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Deep learning predicts cardiovascular disease risks
from lung cancer screening low dose computed
tomography

Hanging Chao® !, Hongming Shan® ', Fatemeh Homayounieh® 2, Ramandeep Singh® 2, Ruhani Doda Khera?,
Hengtao Guo', Timothy Su3, Ge Wang® '™, Mannudeep K. Kalra® 2* & Pingkun Yan® '™

Cancer patients have a higher risk of cardiovascular disease (CVD) mortality than the general
population. Low dose computed tomography (LDCT) for lung cancer screening offers an
opportunity for simultaneous CVD risk estimation in at-risk patients. Our deep learning CVD
risk prediction model, trained with 30,286 LDCTs from the National Lung Cancer Screening
Trial, achieves an area under the curve (AUC) of 0.871 on a separate test set of
2,085 subjects and identifies patients with high CVD mortality risks (AUC of 0.768). We
validate our model against ECG-gated cardiac CT based markers, including coronary artery
calcification (CAC) score, CAD-RADS score, and MESA 10-year risk score from an inde-
pendent dataset of 335 subjects. Our work shows that, in high-risk patients, deep learning
can convert LDCT for lung cancer screening into a dual-screening quantitative tool for CVD
risk estimation.
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ARTICLE

ardiovascular disease (CVD) affects nearly half of Amer-

ican adults and causes more than 30% of fatality!. The

prediction of CVD risk is fundamental to the clinical
practice in managing patient health?. Recent studies have shown
that the patients diagnosed with cancer have a ten-fold greater
risk of CVD mortality than the general population®. For lung
cancer screening, low dose computed tomography (LDCT) has
been proven effective through clinical trials®. In the National
Lung Screening Trial (NLST), 356 participants who underwent
LDCT died of lung cancer during the 6-year follow-up period.
However, more patients, 486 others, died of CVD. The NELSON
trial shows similar overall mortality rates between the study
groups even though the lung cancer mortality decreased in the
LDCT screening group®. Therefore, screening significant
comorbidities like CVD in high-risk subjects undergoing LDCT
for lung cancer screening is critical to lower the overall mortality.
Nevertheless, when the cancer risk population receives cancer
screening, their potential CVD risk may be overlooked. A recent
study reported that only one-third of patients with significant
coronary artery calcification (CAC) on LDCT had established
coronary artery disease diagnosis, whereas just under one-quarter
of the patients had a change in his/her cardiovascular manage-
ment following LDCT with referral to cardiologists’.

Since the Medicare coverage for LDCT lung cancer screening
started in 2015 in the United States, the use of LDCT in eligible
high-risk subjects has increased dramatically, with 7-10 million
scans per yearS. Most subjects eligible for lung cancer LDCT
screening often have an intermediate to high risk for CVD?. It is
of great importance for this high-risk population to have an
additional CVD screening. The clinical standard requires a
dedicated cardiac CT scan to estimate the CVD risk, which
induces a significant cost and high radiation. In contrast, chest
LDCT has been shown to contain information especially CAC
strongly associated with the CVD risk!?, but there is no consensus
of using LDCT images for CVD risk assessment due to the low
signal-to-noise ratio and strong image artifacts. This suggests
opportunities for advanced systems to tackle the limitations and
predict CVD risks from LDCT images.

In the past decade, machine learning, especially deep learning,
has demonstrated an exciting potential to detect abnormalities
from subtle features of CT images!!. Several machine learning
methods were proposed to estimate CVD factors automatically
from CT images. A majority of those methods predict clinically
relevant image features including CAC scoring!2~17, non-calcified
atherosclerotic plaque localization!8-22, and stenosis 2327 from
cardiac CT. For LDCT images, subject to motion artifacts and low
signal-to-noise ratio in contrast to cardiac CT images, only until
recently were deep learning algorithms applied to quantify CAC
scoring from LDCT images as a surrogate of the CVD risk?8-31,
Even fewer existing methods directly estimate the CVD risk from
LDCT images. van Velzen et al.>? proposed a two-stage method
to predict cardiovascular mortality: first extracting image features
using a convolutional autoencoder, and then making a prediction
using a separate classifier such as a neural network, random
forest, or support vector machine. However, such a two-stage
method may not be able to extract distinctive features associated
with CVD, since the first stage has little knowledge about the final
objective. Our previous work showed the feasibility of predicting
all-cause mortality risk from patient’s LDCT images from
180 subjects®3. The developed method, KAMP-Net, first selects a
representative 2D key slice from the whole LDCT volume, and
then applies an end-to-end CNN to predict all-cause mortality
risk (area under the curve (AUC) of 0.76).

