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Many food-derived phytochemical compounds and their
derivatives represent a cornucopia of new anticancer
compounds. Despite extensive study of luteolin, the
literature has no information on the exact mechanisms
or molecular targets through which it deters cancer
progression. This review discusses existing data on
luteolin’s anticancer activities and then offers possible
explanations for and molecular targets of its cancer-
preventive action. Luteolin prevents tumor development
largely by inactivating several signals and transcription
pathways essential for cancer cells. This review also offers
insights into the molecular mechanisms and targets
through which luteolin either prevents cancer or mediates
cancer cell death. European Journal of Cancer Prevention
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Introduction
Compounds of natural origin could lead to new, innova-

tive therapeutic agents for cancer. Several promising new

anticancer agents have been developed and used in the

clinic on the basis of their selective molecular targets

(Rengarajan et al., 2014). Yet, the progress of modern

technology enables us to design and synthesize drug

molecules for specific molecular targets. Therefore, we

can shift our attention from chemically synthetic drugs to

purely natural ones (Ortholand and Ganesan, 2004;

Montaser and Luesch, 2011). Luteolin (3,4,5,7-tetra-

hydroxy flavone) is a natural flavonoid present in several

plants. Vegetables and fruits rich in luteolin include

carrots, broccoli, onion leaves, parsley, celery, sweet bell

peppers, and chrysanthemum flowers (Miean and

Mohamed, 2001; Sun et al., 2007; Chen et al., 2012b; Lim
et al., 2013). Like other flavonoids, luteolin is mainly

glycosylated in plants. During digestion and intestinal

absorption, luteolin’s glycosylated form is mainly hydro-

lyzed to free luteolin (Hempel et al., 1999). However,

during passage through the intestinal stroma, some

luteolin can reconvert into its glycosylated form (Shimoi

et al., 1998). Luteolin is a heat-stable reagent that

degrades relatively little during cooking (Le Marchand,

2002). Luteolin has potent activity against cancer,

inflammation, and oxidation, and it can reverse multidrug

resistance (MDR) in many types of cancer cells (Park

et al., 2012; Ou et al., 2013; Chen et al., 2014; Jeon et al.,
2014; Khan et al., 2014). Alone or with other che-

motherapeutics, luteolin can sensitize MDR cancer cells

(Dellafiora et al., 2014). It can also ameliorate the cyto-

toxicity that various chemotherapy drugs can cause.

Despite luteolin’s well-documented anticancer proper-

ties, exactly how these work remains unclear. To the best

of my knowledge, no seminal review has determined the

potential mechanisms of luteolin’s anticancer activities,

except that published by Lin et al. (2008).

Apoptosis pathways

Apoptosis occurs through two major pathways: intrinsic

and extrinsic. The intrinsic apoptosis pathway operates

by modulating mitochondrial membrane potential, which

releases cytochrome c and inhibits the expression of

antiapoptotic proteins Bcl-2 and Bcl-xL. The extrinsic

apoptosis pathway operates through activation of caspase-

3, -7, -8, and -9 and enhanced expression of death

receptors and their downstream factors, such as DR4,

DR5, tumor necrosis factor receptor apoptosis-inducing

ligand (TRAIL), and Fas/FasL (Ham et al., 2014). When

the signal of apoptosis is received, Fas-associated death

domain binds and recruits the death-induced signaling

complex, forming initiator caspases-8 and -10 (Park et al.,
2013b). Any alteration or interruption in the mitochon-

drial membrane could activate both intrinsic and extrinsic

apoptosis pathways by triggering caspase activities; pro-

moting imbalance of the Bax/Bcl-xL ratio; and decreasing

the expression of p21, survivin, Mcl-1, and mdm2 pro-

teins (Chang et al., 2005; Lim do et al., 2007; Chen et al.,
2012a). Researchers have implicated the endoplasmic

reticulum as a third subcellular compartment involved in

apoptosis (Nakagawa et al., 2000; Rao et al., 2004).

