akkermansia (2.4%),
E.coli (<0.1%), Methanobrevibacter (<0.1%), and Desulfovibrio
(<0.1%) as compared to the C group. In the CTC group,
Peptostreptococcaceae (26.9%) and Faecalibacterium (20.7%)
were higher with reduced populations of Akkermansia (1.7%),
E.coli (<0.1%), Methanobrevibacter (<0.1%), and Desulfovibrio
(<0.1%) as compared to the C group. In the LIN group,
Allistipes (26.1%) were higher with a much lesser proportion of
Lactobacillus (7.9%), Faecalibacterium (6.8%), E. coli (<0.1%),
Methanobrevibacter (<0.1%), and Desulfovibrio (<0.1%) as
compared to the C group. In the TYL group, the proportion
of Faecalibacterium (38.5%) and Alistipes (22.1%) were higher
with a much lesser population of Lactobacillus (4.5%), E.coli
(<0.1%), Methanobrevibacter (<0.1%), and Desulfovibrio
(<0.1%) as compared to C. In the case of VIR, the proportion
of Lachnospiraceae (32.4%) and Lactobacillus (26.4%) increased
with a reduction in the proportion of Faecalibacterium (3.2%),
Peptostreptococcaceae (2.9%), and E. coli (< 0.1%) and a slight

decrease in the proportion of sulfate reducing bacteria (2.2%)
and Methanobrevibacter (1.2%) as compared to C.

The UpSet diagram indicated a very high level of overlap of
phylotype-OTUs among different groups (based on the shotgun
sequence data) where most of the non-rare OTUs (17655 out
of 18163) were detected in all the groups (Figure 2). A total of
121,100, 62, 51, 36, and 35 OTUs were not detected in the CT, T,
C, B, V, and L groups, respectively, but were detected in all other
remaining groups.

Microbial Alpha Diversity and Data
Rarefaction
Different alpha diversity metrics (the diversity within each
group) were estimated to assess different aspects of the
community structure.

The alpha diversity indices (ACE, Chao1, Fisher, Shannon, and
Simpson) calculated on the amplicon sequencing data did not
differ significantly among the groups. (Supplementary Table 4).
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FIGURE 7 | Differential abundance of different categories of gut antimicrobial resistance genes in different experimental groups. The size of the bubbles in the bubble
plot indicates the normalized (normalized to per million reads) abundance. MLS, macrolide-lincosamide-streptogramin B.

Based on the shotgun sequencing data, the alpha diversity
(which takes into account both richness and evenness) estimator
with the Shannon and Simpson index was higher (P < 0.01) in the
CTC group as compared to the control (C) group. The Pielou’s
evenness index was significantly higher in the CTC group and
tended to be higher in the L group as compared to the C group
(Supplementary Figure 1).

Besides these estimators, rarefaction curves based on the
observed species richness, Chao1, and ACE estimators were
also plotted based on the shotgun data (Figure 3) and also
on amplicon sequencing data (Supplementary Figure 2). The
rarefaction curve depicts the correlation between the number
of sequences and the number of taxonomic OTUs, and the
steeper the slope, the higher the diversity (Heck et al., 1975).
The rarefaction curve approached the asymptotic level for
each group even on rarefying data to minimum library size,
suggesting the availability of sufficient reads to represent each
microbial community.

Microbial Beta Diversity
The beta diversity (the partitioning of biological diversity among
groups along a gradient, e.g., the number of species shared
between two groups) analysis was undertaken to assess the

relationship between microbial communities of different groups
using different metrics to calculate the dissimilarity/distance
matrix, such as Bray-Curtis, Jensen-Shannon, and Jaccard Index.

