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Barbara A. Block5, Graeme C. Hays3

1Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, Maryland, United States of America, 2National Oceanic and

Atmospheric Administration/National Marine Fisheries Service/SWFSC/Environmental Research Division, Pacific Grove, California, United States of America, 3Department

of Biosciences, College of Science, Swansea University, Singleton Park, Swansea, United Kingdom, 4Center for Ocean Solutions, Monterey, California, United States of

America, 5Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America, 6Université de Strasbourg, IPHC, Strasbourg, France, 7CNRS,
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9 Swedish Meteorological and Hydrological Institute, Folkborgsvägen 1, Norrköping, Sweden, 10Department of Biology, Indiana-Purdue University, Fort Wayne, Indiana,

United States of America, 11Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America

Abstract

Foraging success for pelagic vertebrates may be revealed by horizontal and vertical movement patterns. We show markedly
different patterns for leatherback turtles in the North Atlantic versus Eastern Pacific, which feed on gelatinous zooplankton
that are only occasionally found in high densities. In the Atlantic, travel speed was characterized by two modes, indicative of
high foraging success at low speeds (,15 km d21) and transit at high speeds (20–45 km d21). Only a single mode was
evident in the Pacific, which occurred at speeds of 21 km d21 indicative of transit. The mean dive depth was more variable
in relation to latitude but closer to the mean annual depth of the thermocline and nutricline for North Atlantic than Eastern
Pacific turtles. The most parsimonious explanation for these findings is that Eastern Pacific turtles rarely achieve high
foraging success. This is the first support for foraging behaviour differences between populations of this critically
endangered species and suggests that longer periods searching for prey may be hindering population recovery in the
Pacific while aiding population maintenance in the Atlantic.
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Introduction

Foraging success is intimately linked to reproductive success and

hence population viability [1,2]. The processes that drive foraging

success may therefore strongly shape the conservation status of

populations. An ecological and conservation enigma has existed

for critically endangered leatherback turtles (Dermochelys coriacea),

which despite facing high fisheries bycatch across the world’s

oceans [3,4], show markedly different population trajectories in

the Atlantic and the Pacific [5,6]. Leatherback turtles in the Pacific

Ocean have been rapidly decreasing over the past two decades,

whereas those in the North Atlantic are stable or increasing.

It is well known that foraging success for pelagic vertebrates may

be revealed by horizontal movement patterns [7]. Predators tend

to focus their foraging attention on areas where they have recently

encountered prey by reducing their speed and/or increasing their

turning angle. This behaviour is known as area-restricted search

(ARS) and results in populations of predators moving toward

regions of high prey density [8]. The elucidation of movement

patterns through electronic tagging has enabled spatio-temporal

foraging patterns to be determined for many pelagic species [9,10].

A significant negative relationship between travel speed and the

number of feeding events has also been found in a large marine

predator [10]. In an analysis of foraging success measures, travel

rate consistently provided the best estimate of daily foraging

success [11].

In this study, we analysed the movement patterns, and more

specifically travel rates, of North Atlantic (NA) and Eastern Pacific

(EP) leatherback turtles derived from Argos satellite tracks to

determine if there were differences in their foraging behaviour.

Since high density aggregations of gelatinous zooplankton, upon

which leatherbacks feed, are patchily distributed [12], leatherbacks

would only occasionally be expected to find themselves in high

density prey fields. So a priori one would expect that leatherbacks

would spend most of their time transiting in search of high density
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prey patches [13]. Rapid movements away from the breeding

areas and during their seasonal migratory cycle suggest replenish-

ing their energy reserves quickly is important [14,15]. We

therefore predict that for this species the modal speed will

represent movement associated with prey search. When high

density prey patches are located, leatherbacks remain in the area

to feed and their travel speed decreases. Accordingly, we

hypothesize that the declining EP leatherbacks may have lower

foraging success than those in the NA, and that the travel rates will

correspondingly be different between the two populations. As

changes in vertical movements may also be indicative of foraging

[15], we complemented our analysis of horizontal movement

patterns with a comparison of diving behaviour by NA and EP

leatherback turtles. We used this comparison of movement

patterns to identify differences in foraging behaviour between

leatherbacks in the Atlantic and Pacific and how this relates to the

population abundance trends.

Methods

Ethics Statement
The study adhered to the legal requirements of the countries in

which the work was carried out, and to all institutional guidelines.