In many ways, luteolin can trigger both intrinsic and

extrinsic apoptosis pathways in a variety of human cancer

cells (Fig. 1). In part, luteolin can arrest the cell cycle and

then induce apoptosis. For instance, in the SH-SY5Y

neuroblastoma tumor cell line, luteolin arrests G0/G1 cell

cycle growth, accompanied by loss of mitochondrial
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membrane potential and apoptosis (Wang et al., 2014).
Furthermore, luteolin inhibits SMMC-7721 and

BEL-7402 cell proliferation by arresting the cell cycle at

the G1/S phase, enhancing the level of Bax and reducing

the level of antiapoptotic protein Bcl-2, leading to

apoptosis (Ding et al., 2014). Luteolin can also directly

induce apoptosis by activating JNK, which inhibits the

translocation of tumor necrosis factor α (TNF-α)-med-

iating nuclear factor-κB (NF-κB) p65 to the nucleus

(Cai et al., 2011). Furthermore, in human non-small-cell

lung cancer A549 cells, apoptosis occurs by phosphor-

ylating JNK and inhibiting NF-κB translocation as a

Fig. 1
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Mechanisms of luteolin (Lut)-induced apoptosis and autophagy in cancer cells. Luteolin mediates both the intrinsic and the extrinsic apoptosis
pathways. Luteolin triggers the intrinsic apoptosis pathway by modulating mitochondrial membrane potential, releasing cytochrome c, and inhibiting
the expression of Bcl-2 and Bcl-xL. Luteolin mediates extrinsic apoptosis by activating caspase activities; enhances expression of death receptors and
their downstream factors such as Fas/FasL, DR4, DR5, and TRAIL; and suppresses other death receptor survival pathways. Luteolin also inhibits
mdm2 activated by Ras; mdm2 expression triggers p53 degradation. p53, a tumor suppressor protein, mediates apoptosis by enhancing Bax levels
and reducing levels of antiapoptotic protein Bcl-2. Luteolin can directly mediate apoptosis by mediating DNA damage induced by ROS. DNA damage
signaling, in turn, enhances p53 production and activity. Luteolin activates JNK, which inhibits TNF-α-mediated NF-κB (p65) translocation, promoting
TNF-α-induced apoptosis in cancer cells. However, luteolin can mediate autophagy as a cell death mechanism by triggering the intracellular acidic
lysosomal vacuolization and accumulation of microtubule-associated LC3 II protein, which in turn enhances autophagy flux. IKK, I-κB kinase; LC3, light
chain-3; NF-κB, nuclear factor-κB; ROS, reactive oxygen species; TNF-α, tumor necrosis factor α; TRAIL, tumor necrosis factor receptor apoptosis-
inducing ligand.
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transcription factor from the nucleus (Hu et al., 2012).
Surprisingly, although luteolin increased Bax and

caspase-3 expression and upregulated Bcl-2 expression in

liver carcinoma cells, it exerted almost no effect on nor-

mal liver HL-7702 cells (Ding et al., 2014).

Autophagy

Autophagy is a process of cellular self-eating activated by

lysosomal activity caused by nutrient depletion. In

addition to its role in maintaining cellular balance under

normal physiological conditions, it is also implicated in

the development of genetic diseases and drug resistance

in cancer cells (Uekita et al., 2013; Gewirtz, 2014; Wang

and Wu, 2014). Luteolin-induced autophagy functions as

a cell death mechanism (Fig. 1) by accumulating

microtubule-associated protein light chain-3 II protein,

which in turn enhances autophagy flux (Park et al.,
2013a). In metastatic MET4 cells, luteolin stimulated

autophagy by triggering intracellular acidic lysosomal

vacuolization (Verschooten et al., 2012).

Cell cycle regulation
The cell cycle, arranged in the following phases, leads to

cell growth and division:

(1) In the G1 phase, the cell grows and chromosomes

prepare for replication.

(2) In the S phase, DNA replicates and chromosomes

duplicate.