Beta diversity analysis using PCoA or NMDS plot on the
amplicon sequencing data did not result in any visual separation
of samples due to groups. PERMANOVA tests performed using
all beta diversity metrics used in this study showed no significant
(P > 0.05) differences in the community structure among
different groups. At the phylotype-OTU level, Jensen Shannon-
based PERMANOVA analysis had the highest Pseudo–F (1.1368)
and R2 (0.321) values among all distance metrics indicating
that only 32.1% of microbiota variation is explained by this
category (group) besides a non-significant p-Value (P > 0.05).
The beta dispersion values (PERMDISP) were non-significant for
all groups in all diversity metrics analyzed at the phylotype-OTU
level indicating homogeneous dispersion among groups.

Beta diversity analysis on the shotgun sequence data was
visualized using nMDS as well as PCoA ordination methods, but
due to space limitations, only plots obtained using nMDS are
presented (Figure 4).

Permutational multivariate analysis of variance tests
performed using all beta diversity metrics used in this study
showed no significant (P > 0.05) differences in the community
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structure between different groups. At the phylotype-OTU level,
the Jaccard Index based PERMANOVA analysis had the highest
Pseudo–F (0.965) and R2 (0.211) values among all the distance
metrics indicating that only 21.1% of microbiota variation is
explained by this category (group) besides a non-significant
p-value (P > 0.05). The beta dispersion values (PERMDISP)
were non-significant for all groups in all diversity metrics
analyzed at the phylotype-OTU level indicating homogeneous
dispersion among groups.

The NMDS scaling based on all three distance metrics showed
a clear visual separation of groups at the phylotype-OTU level,
but there was a high degree of overlap between the groups.

Differential Abundances of Bacteria
DESeq2 analysis of CSS normalized amplicon sequencing
data (OTUs with at least 5 members) with FDR correction
indicated that 5 phyla, 7 classes, 5 families, 6 genera,
and 20 OTUs were significantly different in abundance
between groups. At the class level, Deltaproteobacteria,
Methanobacteria, Gammaproteobacteria, Actinobacteria,
Mollicutes, Campylobacteria, and Bacteroidia differed
significantly in abundance between groups. The abundance
of genera, Desulfovibrio, Clostridium_sensu_stricto1, and
Methanobrevibacter was significantly lower in all AGP groups
except virginiamycin as compared to the C. The abundance of
the genus level uncultured group Ruminococcaceae_UCG_010
was significantly higher in the Tylosin group as compared to C.
The abundance of the genus, Escherichia was significantly lower
in all the AGP groups as compared to C. The abundance of the
genus, Pontibacter was significantly lower in the groups, tylosin,
and lincomycin as compared to C.

DESeq2 analysis of CSS normalized shotgun sequencing
data (18,163 OTUs with at least 5 members) with FDR
correction indicated that only 15 phylotype-OTUs were
significantly different in abundance among the groups (Figure 5).
Comparisons between pairs of groups using the Mann–Whitney
U test indicated that there was a significant difference in the
abundance of many phylotype-OTUs between different groups.
Interestingly, the abundance of phylotype-OTUs, such as
OTU00796 (species Desulfovibrio 6146AFAA) and OTU13666

(species Geobacillus subterraneus) was lower in the T group as
compared to the C group, but the abundance of OTU07544
(species, Odoribacter laneus) was higher in the T group than in
the C group. The abundance of the OTU12975 (genus Suttonella)
was higher in the CT group as compared to the C group. The
abundance of OTU12893 (species Flavobacterium xinjiangense)
and OTU09076 (species Suttonella ornithocola) were higher in
the L group as compared to the C group. The abundance of
OTU09076(species Suttonella ornithocola) was also higher in the
V group as compared to the C group.

Differential Abundance of
Bacteriophages
The abundance of Escherichia phage increased significantly in
the group supplemented with CTC as compared to C and other
antimicrobials (Figure 6). The abundance of other phages was
not influenced significantly by the supplementation of AGP
in the diet. However, the abundance of Enterobacteria phage
tended (P < 0.1) to be influenced by AGP supplementation with
the highest abundance in the LIN group. On the other hand,
the abundance of Shigella phage tended to be lower in most
of the AGP groups.