Fieldwork in Grenada was carried out with approval from the

Ministry of Agriculture, Forestry, Lands and Fisheries of Grenada

with permission granted under the Fisheries Act #15 of 1986

(section 24) and the Fisheries Regulations SRO # 9 of 1987

(section 21). In Ireland all tagging was carried out under the strict

guidance and approval of the National Parks and Wildlife Service

of the Department of Environment, Heritage and Local Govern-

ment, Ireland. Fieldwork in French Guiana and Suriname was

carried out under CNRS-IPHC institutional license (B67 482 18)

and individual licences to JYG (67–220 and 04–199) and SF (67–

256) delivered by the National Committee of Nature Protection

(French Ministry of Ecology and Sustainable Management), Paris,

France; the Departmental Direction of the Veterinary Services,

Strasbourg, France; and the Police Prefectures of Bas-Rhin and

French Guiana. The Eastern Pacific leatherback tracking research

was approved by the Stanford University Research Compliance

Office Administrative Panel on Laboratory Animal Care under

Protocol #13848: ‘Satellite tracking of Eastern Pacific leatherback

sea turtles’. Permits were obtained via Resoluciones 273-2003-

OFAU, ACT-OR-056, y ACT-OR-032-06 from the Costa Rican

Ministerio de Ambiente y Energia y Telecomunicaciones (MIN-

AET) for Estudios de la conducta, movimientos, y uso de hábitat

de las Tortugas Baulas (Dermochelys coriacea) en el Parque Nacional

Marino Las Baulas, Área de Conservación Tempisque.

Data Collection
Our study involved a synthesis of some previously published

tracks [9,16]. ARGOS-derived surface locations were obtained

from 46 EP leatherback turtles [16]. These turtles were tagged

during nesting at Playa Grande, Costa Rica in 2004 to 2007. In

2004, Wildlife Computer Smart Position Only tags (SPOT) were

attached to 10 of these turtles. The remaining turtles were

instrumented with Sea Mammal Research Unit (SMRU) Satellite

Relay Data Loggers (SRDL). The NA leatherback turtles were

tagged during 2002 to 2006 at Levera beach in Grenada (n = 9),

Samsambo beach in Suriname (n= 1), Awala-Yalimapo beach in

French Guiana (n= 5), at sea off Nova Scotia (n = 4) and off the

Dingle Peninsula in County Kerry, Ireland (n= 2) [9]. These

turtles were all fitted with SMRU SRDL tags. The satellite

transmitters were attached to all of the turtles in the study with

a harness system that had corrodible links for release [17,18],

except for three NA turtles that had the SRDLs directly attached

to the carapace [19]. Since turtles tagged with harnesses have been

found to travel slower than those directly attached [19], the three

tracks with direct attachment were excluded from further analysis.

Track Analysis
Details of the processing of the NA leatherback tracks are given

in Fossette et al. [9]. Briefly, locations of all location quality classes

were analysed, but those with an apparent speed .10 km h21

were discarded as they were considered biologically unlikely [15].

Tracks were then smoothed and re-sampled to provide positions at

regular intervals [9].

The switching state-space model (SSSM) developed by Jonsen et

al. [20] was applied to all of the raw surface positions of the EP

leatherback turtle tracks. The application of the SSSM provided

the most probable track positions, taking into account Argos

location error, at regular 6 h intervals [16,21].

In this study, we only used the post-nesting portions of all of the

tracks, after nesting had been completed. Travel speeds were

calculated from the regularised tracks via first differencing

consecutive points. Track sections were removed where there

had been more than 3 days missing satellite data as this could

result in an underestimate of travel rate [9]. Frequency distribu-

tions were generated for the absolute travel speeds. A Hartigan’s

dip test was performed to determine whether the distributions

were unimodal [22].

We tested whether the processing of the satellite data affected

the travel speeds or had any impact on the frequency distributions.

We applied the SSSM method to one of the NA tracks and

compared the mean speeds between the two processing methods.

The SSSM may have filtered out more of the high speed variations

resulting in a unimodal distribution for the EP population. We

therefore also applied a simple filtering process to check whether

the distribution of travel speeds for the EP turtle tracks was the

same regardless of the processing method. This simple filter

removed segments where speeds were .10 km h21, similar to the

method by Fossette et al. [9], and Z class positions. A Hartigan’s

dip test for unimodality was then applied.