To tackle the limitations of the prior studies, we propose an
end-to-end deep neural network to (a) screen patients for CVDs

and (b) quantify CVD mortality risk scores directly from chest
LDCT examinations. Specifically, our approach focuses on the
cardiac region in a chest LDCT scan and makes predictions based
on the automatically learned comprehensive features of CVDs
and mortality risks. The prediction is calibrated against the
incidence of CVD abnormalities during the follow-up period of a
clinical trial, subjective assessment of radiologists in reader stu-
dies, and the CVD risk scores calculated from electrocardiogram
(ECG)-gated cardiac CT including the CAC score3*, CAD-RADS
score®®, and MESA 10-year risk score3°.

Figure 1 shows an overview of our study. Two datasets with a
total of 10,730 subjects were included in our study (Fig. 1a). The
public National Lung Screening Trial (NLST) dataset was used for
model development and validation. It includes lung cancer
screening LDCT exams of 10,395 subjects with abnormality
records from the exam reports and causes of death for deceased
subjects. An independent dataset collected at Massachusetts
General Hospital (MGH) was used for independent validation.
Besides images and clinical reports of LDCT exams, the MGH
dataset also collected ECG-gated cardiac CT of the same group of
subjects, which enables us to calculate the clinically used CVD
risk scores for validation. Our approach consists of two key
components. First, a CNN heart detector was trained with 263
LDCTs from the NLST dataset to isolate the heart region
(Fig. 1b). Second, we propose a three-dimensional (3D) CNN
model, Tri2D-Net, consisting of a CVD feature extractor and a
CVD screening classifier. We trained Tri2D-Net using CVD
screening results as targeted labels (Fig. 1c). After training, the
predicted probability of being CVD positive is used as a quanti-
fied CVD mortality risk score, which was validated by the CVD
mortality labels on the NLST dataset. To further evaluate the
generalization capability of our model, we calibrated the learned
high-dimensional CVD features with three popular gold-standard
CVD risk scores, including CAC score3*, CAD-RADS score?,
and MESA 10-year risk score®.

Results
Datasets. In total, the NLST and MGH datasets included 6276
males and 4454 females aging from 37 to 89, forming a popula-
tion of 10,730 subjects. Details of the datasets are provided as
follows.

NLST enrolled in a total of 26,722 subjects in the LDCT
screening arm. Each subject underwent one to three screening
LDCT exams, each of which contains multiple CT volumes
generated with different reconstruction kernels. We received
47,221 CT exams of 16,264 subjects from NCI, which has reached
the maximum number of subjects allowed for a public study. We
labeled each subject in the dataset as either CVD-positive or
CVD-negative to conduct CVD screening on this dataset. A
subject was considered CVD-positive if any cardiovascular
abnormality was reported in the subject’s CT screening exams
or the subject died of CVD. A CVD-negative subject has no
CVD-related medical history and no reported cardiovascular
abnormality in any CT scans during the trial and did not die of
circulatory system diseases. Among the available dataset, there are
17,392 exams used in our study from 7433 CVD-negative subjects
and 4470 exams from 2962 CVD-positive subjects. The subjects
were randomly split into three subsets for training (70% with
7268 subjects), validation (10% with 1042 subjects), and testing
(20% with 2085 subjects). Supplementary Fig. 2 shows the
detailed inclusion/exclusion criteria and the resultant distribution
of LDCT exams in the three subsets. Tables 1 and 2 list the
characteristics of the dataset (for more details, see Methods,
NLST dataset). To quantify CVD mortality risk, we identified
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a Dataset Years Subjects (Male/Female) CVD Positive Subjects CVD -Related Deaths Age
NLST 2002 -2009 10,395 (6,115 / 4,280) 2,962 600 61.4+5.0
MGH 2015-2020 335(161/174) 181 - 63.6+8.0
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Fig. 1 Overview of the proposed deep learning workflow. a Public NLST and independent MGH datasets. The MGH dataset contains both LDCT and ECG-
gated cardiac CT (CCT) images of 335 subjects. b To extract an image volume of the heart, a deep CNN heart detector was developed and trained. ¢ A 3D
CNN, Tri2D-Net, was designed for simultaneously screening CVD and predicting mortality risk. After training, the output probability of CVD positive also
quantifies CVD mortality risk. d The proposed model was further validated on the MGH dataset.