Differential Abundance of Antimicrobial
Resistance Genes
In total, 62 ARGs from 15 ARG classes were detected
(Supplementary Table 5). The abundance of tetracycline genes
was high across the groups and was not influenced by the
inclusion of AGPs in the diet (Figure 7). In general, the
abundance and prevalence of aminoglycoside, tetracycline, and
macrolide-lincosamide-streptogramin B (MLS) resistance genes
were higher than other classes of AMR genes. The abundance
of aminoglycoside resistance genes tended to be higher in the
group supplemented with CT as compared to C, L, and T groups.
The abundance of nucleoside resistance genes was significantly
higher in the group supplemented with CT as compared to C,
L, and T groups, whereas in group B it was at an intermediate
level. The proportion of beta-lactam and MLS resistance genes
increased significantly after supplementing B in the diet as

TABLE 2 | Effects of treatments on the abundance of Escherichia coli and Lactobacillus spp. in gut content.

Treatment E.coli (Log10 no of copies of rrs gene/50 ng DNA) Lactobacillus spp. (Log10 no of copies of rrs gene/50 ng DNA)

Cycle 1 Cycle 3 Cycle 1 Cycle 3

C 3.738bc 4.485c 4.361 3.342

V 3.104ab 2.838a 4.547 4.423

CT 2.703a 4.618c 4.818 3.553

B 3.156ab 4.322bc 4.493 3.878

L 3.411ab 2.659a 4.662 2.825

T 4.355c 3.428ab 4.889 3.462

SEM 0.249 0.321 0.135 0.158

N 6 6 6 6

P-value 0.001 <0.001 0.891 0.070

V, Virginiamycin; CT, chlortetracycline; B, bacitracin methylene disalicylate; L, lincomycin; T, tylosin; N, number of replicate pens; means bearing common superscript does
not differ significantly (P < 0.05).
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an AGP. The abundance of metronidazole resistance genes
increased significantly in the group supplemented with L and T
as an AGP. The abundance of resistance genes associated with
the resistance of lincomycin, peptide antibiotics, sulfonamide,
trimethoprim, fluoroquinolone, chloramphenicol, and multidrug
resistance categories were not influenced significantly by the use
of the AGPs in the diet and in general, had lower prevalence and
abundance levels across the groups.

PCR- and Quantitative Real-Time
PCR-Based Differential Abundance of
Antimicrobial Resistance Genes
On conventional PCR analysis, bla-CTX-M genes were not
detected in samples (6 samples/group) except for those from the
third feeding cycle in the C group (Supplementary Table 6).
Similarly, colistin and the MDR (efflux pump) genes were not
detected in any of the samples. However, ampicillin (beta-
lactamase) resistance was detected in most of the samples, and
in the case of V, CT, and B groups, the occurrence of blaTEM
resistance in the third feeding cycle was higher than in the first
cycle. Quinolone resistance gene qnrA detected in some of the
samples in the first cycle was not detected in the third cycle in the
case of T, L, and CT but was detected both in the first and third
cycles in the C group. Another quinolone resistance gene, qnrB
gene was detected in most of the groups in the third cycle and not
in the first cycle. Quinolone resistance gene, gepA was detected in
moderate to a high level of prevalence in both the cycles in case of
C, V, CTC, and L samples but was not detected in B and T groups.

The qPCR analysis of samples found to be positive in
conventional PCR indicated that for blaTEM resistance, copy
number in third cycle was higher than in the first cycle for most
of the groups, but for quinolone resistance gene, qnr B the reverse
was true (Supplementary Table 6).

Effects on the Abundance of Escherichia
coli and Lactobacillus in Gut Content
Based on qPCr assay, during the first cycle, the CT group had a
significantly lower density of E. coli as compared to C (Table 2).
The other three AGPs namely V, B, and L tended to have lower
E. coli density, whereas the T group had comparable levels of
E. coli with that of the C group. During the third cycle, V and
L had a significantly lower density of E.coli as compared to C, and
T and B groups had intermediate levels whereas the CT group
had a comparable level of E. coli with that of the C group. The
density of Lactobacillus spp. was not significantly influenced by
the supplementation of AGP.