(3) The G2 phase represents the gap between DNA

synthesis and mitosis.

(4) In the M phase (mitosis), nuclear and cytoplasmic

division occurs, yielding two daughter cells.

Luteolin can keep several human cancers from growing,

but the precise molecular mechanisms are unclear.

Figure 2 shows the molecular mechanisms underlying

luteolin’s antiproliferative activities. Luteolin induces

cell cycle arrest and apoptosis by decreasing the expres-

sion of AKT, PLK1, cyclin B1, cyclin A, CDC2, CDK2,

Bcl-2, and Bcl-xL as well as increasing the expression of

Bax, caspase-3, and p21 (Lee et al., 2012; Pandurangan
et al., 2013). Luteolin also arrested colon cancer cell

growth through Wnt/β-catenin/glycogen synthase kinase-

3β (GSK-3β) signaling (Pandurangan et al., 2013).

However, luteolin can obviously arrest the cell cycle by

suppressing Akt phosphorylation, which depho-

sphorylates and activates GSK-3β. Activating GSK-3β
enhances phosphorylation of cyclin D1 at Thr-286, fol-

lowed by proteasomal degradation (Ong et al., 2010).

Potential molecular targets of luteolin-mediated cell

cycle arrest

Insulin-like growth factor 1 (IGF-1) is crucial in cellular

growth, proliferation, and apoptosis (Katic and Kahn,

2005; Pollak, 2008). Altered IGF-1 function is implicated

in tumorigenesis, metastasis, and resistance of human

cancer cells (Lin et al., 2014). IGF-1 signaling begins

when IGF-1 binds with its cell surface receptor, IGF-1R,

forming a homodimer signaling complex, phosphorylat-

ing IGF-1R, which then phosphorylates intracellular

insulin receptor substrate 1 (IRS-1) for its downstream

targets (Chitnis et al., 2008; Aleksic et al., 2010). In HT-29

cells treated with luteolin, reduced IGF-1R signaling

downregulated the PI3K/Akt and ERK1/2 pathways

(Lim do et al., 2012). However, luteolin’s inhibitory

action on IGF-1 extends beyond inhibiting IGF-1R; it

can also inhibit Akt signaling (Fang et al., 2007).

Inhibition of Akt signaling in turn dephosphorylates its

downstream targets, including p70S6K1, GSK-3β, and

FKHR/FKHRL1 (forkhead human transcription factor

like 1). Moreover, in estrogen receptor (ER)-positive

tumors and cell lines, IGF signaling can also cooperate

with the ER to promote tumor growth and progression,

while hindering the efforts of endocrine therapy (Zhang

et al., 2011; Mancini et al., 2014). Targeting ERα is a

possible mechanism of luteolin’s antiproliferative effect

(Wang et al., 2012a). Using an ERα-specific small inter-

fering RNA to knock down ERα in MCF-7 cells reduced

luteolin’s ability to inhibit the growth of MCF-7 cells.

This finding suggests that luteolin’s inhibitory effect on

cancer cell growth may inhibit the IGF-1-mediated

PI3K/Akt pathway depending on ERα expression. Thus,

the downregulation of the PI3K/Akt and mitogen-

activated protein kinase/extracellular signal-regulated

kinase (MAPK/ERK) pathways through luteolin’s

reduction of IGF-1R/ERα signaling pathways may offer

promising routes for cancer therapeutic agents.

Fms-like tyrosine kinase 3 (FLT3) is another potential

means by which luteolin arrests the cell cycle. In one

study, FLT3 was highly overexpressed in most patients

with acute myeloid leukemia (Chin et al., 2013). Luteolin
suppressed cell proliferation in MV4-11 cells with con-

stitutively activated FLT3, suggesting that luteolin may

be a potent FLT3 enzyme inhibitor.