Table 1 Demographics of the two independent datasets used in this study.

NLST LDCT MGH
Dataset CVD screening positive/negative CVD-related deaths/survival Overall LDCT Cardiac CT
# Patients 2962/7433 600/9795 10,395 335 235
Men 2048/4067 442/5673 6115 161 125
Women 914/3366 158/4122 4280 174 1o
Age (years) 629+53/60.8+4.8 64.0+55/61.3+5.0 61.4+50 63.6+8.0 649+7.8
Weight (kg) 85.9+19.3/79.4£17.1 86.5+21/81.0+17.7 81.3+18.0 82.9+19.0 83.6+185

Table 2 CT Scan characteristics of the two independent
datasets used in our study.

MGH
Dataset NLST LDCT LDCT Cardiac CT
Tube voltage (kVp) 120/130/140  120/100 120
Milliampere- 58.06+20.59 33.80+11.53 37.44+10.06
seconds (mAs)
Slice thickness (mm) 2304 1.0/1.25 3.0
Slice overlap (mm) 20+0.4 0.8/1.0 15
In-plane resolution (mm) 0.66 + 0.07 0.83+£0.09 0.34+0.04
Helical pitch 14+0.2 11+£0.2 Axial mode

CVD-related mortality based on the ICD-10 codes provided in
the dataset. The selected ICD-10 codes are shown in Supple-
mentary Table 1. Note that all subjects with CVD-related causes
of death were considered CVD-positive.

Furthermore, through an institutional review board (IRB)
approved retrospective study, we acquired an independent and
fully deidentified dataset from MGH in 2020. This MGH dataset
contains 335 patients (161 men, 174 women, mean age 63.6 + 8.0
years), who underwent LDCT for lung cancer screening. In this
dataset, 100 patients had no observed CVD abnormalities in their
LDCT. The remaining 235 subjects underwent ECG-gated cardiac
CT for CVD risk assessment due to atypical chest pain, equivocal
stress test, and chest pain with low to intermediate risk for heart
diseases. Three CVD risk scores were calculated for the
235 subjects from their cardiac CT images, including CAC
score34, coronary stenosis (quantified as CAD-RADS)? and
MESA 10-year risk3°. Tables 1 and 2 list the characteristics of the
dataset (see Methods, MGH dataset). The MGH dataset was used
to evaluate the clinical significance of the NLST-trained model for
feature extraction without re-training or fine-tuning. A subject
would be labeled as CVD-positive if the subject underwent an
ECG-gated cardiac CT screening and received either a CAC score
>10 or a CAD-RADS score>1. Correspondingly, a CVD-
negative subject had either all the LDCT screening exams being
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a CVD Screening b CVD Mortality Prediction
AUC | 95% Confidence Interval | p Value AUC | 95% Confidence Interval | p Value
Our Model | 0.871 0.860 - 0.882 - Our Model | 0.768 0.734 - 0.801 -
DeepCAC | 0.753 0.735-0.771 3e-29 DeepCAC | 0.696 0.655-0.737 0.0017
KAMP-Net | 0.725 0.700 - 0.749 le-35 KAMP-Net | 0.671 0.628 - 0.714 le-5
AE+SVM 0.684 0.659 - 0.711 le-51 AE+SVM | 0.650 0.605 - 0.695 9e-8
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Fig. 2 Experimental results on the NLST dataset. Comparison of our model with radiologists and other reported methods on (a) CVD detection and (b)
CVD-caused mortality prediction. For the reader study, green, yellow and red symbols indicate the performance of CVD risk estimation using CAC Grades

14, 2+, and 3, respectively. p values were computed using a one-tail z-test.

negative or the calculated CAC scores <10 and CAD-RADS <I.
Based on the above criteria, 181 subjects were CVD positive, and
154 patients were CVD negative. To quantify CVD mortality risk,
since this MGH dataset was collected from a recent patient with
exams performed between 2015 and 2020, the mortality records
are not available. We instead calibrate our model against the three
gold-standard risk scores as surrogate evaluators.