DISCUSSION

In the present study, supplementation of broiler diets with AGPs
showed no growth-promoting effect except for the 1–21 days
period in one out of the three trials. Supplementation with AGPs
also did not influence the apparent digestibility of nutrients.

Based on statistical power curve analysis, Pesti and Shim
(2012) have shown that for a broiler chicken experiment, testing

for a difference in BW for 2 groups having mean BW of 1,731 g
and SEM of 19 g and mean FCR of 1.865 g feed/g gain with
an SEM of 0.015 g/g with 12 replicate pens per group would
be expected to conclude a significant difference of 80% of the
time if the differences were 4.6% in BW and 3.4% in FCR. Using
the means and SEMs from our current study and following
the method of Pesti and Shim (2012), it could be expected
that 12, 13, and 14 replicates with 5 birds per pen can detect
about 71, 68, and 65 g difference in BW between two groups
at 5% level of significance at 80% of the time, and hence our
experiments had adequate power to detect a significant difference
that can be considered important commercially. In two out of
the three trials/cycles, the BWG of the negative C group was
higher than any of the AGP groups. In the remaining cycles,
the difference in BWG between the best performing AGP group
and the negative C at the 35th day is only 39 g. Hence, a higher
number of replicates in feeding trials would unlikely change
the inference or indicate a significantly better performance due
to the inclusion of AGP. Hence, the main reason for not
getting a significant difference is the less difference between
treatment means obtained rather than the lack of statistical power
due to replicates.

Considerable variability in response to AGP use has been
reported. Many studies have shown no weight gain difference
in broilers fed with an AGP diet in the absence of health
problems (Denev, 2006; El-Faham et al., 2015; Naveenkumar
et al., 2017). However, other studies have reported positive
effects of AGP on broiler weight gain or feed conversion
(Zhang et al., 2005; Peng et al., 2016; Salaheen et al., 2017;
Wu et al., 2018). In a meta-analysis involving 174 scientific
articles containing 183 experiments on broiler chicken, Maria
et al. (2019) reported that higher weight gain and lower feed
conversion ratio were observed in AGP fed groups during the
initial phage (1 to 21 days), and the total period (1 to 42 days)
with no difference in the final phase (22 to 42 days). A reduction
in the effectiveness of AGPs in the last 30 years was suggested
by Laxminarayan et al. (2015), which may be linked to the
optimization of production conditions, better nutrition, increase
in the baseline weight gain of animals, and increasing levels of
antimicrobial resistance.

Antimicrobial growth promoters are postulated to affect
performance through the modulation of the intestinal
microbiome. The microbial communities differ in the
gastrointestinal tract of the chicken (Sekelja et al., 2012).
Here, we analyzed microbiota from the entire hindgut
(duodenum to cloaca including cecum) to focus on segments
generally considered to be important for gut health and
function. Samples from the entire hindgut were mixed
and, considering that we had modest sequencing depth,
it can be safely assumed that microbes from all hindgut
segments are adequately represented. Further, as we have
mixed the gut content similarly for all of the groups, the
mixing is unlikely to impact results with respect to the
ability to compare community composition and diversity
among the groups.