The two modes identified in the NA absolute travel speed

distribution were at 12.5 km d21 and 37.5 km d21 (Figure S1).

Around each of these modes 29% and 42% of the time was spent

travelling between 0–15 km d21 and 20–45 km d21 respectively.

Given that leatherbacks are presumed to spend most of their time

transiting in search of prey and relatively little time achieving high

foraging success [13], we defined the modal transiting speed as

37.5 km d21 for the NA leatherbacks based on the modal speed

that encompassed most of the data. A single peak modal speed was

identified for the EP turtles at 21 km d21. Frequency distributions

for the relative travel speeds were generated accordingly. The

SSSM unfortunately classified large portions of the 6-hourly

positions as a single behavioural mode [21], which made it difficult

to identify specific foraging areas. The comparison of travel speeds

therefore appeared more robust and highlighted more clearly the

movement differences between the two populations.

We also plotted frequency distributions of the travel speeds for

subsets of the data. The NA turtles were tagged both on the

nesting and foraging grounds. We therefore selected the speeds

from only those NA turtles tagged with harnesses on the nesting

grounds so that they would be more directly comparable with

those of the EP turtles, which were only tagged in this way. The

NA turtles also have three main migration strategies that were

plotted separately: the round-trip, the northern and the equatorial

[9]. Finally, within the EP tracking data set there was a single

Leatherback Turtle Movement Patterns
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coastal forager. The speeds for this turtle were plotted to compare

with the migration strategies by the NA turtles.

Track Current Correction
The impact of the ocean currents on each turtle’s trajectory was

removed to reveal the animal’s swimming velocity [9,23]. The

ocean currents were calculated using surface current estimates

measured by satellite that are the sum of the geostrophic and

Ekman components. These surface currents were deducted from

the turtle movements at each location. A b-plane solution was

applied within the equatorial band (4uN – 4uS) [16].

Comparison with Chlorophyll-a Concentration
Very little is known about the distribution and abundance of

leatherback turtle prey, gelatinous zooplankton, and data are

particularly sparse in the South Pacific Ocean. We therefore used

estimates of near-surface chlorophyll-a concentration (CHL; an

indicator of phytoplankton standing stock) as a proxy for

leatherback prey abundance. A long-term mean was calculated

from Moderate Resolution Imaging Spectroradiometer (MODIS)

satellite ocean-color observations at 9 km resolution for the period

July 2002 to July 2010. CHL values for the time and location of

each turtle position were obtained from 8-day composites provided

by the MODIS (0.05u 6 0.05u resolution) sensor on the NASA

AQUA/TERRA Spacecraft. These were extracted using the

OceanWatch Themetic Real-time Environmental Distributed

Data System (THREDDS, available at http://oceanwatch.pfel.

noaa.gov/thredds). Mean CHL values were calculated for all of

the EP turtle positions and for the NA turtle positions where

speeds were #40% of the modal transiting speed (15 km d21).

Vertical Behaviour
Changes in vertical movements may also be indicative of

foraging [15]. We therefore analysed the vertical behaviour of the

turtles derived from the dive data recorded by the tags. These dive

data are summarised into 6 h bins [9,24]. We examined the mean

dive depths in relation to latitude for the two populations to

provide further insight into where leatherbacks are foraging. The

vertical distribution of prey was not available so we calculated the

depth of the mean annual thermocline and nutricline. These are

indicators of temperature and nutrient changes that influence

biological productivity and hence leatherback gelatinous zoo-

plankton prey. The thermocline depth was defined as the depth of

the maximum temperature gradient. The nutricline is the increase

in concentration of nutrients with depth and was expressed as the

concentration of nitrate. The 2 mmol nitrate isocline depth was

used as a proxy for the nutricline [25]. These were calculated from

the objectively analysed annual climatology of temperature and

nitrate values on a 1 degree grid at standard depth levels from the

World Ocean Atlas 2009 [26,27].

Results

Horizontal Movements
The EP leatherback turtles tended to move within a migratory

corridor to foraging grounds in the southeast Pacific [16,28],

whereas the NA turtles dispersed throughout the North Atlantic

Ocean [29,30], with foraging behaviour occurring primarily at

high latitudes and in the sub-Equatorial region [9] (Figure 1).