Downregulated androgen receptor expression could be a

main mechanism through which luteolin mediates its

antiproliferative and anti-invasive effects in LNCaP

human prostate cancer cells (Chiu and Lin, 2008). By

contrast, luteolin upregulates the expression of prostate-

derived Ets factor (PDEF) in LNCaP cells, which acts as

an androgen-independent transcriptional activator of the

prostate-specific antigen promoter (Tsui et al., 2012).

Molecular targets of luteolin-induced
apoptosis
Nuclear factor-κB-induced and tumor necrosis factor α-
induced apoptosis pathway

NF-κB is synthesized in the cytoplasm and complexed

with its inhibitor I-κB; thus, NF-κB is released as an

inactive form. To activate, I-κB must undergo phos-

phorylation, followed by proteasomal degradation of the
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NF-κB–p-κB complex. The free p-NF-κB then translo-

cates to the nucleus to transcribe and activate genes to

synthesize progrowth and antiapoptosis proteins (Lun

et al., 2005). NF-κB is a heterodimer composed of two

subunits: the DNA-binding subunit p50 and the trans-

activator p65. Phosphorylation of IκBα is mediated by the

I-κB kinase (IKK) complex, which consists of NF-κB
essential modulators IKKγ, IKKα, and IKKβ, degrading
IκBα through a ubiquitin/proteasomal process (Thomas

et al., 2009). Degrading IκBα allows insertion of NF-κB’s
two subunits into the nucleus to transcribe and activate

target genes.

The NF-κB transcription factor plays a major role in the

development and progression of various cancers (Erez

et al., 2013; Wu et al., 2013; Kagoya et al., 2014). In many

cancers, TNF-α is one of the most important activators

for NF-κB and plays a paramount role in activating

pathways for both cancer cell death and survival. On the

one hand, TNF-α’s activation of NF-κB abolishes TNF-

induced cancer cell apoptosis, which plays a marginal role

in the development of resistance in cancer cells. On the

other, blocking NF-κB enhances TNF-α’s anticancer

activity (Ju et al., 2007). Luteolin can suppress NF-κB,
thus activating TNF-α-induced apoptosis (Fig. 3).
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A possible mechanism for this process is through its

ability to mediate the release of reactive oxygen species,

which suppresses NF-κB and activates JNK, stimulating

cancer cells to undergo TNF-α-induced apoptosis (Ju

et al., 2007). Hwang et al. (2011) suggested AMPK as a

novel regulator of NF-κB in luteolin-induced cancer cell

death (Hwang et al., 2011), as inhibiting AMPK activity

restored luteolin-inhibited NF-κB DNA-binding activity.

Reactive oxygen species generation caused by luteolin

treatment is the major mechanism through which luteolin

activates AMPK (Hwang et al., 2011). However, luteolin

can obviously induce apoptosis in human non-small-cell

lung cancer A549 cells by phosphorylating JNK, activating

the mitochondrial pathways of apoptosis while inhibiting

NF-κB translocation (Hu et al., 2012). Furthermore,

luteolin’s inhibition of NF-κB augmented and prolonged

TNF-α-induced cJNK activation (Shi et al., 2004). Taken

together, these findings indicate that luteolin’s sensitiza-

tion of TNF-α-induced cancer cell death may encompass

many cancer types. Interestingly, inhibiting NF-κB’s
transcription activity also downregulated the expression of

vascular endothelial growth factor (VEGF) mRNA,

inhibiting VEGF secretion in pancreatic carcinoma cells

(Cai et al., 2012). This finding suggested that luteolin had

potent antiangiogenesis activity.