The advent of high throughput sequencing and molecular
tools has allowed for a detailed characterization of the gut
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microbiota of chicken quickly and robustly, without the need
to culture the microorganisms. Traditionally, sequence reads
are clustered into OTUs at a defined identity threshold to
avoid sequencing errors generating spurious taxonomic units.
However, recently amplicon sequence variants (ASVs) have
been proposed as an alternative to OTUs wherein a denoising
algorithm is employed to generate an error model based on
the quality of sequencing run to distinguish between predicted
true biological variation and that is likely to be generated by
a sequencing error. Several studies have compared the result
of OTU-based and ASV-based approaches. Studies involving
mock communities indicated that ASV-based approaches had
a higher sensitivity than OTU-based approaches in detecting
the rare bacterial strains present, sometimes at the expense
of specificity (Prodan et al., 2020). However, studies utilizing
real biospecimens from different ecosystems including chicken
gut indicated that OTU-based and ASV-based approaches
resolved similar biological signals, beta diversity, community
composition, and taxonomy profiles (Allali et al., 2017; Glassman
and Martiny, 2018; Joos et al., 2020; Moossavi et al., 2020).
Further, recently it has been shown that the ASV approach
can lead to conflicting inferences about the ecology of some
bacterial genomes due to the presence of multiple copies of
the 16S rRNA gene with a slightly varying sequence within the
genome of a particular species of bacteria as ASV is sensitive to
even single nucleotide difference (Schloss, 2021). In this study,
our aim was not to detect rare organisms but to focus on the
most important ones with adequate abundance. Most of the
rare organisms would be removed in typical data filtering steps
before differential abundance analysis and practically may not
contribute substantially to the overall gut health or function.
Hence, we have utilized the traditional OTU-based approach
rather than the ASV-based approach for clustering sequence
reads in our analysis.

The chicken gut harbors a range of microorganisms that
have been proven to have a strong impact on the performance
and health of the chicken. Adverse, pathogenic, and potentially
pathogenic bacteria in the gut of chicken, such as E. coli,
Salmonella spp., and C. perfringens, compete with the host for
nutrients and may also damage the intestinal epithelium, which
adversely affects the digestion and absorption function of the
host and invade the host system causing morbidity, performance
loss, and mortality (Gunal et al., 2006), besides posing a risk of
spreading zoonotic diseases to humans. Although many E. coli
strains are commensals, an unambiguous distinction between
pathogenic and commensal strains is not so easy and may
require a thorough analysis of a large number of virulence
genes (or genome) and phenotype traits, as MiSeq data on
16S rRNA gene cannot differentiate them. Further, it has been
emphasized that the thin borderline between commensalism
and pathogenicity can be blurred by gene transfer, mutation,
etc., due to the high plasticity of the genome of E. coli
(Leimbach et al., 2013).

On the other hand, there are certain beneficial bacteria in
the gut that provide health benefits, including enhancing the
function of the intestinal barrier of the host, excluding potential
pathogens, and maintaining homeostasis in the gut. Such bacteria

are also called probiotic bacteria. Certain probiotic gut bacteria
can also produce bacteriocins (a group of antimicrobial peptides)
to selectively inhibit the growth of other bacteria including
pathogenic bacteria. Various strains of Lactobacillus spp. isolated
from the chicken gut were shown to produce bacteriocins, which
are inhibitory to various bacteria, including pathogens, such as
Campylobacter, Salmonella enteritidis, and C. Jejuni (Svetoch
et al., 2011). The lactic acid produced by Lactobacillus can be
converted to beneficial short-chain fatty acids (SCFAs), such
as acetate, propionate, and butyrate by certain gut bacteria
which in turn supply energy to the host and gut epithelial cells.
It has been shown that there is a high correlation between
the abundance of beneficial microbes, such as Lactobacillus in
the gut with feed efficiency in chickens (Yan et al., 2017). It
was reported that Lachnospiraceae and Ruminococcaceae are
associated with good gut health through SCFA production and
fiber degradation and hence have probiotic properties and are
categorized as beneficial bacteria (Biddle et al., 2013; Stanley
et al., 2016). Similarly, emerging evidence indicates that bacteria
belonging to Faecalibacterium spp. have an important role
in maintaining SCFA production, gut immunity, and healthy
metabolism and are considered probiotic and beneficial bacteria
(Miquel et al., 2013).

Earlier, based on the amplicon sequencing of gut content, we
observed that E. coli was the most abundant bacteria among the
known potential pathogenic bacteria and Lactobacillus was one
of the most abundant beneficial bacteria with a known probiotic
role in broiler chicken (Paul et al., 2021a). Hence, we have
utilized E. coli and Lactobacillus as representatives of potentially
pathogenic and beneficial bacteria, respectively, for qPCR assay.