Retrospective findings on NLST. Two experiments were con-
ducted on the NLST dataset for the evaluation of CVD screening
and CVD mortality quantification, respectively, where the proposed
deep learning model was compared with other deep learning
models and against CAC grades read by radiologists. Three radi-
ologists from MGH (M.K.K,, RS., and RD.K.) with 2-15 years of
clinical experience averaged at 7 years, independently graded all the
2085 CT volumes to obtain the CAC grades. Four CAC categories
were used, including no calcification (level 0—normal), calcification
over < 1/3 of the length of coronary arteries (level 1—minimal),
calcification over 1/3 to 2/3 of the coronary arterial lengths (level 2
—moderate) and calcification > 2/3 of the arterial length (level 3—
heavy). The average CAC grade is calculated by averaging the CAC
grades read by the three radiologists.

We first evaluated the proposed model for identifying patients
with CVDs from the lung cancer screening population. Figure 2a
shows the receiver operating characteristic curves (ROCs) of
multiple methods. Our deep learning model achieved an area
under the curve (AUC) of 0.871 (95% confidence interval, 0.860-
0.882)(see “Methods”, Statistical analysis). With a positive
predictive value (PPV) of 50.00%, the model achieved a sensitivity
of 87.69%, which suggests that our model can identify 87.69% of
the CVD-positive subjects using only a chest LDCT scan, when
allowing half of the positive predictions as false. For the
radiologist performance, all patients with > minimal CAC

(CAC Grade 1+) are considered as abnormal. It can be seen in
Fig. 2a that CAC Grade 1+ vyielded a sensitivity of 96.6% and
a PPV of 353%. With a similar sensitivity of 96.6%, our
model achieved a slightly but not significantly higher PPV of
38.4% (p = 0.3847). In addition, we compared our model with the
three recently reported works, KAMP-Net33, Auto-encoder (AE
+SVM)32, and a deep learning based CAC socring model
(DeepCAC)!7. The table in Fig. 2a shows that our model
significantly outperformed the other three methods (p < 0.0001).
It indicates that our model can use LDCT to differentiate subjects
with high CVD risk from those with low risk.

Further, we evaluated the performance of our model in
quantifying CVD mortality risk. The results are shown in Fig. 2b,
where CAC Grades 1+, 24, and 3 denote the performance of
mortality prediction using the extent of subjective CAC categories
1 and above, categories 2 and above, and 3 only, respectively. The
trained deep learning model was directly applied to this testing set
to predict the CVD-caused mortality without fine-tuning. Our
deep learning model achieved an AUC value of 0.768 (95%
confidence interval, 0.734-0.801), which significantly outper-
formed the competing methods (p<=0.0017) as shown in
Fig. 2b. With the same PPV of averaged CAC Grade 2+ (10.8%),
our model achieved a sensitivity of 80.8%. Specifically, in the
NLST test set, our model successfully identified 97 of the 120
deceased subjects as high risk, while the averaged CAC Grade 2+
labeled 35 of those 97 cases as low risk. Additionally, it can be
seen from Fig. 2b that our model achieved similar performance to
the average performance of human experts. It is worth
mentioning that a significant difference exists between the three
radiologists’ annotations (p <0.0001), even though radiologist 1
performed better than our model. For further comparison, Fig. 3
shows the Kaplan—Meier curves of different risk groups labeled by
our model and the radiologists, respectively. For the radiologists,
we used the average radiologist prediction of CAC Grade 2+ to
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Fig. 3 Kaplan-Meier curves on the NLST dataset. Comparison of our model with the radiologists. Thresholds were selected on the CVD risk score
calculated by our model to enforce the low (a) or high (b) risk group has a similar survival probability with that of the radiologists.

separate the subjects into low/high risk groups and drew the
Kaplan-Meier curves for both groups. The final survival
probabilities of low and high risk groups by radiologists are
95.79% and 85.83%, respectively. For fair and direct comparison,
in Fig. 3a, we selected a threshold to divide the quantified CVD
risk scores using our model so that the low risk group has a
survival probability of 95.79%, similar to the radiologists. Under
this circumstance, the model-predicted high-risk group showed a
significantly lower (p=0.0059) final survival probability of
73.24%. Similarly, in Fig. 3b, we selected a threshold so that the
high-risk group has a survival probability of 85.75%, also similar
to the radiologists. In this case, the model-predicted low-risk
group achieved a significantly higher (p = 0.0272) final survival
probability of 97.46%. Thus, our model can help reduce inter-and
intra-observer variations in quantifying CAC. The model can also
automatically categorize CVD risks so that radiologists can focus
on other tasks such as lung nodule detection, measurement,
stability assessment, classification (based on nodule attenuation),
and other incidental findings in the chest and upper abdomen.