There was a 0.5 km d21 difference in the mean speed for the

NA turtle track (duration= 323 days) with the Fossette filtering

method (Mean=26.5, SD=17.1 km d21) and SSSM

(Mean= 27.0, SD=19.3 km d21). The travel speed histogram

from the Pacific SSSM-derived positions had the same unimodal

distribution (Hartigan’s dip test, P = 0.999) as that derived from

positions where a simple location class and speed filter had been

applied to the satellite locations (Hartigan’s dip test, P = 0.999)

(Figure S1). This indicates that any differences between the

populations in the travel speed distributions were not caused by

differences in the processing of the satellite data.

Although mean turtle travel speeds were similar in the Atlantic

(Mean= 30.5, SD=21.3 km d21) and the Pacific (Mean=34.5,

SD=27.6 km d21), there was a significant difference in the

frequency distribution of both absolute and relative travel speeds

between the two populations (Figures 2, 3 and S1). The NA travel

speeds had a bimodal distribution (Hartigan’s dip test, P,0.001),

whereas only a single mode was evident for the EP turtles

(Hartigan’s dip test, P = 0.999). Given that leatherbacks are

presumed to spend most of their time transiting in search of prey

and relatively little time achieving high foraging success [13], we

defined the modal transiting speed as 37.5 km d21 and 21 km d21

for the NA and EP leatherbacks respectively. The second mode

(12.5 km d21) identified in the NA travel speed distribution

(Figure 2), at slower speeds and indicative of high foraging success,

corresponded to travel speeds #40% of the modal transiting

speed. There was no corresponding slower speed mode in the EP

travel speed distribution and there was a lower frequency of slow

speeds (,15 km d21) than in the NA distribution (Figures 2,

3A and B). These distribution patterns also occurred when we used

satellite derived current information to remove the impact of the

ocean currents on each turtle’s trajectory and hence reveal the

animals’ swimming velocity (Figure S2).

Analysis of speeds for only those NA turtles tagged on the

nesting ground confirmed the strongly bimodal distribution and

the difference between the two populations during the early post-

nesting phase (Figure 3A and B). The three migratory strategies of

the NA turtles also all had bimodal travel speed distributions

(Figure 3C, E and F). In contrast, the coastal forager EP turtle had

a single peak like that for the other EP turtles (Figure 3D), but it

occurred at slower travel speeds (,15 km d21). This peak was

similar to the travel speed of the first peak for the NA turtles.

Slower travel speeds tended to occur at high latitudes for both

populations. The locations of slow travel in the North Atlantic

(#40% of the modal transiting speed) had a mean near-surface

chlorophyll-a concentration (CHL) of 0.67 mg m–3 (SD=1.83,

Range= 0.04–19.86 mg m–3). If we consider the EP turtles as

constantly searching for prey as they had a unimodal travel speed

distribution, the mean CHL at their locations was 0.18 mg m–3

(SD=0.34, Range= 0.01–6.30 mg m–3). This is less than a third

of that for the foraging NA turtles. This was still true even when

we considered only the locations at #40% (8.4 km d21) of the

modal transiting speed for EP turtles (mean CHL=0.22, SD=0.

61 mg m–3). Leatherback turtles feed on gelatinous zooplankton

and CHL is therefore used only as a proxy for prey biomass.

Estimates of global zooplankton biomass show similar patterns to

CHL [31]. Emerging global estimates of gelatinous zooplankton

biomass [32] may lead to better understanding of the prey field for

leatherback turtles.

Vertical Behaviour
There were greater depths and variation in the mean dive depth

with latitude for the NA turtles than the EP turtles (Figure 4). The

NA leatherbacks dove deeper at mid-latitudes, which is where the

nutricline and thermocline were also deepest. Their mean dive

depth was shallowest at low and high latitudes. At high northerly

latitudes, their mean depth was below the mean annual nutricline

depth and very close to the mean annual thermocline depth. The

EP leatherbacks similarly dove below the nutricline and close to

Leatherback Turtle Movement Patterns
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Figure 1. Leatherback turtle satellite tracks.Map of North Atlantic (NA) and Eastern Pacific (EP) leatherback turtle tracks overlaid on a long-term
mean (2002–2010) of near-surface chlorophyll-a concentration.
doi:10.1371/journal.pone.0036401.g001
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transiting speed in the a) North Atlantic (NA) (modal transiting speed= 37.5 km d21), and b) Eastern Pacific (EP) (modal transiting speed= 21 km d21),
showing the bimodal and unimodal distributions respectively.
doi:10.1371/journal.pone.0036401.g002
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the thermocline depth at high latitudes. This also occurred within

the equatorial band. However, the EP turtles had relatively

shallow dive depths at all latitudes and did not follow as strong

a pattern as the thermocline and nutricline of increasing depth at

mid-latitudes.