The taxonomic assignment of amplicon sequencing data
indicated that individual AGPs had some significant effect
on the gut microbiome. The BMD-enriched Lachnospiraceae
without affecting beneficial bacteria with known probiotic roles,
such as Faecalibacterium and Lactobacillus. CTC enriched
Peptostreptococcaceae and Faecalibacterium and depleted
Akkermansia. Tylosin enriched Faecalibacterium and Allistipes,
while reducing the abundance of Lactobacillus. Lincomycin
enriched Allistipes and depleted both Lactobacillus and
Faecalibacterium. Virginiamycin enriched Lachnospiraceae
and Lactobacillus while depleting Akkermansia and
Faecalibacterium. All the AGPs except Virginiamycin
reduced the relative abundance of sulfate-reducing bacteria
and methanogens. However, differential abundance analysis
using DESeq2 and strict statistical screening methods like FDR
adjustment has shown significant differences between groups
in a limited number of OTUs and in a few genera. E. coli was
the most abundant, potentially pathogenic bacteria in the gut
of broiler chickens in the C group. There was a significant
decrease in the abundance of potentially pathogenic genera
like Escherichia in all the AGP groups as compared to C. Our
qPCR data have also indicated that most of the AGPs had
significantly lower or a trend of lower E. coli density during
the first cycle as compared to the C. This is in agreement
with the study of Unno et al. (2015) who also observed that
although no growth performance enhancements were observed
in pigs with AGPs, such as chlortetracycline, sulfathiazole, and
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penicillin, the use of AGPs inhibited the potential pathogens in
the gut of swine.

Escherichia coli has been found as a part of normal flora in
the gastrointestinal tracts of chickens and is considered one of
the most important and frequent pathogens responsible for food-
borne diseases in poultry and humans worldwide (Akbar et al.,
2014). Hence, a decrease in E. coli in the gut of the chicken
with the use of AGP may be important for poultry producers.
However, a reduction in E.coli alone may not justify the use of
AGPs in poultry production.

Based on the shotgun sequencing data, Clostridia under
the phylum, Firmicutes was the most dominant class in
all the groups. There was a considerable variation between
individual birds in the relative abundance of different classes.
Statistical analysis revealed no significant difference in the
relative abundance of Clostridia or Firmicutes among treatments.
However, the average proportion of Bacteroidia was lower
in some of the AGP groups. The Upset diagram indicated
that most of the non-rare OTUs were detected in all the
groups and only a few OTUs were not detected in each
of the AGP groups indicating that the AGPs influenced
only a few OTUs. In the present study, richness indices
were not affected by supplementation of AGP, but the
evenness and diversity were higher in the chlortetracycline
group than that in the C group. Early culture-based and
culture-independent studies using molecular tools, such as
denaturing gradient gel electrophoresis and Sanger sequencing
of clone libraries revealed AGP- induced shifts in microbiota
composition (Dumonceaux et al., 2006; Lin et al., 2013).
Subsequent next-generation 16 S amplicon sequencing or
shotgun metagenomic sequencing also demonstrated specific
changes in certain bacterial communities but in many studies,
results were inconsistent. Several studies have indicated no effect
of AGPs on alpha diversity (Danzeisen et al., 2011; Proctor and
Phillips, 2019), while others have indicated a decrease (Choi
et al., 2018; Diaz Carrasco et al., 2018) or increase (Crisol-
Martinez et al., 2017) in alpha diversity metrics. Robinson
et al. (2019) reported a significant decrease in richness and
a concurrent increase in evenness in cecal microbiota on 2-
week supplementation with monensin and salinomycin. In the
present study, supplementation of the AGPs had no significant
effect on beta diversity. In contrast, beta diversity metrics were
shown to be consistently influenced by AGPs across many
studies (Costa et al., 2017; Crisol-Martinez et al., 2017; Diaz
Carrasco et al., 2018) with only a few studies reporting no shift
(Pourabedin et al., 2015).