Validation on the Independent MGH dataset. To investigate the
generalizability of our AI model, we directly applied the model
trained on the NLST dataset to the MGH dataset. Four experi-
ments were conducted including one experiment for the valida-
tion of CVD screening and three experiments evaluating the
reliability of the deep learning model against gold-standard CVD
risk factors (Fig. 1d).

In the experiment of CVD screening shown in Fig. 4a, our deep
learning model achieved a significantly higher (p <0.0001) AUC
value of 0.924 (95% confidence interval, 0.909-0.940) than its
performance on the NLST dataset (0.871), where the network was
originally trained. Superior performance on this external MGH
dataset may be due to the following two factors. First, MGH
dataset acquired with contemporary scanners contains better
quality images. Second, the MGH dataset combines the annota-
tions of LDCT and ECG-gated cardiac CT as gold standard,
which is more accurate than the annotation in NLST

To evaluate the generalization ability of the deep learning
quantified CVD risk score, we directly applied the trained model
to the MGH data and evaluated the consistency between the

model-predicted risk score from LDCT and the three clinically
adopted risk scores calculated from ECG-gated cardiac CT. Our
model was compared with two other previously reported studies
on CVD risk prediction32-33,

The predicted risk score from LDCT was first evaluated against
the CAC score3*. With a threshold of 400 for CAC scores, the
MGH subjects were divided into two groups: 78 subjects with
severe CAC and 157 subjects with none or minor CAC. Our
model achieved an AUC value of 0.881 (95% confidence interval,
0.851-0.910) and significantly outperformed the other two
methods (p < 0.0001, see Fig. 4b), despite the fact that our model
has never been trained for CAC score estimation. These results
suggest that our deep learning quantified CVD risk score is highly
consistent with the CAC scores derived from ECG-gated cardiac
CT in differentiating patients with severe and non-severe CAC.

The second experiment evaluates the capability of the deep
learning model in classifying subjects into high and low-risk
groups using LDCT by comparing against the coronary stenosis
(CAD-RADS) scores>®> obtained by human experts on CCT.
Subjects with CAD-RADS scores greater than or equal to 4 are
labeled as with severe stenosis, i.e., positive samples (51 subjects).
The other 184 subjects with smaller scores were labeled as
negative. Our model reached an AUC value of 0.763 (95%
confidence interval, 0.704-0.821, see Fig. 4c). Our model
significantly outperformed the other two methods (p < 0.0080).
Unlike calcification, coronary stenosis is much harder to detect
through a chest LDCT screening, while it is a direct biomarker of
CVD risk. The performance obtained using LDCT is thus highly
encouraging. The superiority demonstrates that our model can
quantify the subclinical imaging markers on LDCT, making it a
promising tool for CVD assessment in lung cancer screening.

In the third experiment, patients were divided into high and
low-risk groups according to MESA 10-year risk score3, which is
a clinical gold-standard risk stratification score for CVD
integrating multiple factors including gender, age, race, smoking
habit, family history, diabetes, lipid lowering and hypertension
medication, CAC score extracted from CCT, and laboratory
findings including cholesterol and blood pressure. Because some
of the 235 subjects did not have all the needed exams, we are only
able to calculate the MESA scores of 106 subjects. When median
MESA 10-year risk score in our patients was used as a threshold
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Fig. 4 Results of the four experiments on the MGH dataset. (a) Validation of CVD screening. b-d Comparison of our deep learning model with three
clinically used risk scores, including (b) CAC score34, (¢) CAD-RADS3>, and (d) MESA 10-year risk score3€. p values were computed using a one-tail z-test.

(14.2), 52 subjects with greater scores were labeled as high risk,
while the other 54 subjects were labeled as low risk. Our model
achieved an AUC value of 0.835 (95% confidence interval,
0.781-0.890), which significantly outperformed all the other
methods (see Fig. 4d).