Discussion

We identified different movement patterns for leatherback

turtles in the Atlantic versus Pacific Ocean. The most parsimo-

nious explanation for this finding is that the lack of a mode at

slower travel speeds for EP leatherback turtles is because they

rarely achieve high foraging success and spend most of their time

transiting in search of prey; while for NA leatherbacks the faster

mode in travel speed may be indicative of transiting and the mode

at relatively slow speeds is caused by turtles staying within high

density prey patches [13]. These travel speed distributions provide

the first support for a difference in foraging behaviour between

leatherbacks in the Pacific versus Atlantic, and suggest that

intrinsic properties of the foraging habitat may be hindering

population recovery in the Pacific while aiding population

maintenance in the Atlantic. Foraging movements, indicated by

lower travel speeds and changes in dive behaviour [9,13,24], have

previously been associated with upwelling and oceanic fronts that

can concentrate prey [29,33]. The generally lower CHL values in

the southeastern Pacific Ocean (Figure 1) indicate that there may

be lower abundances of gelatinous zooplankton and/or that they

are more widely dispersed. The EP leatherbacks may therefore be

spending longer periods of time searching for food. This provides

further evidence that resource limitation may be a contributing

factor to the longer intervals between nesting events (remigration)

and to the downward population trend [34,35].

Leatherbacks tended to dive to shallower depths at low and high

latitudes (Figure 4). Dive durations were similarly shorter at these

latitudes and accompanied by changes in diel dive activity [13,24].

These changes in diving behaviour suggest that foraging pre-

dominantly occurs within the equatorial and high latitude regions,

which corresponds with the edges of the North Atlantic and South

Pacific Gyres [9,16]. Estimates of zooplankton biomass are

generally higher around the edges of these gyres, in upwelling

regions and on the continental shelf [31]. Gelatinous zooplankton

also frequently accumulate around physical discontinuities, such as

thermoclines [12]. High values of zooplankton biomass have been

observed where the depth of the thermocline is shallow [36]. This

would explain the shallower mean dive depths by leatherbacks

when the thermocline and nutricline were also both shallow. The

thermocline and nutricline play an important role in controlling

vertical nutrient fluxes, which affects primary production [37].

This is turn increases production higher up in the food web,

including the abundance of gelatinous zooplankton, and conse-

quently leatherbacks. The thermocline and nutricline are sub-

stantially deeper in the centre of the South Pacific Gyre than in the

North Atlantic Gyre. If prey are aggregated at this depth it could

mean it is no longer energetically profitable for turtles to dive so

deep to feed, and may explain the lack of an association between

the EP dive depths and the thermocline/nutricline in this region.

It may also be that productivity is so low and prey items are so

scarce in the centre of the South Pacific Gyre [31,38] that it is not

worth diving any deeper to search for prey. Movement above and

below the thermocline may additionally be a function of

thermoregulation in leatherbacks [39,40].

The life history strategy of leatherback turtles is characterized

by deferred maturity (24.5 to 29 years [41], 16.1 years [42], 12–14

years [43]) and long-life span. Long-lived species are generally

characterized by high adult survival, where breeding adults must

trade off current versus future reproductive success. When there

are limited energy resources, breeding adults may reduce egg size

Figure 3. Frequency distributions of leatherback travel speeds. Speeds for turtles harness tagged on the nesting beach in a) the North
Atlantic (NA) (n = 13), and b) Eastern Pacific (EP) (n = 46). The speeds for the three main migratory strategies of North Atlantic leatherbacks c) round-
trip (n = 11), e) northern (n = 4) and f) equatorial (n = 3), compared with d) the single coastal forager of the EP leatherbacks.
doi:10.1371/journal.pone.0036401.g003
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or number, invest a greater proportion of their energy reserves to

egg production, delay egg production until later in the season, or

wait to breed until the following season [2]. This final strategy is

only profitable for long-lived species that have a high probability of

surviving to breed in the future. Another long-lived species, the

chinstrap penguin (Pygoscelis antarctica), has been found to reduce

reproductive success rather than increase foraging effort in

response to lower prey abundance [44]. The leatherback turtle

may therefore be responding to large fluctuations in prey

availability in the southeast Pacific, for example caused by the

El Niño Southern Oscillation, by holding its foraging effort

constant and allowing its reproductive success (nesting probability

and number of eggs per clutch) to vary between years [5,45]. The

high adult mortality caused by bycatch in fisheries [46], may be

reducing the profitability of this strategy by lowering the

probability of future breeding, and hence reducing the population

abundance.