Based on shotgun sequences, the abundance of only 16 OTUs
differed significantly between at least one pair of the groups. The
most notable effect of AGP supplementation was the differential
enrichment of Odoribacter (in case of T), Flavobacterium (in
case of B), and Suttonella (in case of V, B, CT, and L) and
depletion of Desulfovibrio (in case of T) and Geobacillus
(in case of T) as compared to C. Bacteria within the genus
Odoribacter, belonging to the order Bacteroidales, are SCFA-
producing members of gut microbiota. Recent in vitro studies
have indicated that some members of this genus could potentially
exert anti-inflammatory action in the gut epithelium and are

likely to be commensal with primary beneficial interactions
with the host (Hippala et al., 2020). Flavobacteria, belonging
to the phylum Bacteroidetes, have been reported from many
different ecological niches including the gastrointestinal tract of
animals and they are well-known degraders of polymeric organic
matters and gut bacteroidetes have been shown to interact
with the immune system for the activation of T-cell mediated
responses (Wen et al., 2008) and limiting the colonization
of GIT by potentially pathogenic bacteria (Mazmanian, 2008),
and are known to produce butyrate which plays a role in
maintaining healthy gut (Thomas et al., 2011). Geobacillus,
belonging to the class Bacilli, are known to produce a wide
range of secretary compounds including nitric oxide having
biological effects on GIT (Ilinskaya et al., 2017). Suttonella
ornithocola, first isolated from the lungs of the British tit
species belonging to the family, Cardiobacteriaceae is believed
to be a primary pathogen in some of the wild birds (Lawson
et al., 2011), and its role in chicken gut is not known. Its
enrichment in the case of V, B, and L supplemented groups
as compared to C can be considered an adverse effect of AGP
supplementation.

Desulfovibrio spp. are sulfate reducers and are potential
hydrogen sinks which not only facilitate anaerobic fermentation
but also produce hydrogen sulfide which is considered toxic
(Murros et al., 2021). Thus, depletion of Desulfovibrio spp. in
case of supplementation with T is expected to exert a mixed effect
on gut health and fermentation.

The present study indicated that the abundance of Escherichia
phages increased significantly with supplementation of
CTC and that other AGPs did not influence bacteriophages
significantly. Reports on the effects of AGPs on the abundance
of bacteriophages in the gut are limited. Salaheen et al. (2017)
observed that AGP supplementation (tylosin, neomycin,
bacitracin, erythromycin, and oxytetracycline) was associated
with a higher relative abundance of bacteriophages.