Discussion

In summary, our deep learning model demonstrates the value of
lung cancer screening LDCT for CVD risk estimation. Given the
increasing utilization of LDCT-based lung cancer screening,
shared risk factors, and high prevalence of CVD in these at-risk
patients, the potential of obtaining a quantitative and reliable
CVD risk score by analyzing the same scans may benefit a large
patient population. The further comparative study on the deep
learning model of LDCT images with human experts on CCT for
risk group classification shows that the deep learning model can
analyze LDCTs to achieve performance approximating the clin-
ical reading with dedicated cardiac CTs. The comparable or

superior performance of our model from LDCT implies that
additional dedicated ECG-gated coronary calcium scoring and
other laboratory tests could be avoidable. Our deep learning
model may thus help reduce the cost and radiation dose in the
workup of at-risk patients for CVD with quantitative information
from a single LDCT exam. Given the technical challenges asso-
ciated with the quantification of CAC from LDCT for lung cancer
screening versus ECG-gated CCT, our study indicates a sig-
nificant development in establishing a CVD-related risk nomo-
gram with LDCT.

To interpret the prediction results of Tri2D-Net, we generated
heatmaps using the Gradient-weighted Class Activation Mapping
(Grad-CAM?7) and exported the attention maps from the
attention block. Figure 5 shows the results of three representative
subjects from the NLST dataset. Figure 5 a, b belong to two
subjects who died of CVD, referred as Case a and Case b,
respectively. Figure 5c shows the image of a subject case ¢, who
survived by the end of the trial. Case a has severe CAC with an
average CAC Grade of 3.0 by the three radiologists. Tri2D-Net
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Fig. 5 Visualizations of the features learned by the Tri2D-Net. The Gradient-weighted Class Activation Mapping (Grad-CAM37), and the attention
maps of Case (a), Case (b), and Case (c) learned by the attention block in the Tri2D-Net are visualized with heatmaps. The Grad-CAM3 is a widely used
visualization technique for CNN that produces a coarse localization map highlighting the important regions in the image for the final prediction.

captured the strong calcium as shown in the Grad-CAM heatmap
and predicted a high CVD risk score of 0.90. Case b (Fig. 5b) had
mild to moderate CAC with an average CAC Grade of 1.67.
However, the attention block noticed abundant juxtacardiac fat
and Tri2D-Net gave a high score of 0.82 for the case. Case ¢ has
mild CAC graded as 1.33 by the radiologists. Since there was little
calcification and juxtacardiac fat as indicated by the heatmaps,
Tri2D-Net predicted a low-risk score of 0.23 for this survived
patient. Visualization of these cases demonstrates the contribu-
tions of both CAC and juxtacardiac fat to our model for pre-
dicting CVD risk scores in contrast with the mere reliance on
CAC as the sole biomarker in prior studies!”28-31, It is consistent
with the clinical findings that epicardial/pericardial fat correlates
with several CVD risks®$3°. Based on this finding, we further
examined the Pearson correlation between our model-predicted
CVD risk score and juxtacardiac fat volume. To measure the
volume of juxtacardiac fat, we first used an existing deep learning
based heart segmentation mode!” to segment the heart region.
Then, we identified fat inside the segmented heart by HU-based
cutoffs (voxels in [-190,-30] HU were considered to represent fat).
Our model achieved a Pearson correlation of 0.199 (p < 0.0001)
with juxtacardiac fat volume. In contrast, the radiologist esti-
mated CAC and the deep learning estimated CAC!” got Pearson
correlation of 0.078 (p =0.0004) and 0.085 (p = 0.0001), respec-
tively. The ability to capture various features in addition to CAC
makes our model superior to the existing CAC scoring models for
CVD screening and CVD mortality quantification.

Our study’s limitation includes using CVD-related ICD-10
codes for labeling the subjects, which may miss some CVD-
related deaths or mislabel patients who died from other heart
diseases as CVD mortality. Mitigating its influence on our study
motivated us to collect data at MGH and evaluate our model
using the surrogate gold-standard CVD risk scores on the MGH
dataset. Our results on the MGH dataset support the pretrained
model’s utilities on data from a different source. Another lim-
itation is that we did not have access to a sufficient number of
patients with mortality information from CVD. The use of LDCT
at MGH (as well as from other United States sites) started after
the United States Preventive Services Taskforce recommended

annual screening for lung cancer with LDCT in 2013. We believe
that with the increasing use of LDCT over time, CT data with
CVD mortality information will become available. It is worth
noting that the proposed method demonstrated on this specific
application may apply to other clinical studies, for example,
predicting the cause of death among pediatric patients with
cancer0. There are reports on increased heart disease-related
fatalities of cancer patients in general, likely related to decreased
cancer-specific mortality and aging population*!. Older age-
group, male gender, African American race, and unmarried status
are key risk factors for cardiac mortality in cancer patients.
Another study based on data from the Surveillance, Epidemiol-
ogy, and End Results program reported higher risk of fatal stroke
in patients with cancer®?. The study may help reduce healthcare
disparity to benefit those high-risk patients with disadvantaged
socioeconomic status.