The NA turtles, although also having suffered high mortality

from bycatch [4], may be able to recover more easily by accessing

feeding areas with high prey densities [47]. Many turtles migrated

to highly productive areas in the North Atlantic Ocean, including

productive coastal waters where gelatinous zooplankton biomass

tends to be highest [32] (Figure 1). This may allow them to return

more regularly to nest and lay greater numbers of eggs [5], which

would compensate for the loss of breeding adults. In contrast, the

majority of EP leatherbacks migrated south into the South Pacific

Gyre, which is highly oligotrophic. Only one leatherback turtle in

the EP tracking data set foraged within coastal waters [16].

Another EP leatherback has been documented migrating from

a nesting beach in Mexico to the coast of South America [48].

High rates of leatherback mortality among gillnet fisheries along

the Central and South American coasts may have drastically

reduced the number of coastal foragers [5,48]. Consequently, the

remaining pelagic foragers may not represent the most efficient

foraging strategy as they have long distances to travel to their

foraging grounds, and less dense and predictable prey sources.

Using stable isotope analysis, the nitrogen signature of EP

leatherbacks indicated that they foraged within the highly

denitrified eastern equatorial Pacific, and was very different from

that of the NA leatherbacks implying distinct oceanographic

processes on their separate foraging grounds [49]. A single nesting

Atlantic leatherback population was also segregated into two

distinct isotopic groups [50]. This implied differences in their

choice of feeding habitats, with an offshore North Atlantic group

and a more coastal West African group. A trophic dichotomy has

similarly been identified in adult female loggerhead turtles, where

oceanic planktivory occurred in small females and neritic

benthivory by large females [51]. Energy budget calculations

indicated the small oceanic females required almost 17 times

longer to accumulate the necessary energy for reproduction than

the large benthivorous females, which accounted for the in-

trapopulation variation in remigration intervals [51]. The

relatively small size, long remigration intervals, and oceanic

foraging of the EP leatherback females [5], suggests that this may

also apply to this population and that the less energetically

profitable oceanic strategy is currently dominant. The only coastal

forager in the EP tracking data set was one of the largest

individuals and had a higher than average clutch size (PTT 56280,

Table 1 in [52]), providing further support for this hypothesis. This

turtle also travelled slowly and had a peak at speeds similar to the

first mode by the NA turtles (Figure 3) indicating high foraging

success in this coastal area.

The foraging pattern of EP leatherbacks identified from satellite

telemetry in this study may therefore not be the optimal strategy

for leatherback turtles in the eastern Pacific Ocean. The longer

remigration interval and decline in numbers may be the

consequence of a synergistic interaction between environmental

(affecting prey resources) and anthropogenic impacts (affecting

adult survival rates) [34]. High prey availability at the foraging

grounds of the NA leatherbacks [53] may have enabled them to

maintain high reproductive success, which has compensated for

adult mortality in pelagic longline and gillnet fisheries [4,54]. Our

analysis of travel speeds indicates that the EP leatherbacks are not

compensating for low prey availability by increasing their foraging

effort or efficiency. This is also supported by a study that showed

delayed remigration in the EP population did not result in

enhanced growth or measured indices of reproduction, indicating

variability of environmental conditions is driving the length of the

remigration interval and thus the overall reproductive output for

each female [55]. It is essential that efforts to protect nesting

beaches are combined with plans to reduce fisheries bycatch so

that adult mortality is lowered, improving the profitability of their

evolved life history strategy and allowing populations to recover

[43].

Supporting Information

Figure S1 Leatherback turtle absolute travel speeds.
Frequency distribution of leatherback turtle speeds of travel in the

a) North Atlantic (NA), including all harness tagged turtles (n = 18),

and b) Eastern Pacific (EP), using a simple speed and location class

filter (n = 46).

(EPS)

Figure S2 Current-corrected leatherback turtle swim-
ming velocities. Frequency distribution of current-corrected

leatherback turtle swimming velocities for a) North Atlantic (NA)

leatherbacks, and b) Eastern Pacific (EP) tracks.

(EPS)
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