In the present study, the tetracycline resistance genes were the
most abundant followed by MLS and aminoglycoside resistance
genes and this is the first metagenome-based analysis of the
prevalence of ARGs in Indian broilers. However, a recent report
on antibiotic susceptibility analysis showed that 77 and 100%
of bacterial isolates belonging to the E. coli and Klebsiella
pneumonia isolated from the fecal samples of chicken from
5 different Indian farms were resistant to tetracycline, and
further molecular screening for tetA and tetB genes showed
85% of isolates to have tetA and 22% isolates with tetB
(Sreejith et al., 2020). The tetracycline resistance was also
the most prevalent in the fecal samples collected from cattle
(Zaheer et al., 2018) and humans (Forslund et al., 2013;
Hu et al., 2013) in other counties. In the present study,
many antibiotic resistance genes were ubiquitous in the gut
content of the chicken regardless of antibiotic administration.
However, different AGPs increased the abundance of different
ARGs, some of which are structurally unrelated to the
AGPs being fed to chicken. For example, bacitracin (peptide
antibiotic) significantly increased the abundance of beta-lactam
resistance genes. Similarly, the groups fed with bacitracin
(peptide antibiotic) and chlortetracycline (tetracycline group)
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had a high abundance of MLS class ARGs, such as erm
(erythromycin resistance), lnuB (confers resistance to lincomycin
and clindamycin) and msrB (confers resistance to erythromycin
and streptogramin B or quinupristin) and nucleoside class
of ARGs, such as sat4 and sat2. Earlier, the increasing use
of virginiamycin in animals as a feed additive has been
shown to be associated with higher rates of resistance to
virginiamycin, and quinuprustin–dalfopristin (streptogramin
compounds) has been associated with increased abundance
of vat, and vatG genes (Soltani et al., 2000). Quinupristin-
dalfopristin is a semi-synthetic mixture of streptogramin A
and B, which has been used in the treatment of infections
caused by multidrug-resistant pathogens including vancomycin-
resistant Enterococcus faecium. In this study, vatE genes were
detected in limited numbers and also in lower prevalence.
Moreover, the density of streptogramin resistance genes in
the virginiamycin group was not significantly different from
that of the C group. Similarly, lincomycin feed did not
influence the abundance of lincosamide resistance genes or any
other class of antimicrobials. However, lincomycin significantly
increased the abundance of metronidazole resistance genes.
Tylosin (macrolide group antibiotic) was associated with an
increased abundance of resistance to the structurally related
antibiotic erythromycin and also that of metronidazole, which
is not structurally related to it. Thus, the present study
indicates that feeding of AGPs modulates the selection of
ARGs in a complex manner and may not be explained
by simplistic cause and effect relationships or structural
similarity and may be due to genetic linkage. The use
of tylosin is very common in poultry in India as besides
its use as AGP, it is also used to treat or prevent the
occurrence of chronic respiratory disease caused by Mycoplasma
gallisepticum. Metronidazole resistance is not very common.
Metronidazole has been a mainstay both for prophylaxis and
treatment of anaerobic infections. Metronidazole resistance has
been emerging worldwide, although presently its prevalence
is about 5%. Such resistance has become a great concern
because of limited therapeutic options available for treating
anaerobes, such as Bacteroides infection (Sethi et al., 2019).
Earlier, Sethi et al. (2019) reported that 31% of the human
Bacteroides spp. isolates from North India were resistant
to metronidazole and 53% of isolates were positive for
nim gene. It may be mentioned that no genes related to
colistin resistance were detected in any of the samples in
this study in both qPCR and metagenomic shotgun analysis.
PCR and qPCR analysis confirmed the presence of some of
the ARGs identified through shotgun analysis. Earlier, Gupta
et al. (2021) observed that although antibiotic resistance
genes were ubiquitous in chicken cloaca and litter, bacitracin
fed groups had higher levels of bacitracin resistance genes,
and vancomycin-resistant bacteria and enrofloxacin treatments
generally facilitated increased abundance of multidrug-resistant
bacteria. In contrast, Danzeisen et al. (2011) did not observe
any significant difference in antimicrobial resistance gene
counts in the cecal content of chicken on supplementing
with monensin, tylosin, and virginiamycin. Salaheen et al.
(2017) observed that AGP supplementation (tylosin, neomycin,

bacitracin, erythromycin, and oxytetracycline) was associated
with unique cecal resistome compared with C. Earlier, Apata
(2009); Diarra and Malouin (2014) reported that the use of
antimicrobials as AGP, administered at a subtherapeutic dose
usually over a longer period, may lead to the development of
antimicrobial resistance. The abundance of ARGs detected in
this study could be directly related to the changes in the gut
microbiome but from metagenomic data, it is not easy to establish
which bacteria are associated with which ARG.

CONCLUSION

Our results demonstrate the high complexity of poultry gut
microbiome and resistomes and the ubiquitous presence of
different classes of ARGs in the gut of broiler chicken. Feeding of
AGPs affects gut bacteria, pathogenic bacteria, and bacteriophage
only to a limited extent. Feeding AGPs affects the abundance
of ARGs in a highly complex manner which may not be
explained by simple cause and effect relationships or structural
similarities. More studies like this are required to determine
baseline resistome levels in broiler production facilities and
evaluate the effects of continuous use of different AGP classes.
Nevertheless, the present study has indicated that the AGPs
favor the selection of different ARGs even though that may not
be structurally related to the AGP and feeding of AGPs had
no significant effect on the performance of broiler chickens.
The study highlighted the need to monitor the spread of ARGs
and the setting up an action plan to reduce the use of AGPs in
broiler production.
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