Methods

Development and validation datasets. The NLST dataset was used for the deep
learning model development. In each exam of NLST, multiple CT volumes were
generated with different reconstruction kernels. We used 33,413 CT volumes from
10,395 subjects (for more details, see Supplementary Fig. 2). Those subjects were
randomly divided into training (7268, 70%), validation (1042, 10%) and test sets
(2085, 20%). The participants were enrolled in the trial from August 2002 through
April 2004. Subject health history, reports of the annual LDCT screening scan and
death information were collected through December 31, 2009. All participants
enrolling in NLST signed an informed consent developed and approved by the
IRBs at each of the 33 participating medical institutions, the National Cancer
Institute (NCI) IRB, and the Westat IRB. The NLST data are publicly available
through the Cancer Data Access System (CDAS) of the National Institutes of
Health (NIH). LDCTs were collected from multiple institutions, with slice spacing
varying from 0.5 to 5 mm. Scans with slice spacing larger than 3mm or with scan
length along superior to inferior less than 200 mm were filtered out. Supplementary
Fig. 2 shows the inclusion and exclusion criteria. Since the NLST was designed for
lung cancer screening, CVD-related information is incomplete. Therefore, we only
used LDCT images with clear CVD information. Specifically, for all CVD-negative
patients and CVD-positive patients who died in the trial with CVD-related causes,
all available LDCT exams were considered as valid exams. For other CVD-positive
patients, only the exams with clear CVD abnormalities reported were considered as
valid exams. In the training set, all LDCT volumes generated in the valid exams
were treated as independent cases to increase the number of training samples. In
the validation and testing phases, a single CT volume was randomly selected from
the valid exams of each subject to preserve the original data distribution. Since the
number of LDCT exams is inconsistent across subjects (for example, patients with
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death or diagnosis of lung cancer on initial LDCTs did not complete all the follow-
up LDCTs), the use of these CT volumes as independent cases can change the data
distribution and introduce a bias to the results. After the random selection, the
formed test set keeps an averaged follow-up time of 6.5+ 0.6 years. Other prop-
erties of the NLST dataset are summarized in Tables 1, 2. More detailed infor-
mation including manufacturer, scanner, and reconstruction kernel can be found
in Supplementary Table 2.

The MGH dataset was collected at Massachusetts General Hospital (MGH at
Boston, MA) in 2019. The retrospective study was approved by IRB with the waiver
of informed consent. It was in compliance with the Health Insurance Portability
and Accountability Act (HIPAA). By reviewing the electronic medical records
(EPIC, Epic Systems Corporation) at MGH, 348 adult patients were identified, who
had clinically indicated LDCT for lung cancer screening within a 12-month period.
248 of them also had ECG-gated CT angiography and coronary calcium scoring
within a 12-month period. Thirteen subjects were excluded because they had
coronary stents, prosthetic heart valves, prior coronary artery bypass graft surgery,
or metal artifacts in the region of cardiac silhouette. The final dataset contains 335
adult patients with details in Table 1. The data collected from each participant
contains one chest LDCT image, one non-contrast ECG-gated cardiac CT (CCT)
image, a CAC score (Agatston score)34, a Coronary Artery Disease Reporting and
Data Systems (CAD-RADS™) score3> semi-automatically calculated from the
CCT image, and a MESA 10-year risk score (MESA score)3¢ calculated with the
standard clinical protocol. Dicom files were handled with the free dicom viewer
MicroDicom DICOM Viewer V3.01 (https://www.microdicom.com/). LDCTs were
reconstructed at 1-1.25 mm section thickness at 0.8-1 mm section interval using
vendor-specific iterative reconstruction techniques. More detailed information
including manufacturer, scanner, and reconstruction kernel can be found in
Supplementary Table 3. It is noteworthy that the MGH dataset was not used for
training or fine-tuning our proposed network, but only for evaluating/testing the
performance of the deep learning model on LDCT to compare with human experts
defined standards from CCT.

Model development. Challenges of chest LDCT-based CVD risk estimation
mainly come from three aspects. First, while a chest LDCT image volume has a
large field view, the heart takes only a small subset. Features extracted by a deep
learning model on the entire image may hide the CVD risk related information®3.
To tackle this problem, a cardiac region extractor was developed to locate and
isolate the heart so that the risk estimation model can focus on this region of
interest. Second, chest LDCT images are inherently 3D. In deep learning, 3D
convolution neural networks (3D-CNNs) are needed for 3D feature extraction.
However, popular 3D-CNN methods are either hard to train because of a huge
amount of parameters*? like C3D*4, or need pretrained 2D-CNNs for parameter
initialization like I3D%3. At the same time, radiologists typically view CT images in
2D using the three orthogonal views: axial, sagittal, and coronal planes. Therefore,
we designed a Tri2D-Net to efficiently extract features of 3D images in three
orthogonal 2D views. The key details of the networks are presented as follows.
Third, the risk of CVD is hard to quantify. It could contain various diseases and
symptoms. We combine information from various medical reports, including CT
abnormalities reports, causes of death, and CVD histories, in NLST dataset and
transfer the risk estimation task into a classification task. The whole pipeline of the
proposed method is shown in Supplementary Fig. 1.

®  Heart detector: RetinaNet*® is used in our work to detect the heart region of
interest. To train this network, we randomly selected 286 LDCT volumes from
different subjects in the training set. We annotated the bounding boxes of the
cardiac region including the whole heart and aorta slice by slice in the axial
view. In application, the trained detector is applied to each axial slice for
independent localization. Then, the two extreme corner points A(Xmin» Ymin»
Zmin) aNd B(Xmax Ymax Zmax) are identified by finding the maximal and
minimal coordinates in all the detected bounding boxes, which defines the
region enclosing the heart and excluding most of the irrelevant anatomical
structures.

®  CVD risk prediction model: As shown in Supplementary Fig. 1, the proposed
Tri2D-Net consists of two stages, feature extraction, and feature fusion. The
former uses three 2D CNN branches to independently extract features from
the three orthogonal views. By setting a cross-entropy loss for each branch,
the three 2D CNN branches separately receive direct feedback to learn their
parameters. This leads to a dramatically reduced optimization space
compared to a massive 3D network?®, Specifically, in each branch, we split
the original Resnet-1847 into two parts, the first 13 layers (L+13) and the last
5 layers (L-5). To introduce clinical prior knowledge into the network, we
applied an attention block to help the model focus on calcification and fat
regions, which highly correlate with CVD*®. The attention block first selects
the calcification and fat regions with HU ranges (calcification: HU > 130; fat:
HU in [ — 190, — 30]). Then the masked slides are separately fed into a 4
layers CNN (first 4 layers of VGG114°) to generate an attention map for each
slide. The feature fusion module then concatenates the three feature
representations extracted by the 2D CNN branches and feeds the result to
a classifier for the final prediction.

Statistical analysis. All confidence intervals of AUC values were computed based
on the method proposed by Hanley and McNeil*?. p values of significance test on
AUC comparison were calculated using the z-test described by Zhou et al.5!. p
values for sensitivity comparisons were calculated through a standard permutation
test>? with 10,000 random resamplings.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

This study used the NLST dataset, which is publicly available at https://biometry.nci.nih.
gov/cdas/learn/nlst/images/. The MGH dataset was not part of the NLST dataset. The
deidentified dataset from MGH was used with an institutional review board-approval for
the current study. The data sharing regulations at MGH forbid open access to its patients’
data. Any access to deidentified MGH data, or a test subset, requires IRB and MGH Data
Sharing Committee approvals both at the MGH and at the requesting institution (details
of how to request access are available from Dr Mannudeep Kalra at MGH). Source data
are provided with this paper.

Code availability

The code used for training the models and the parameters of the pretrained deep learning
networks has been made publicly available>® at https://github.com/DIAL-RPI/CVD-
Risk-Estimator/. We have also packaged our model into an open-access and ready-to-use
tool (https://colab.research.google.com/github/DIAL-RPI/CVD-Risk-Estimator/blob/
develop/colab_run.ipynb) for the community to test and feedback.
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