Tumor necrosis factor receptor apoptosis-inducing

ligand

TRAIL is an endogenous protein belonging to the TNF

family. TRAIL induces apoptosis in a wide variety of

transformed and cancer cells, but has little or no effect on

normal cells (Rushworth and Micheau, 2009). Luteolin

can sensitize TRAIL-induced apoptosis in both TRAIL-

sensitive cancer cells, including HeLa (Horinaka et al.,
2005; Shi et al., 2005; Yan et al., 2012) and human 786-O

renal cell carcinoma (Ou et al., 2013), and TRAIL-

resistant cancer cells (CNE1, HT-29, and HepG2) (Shi

et al., 2005). Luteolin is also a potential sensitizer of

TRAIL in anticancer therapy against human renal cell

carcinoma involving Akt and STAT3 inactivation (Ou

et al., 2014). However, the Janus tyrosine kinases (Jak1)

and tyrosine kinase 2 (Tyk2) mediate most, if not all,

cellular responses to peptide hormones, cytokines, and

interferons (IFNs) and are often hyperactivated in tumors

(Muller et al., 2014). In fact, neither Jak1 nor Tyk2 has

serine activities (Carbone and Fuchs, 2014); thus, they

must undergo phosphorylation before they can act.

Fig. 3
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Luteolin can sensitize the antiproliferative effect of IFN

by enhancing phosphorylation of Jak1 and Tyk2, thus

ensuring the activation of STAT1/2, which promotes

STAT1 accumulation in the nucleus and endogenous

IFN-α-regulated gene expression (Tai et al., 2014).

Treatment with TRAIL and luteolin markedly reduced

the growth of xenograft tumors in animals (Yan et al.,
2012). Therefore, luteolin’s potent activity to sensitize

both TRAIL-sensitive and TRAIL-resistant cancer cells

may represent another dimension for the development of

new techniques enabling us to conjugate luteolin or use it

as a juvenile agent with other anticancer drugs.

Modulation of Wnt/β-catenin signaling

Wnt/β-catenin signaling regulates the proliferation and

differentiation of many normal and malignant cells

(Abdel-Magid, 2014; Draganova et al., 2015; Zhao and

Carrasco, 2014). Luteolin’s antiproliferative effect on

cancer may be attributed to its inhibitory effect on Wnt/β-
catenin signaling. For instance, luteolin decreases the

expression of Wnt/β-catenin/GSK-3β signaling, arresting

the growth of colon cancer cells (Pandurangan et al.,
2013). Wnt/β-catenin/GSK-3β signaling is also involved in

luteolin-prevented azoxymethane-induced cellular pro-

liferation (Pandurangan et al., 2014).

Topoisomerases

Topoisomerases, especially DNA topoisomerases, are

among the most desired targets for chemotherapy drugs.

Topoisomerase inhibition might correlate with the anti-

oxidant capacity of the flavonoids (Topcu et al., 2008).
Chowdhury et al. (2002) published the first report on

luteolin functionally inhibiting the catalytic activity of

topoisomerase. The second report was by Wu and Fang

(2010), speculating that luteolin has chymotrypsin-like

and trypsin-like catalytic activities in tumor cells. In a

canine tumor cell line (DH82), luteolin was highly cyto-

toxic without causing considerable DNA damage (Silva

et al., 2013). However, no studies have examined luteo-

lin’s ability to modulate topoisomerases in human cancer

cells. Further studies are needed.

Heat shock protein 90

Heat shock protein 90 (Hsp90) stabilizes newly synthesized

proteins and helps maintain the functional competency of

several signaling transducers involved in cell growth, survi-

val, and oncogenesis. Therefore, interest grows in Hsp90 as

an important target for molecular cancer therapy (Zhang

et al., 2005; Beck et al., 2009). In the past few years, many

specific inhibitors for Hsp90 have been developed, such as

geldanamycin (GA) and its derivatives. However, GA is not

used clinically because of serious toxic effects in the liver

and kidney (Wang et al., 2006). Despite its effectiveness in

clinical trials for cancer, 17-AAG (17-allylamino-17-deme-

thoxygeldanamycin), a GA derivative, has several problems,

including stability, solubility, and hepatotoxicity. Luteolin

can block Hsp90 by inhibiting its association with STAT3

(Fu et al., 2012). This action degrades phosphor-STAT3

(Tyr-705) and phosphor-STAT3 (Ser-727)-phosphorylated

STAT3 through a proteasome-dependent pathway. Hsp90

is one of the most important regulators of the Akt signaling

pathway (Zhang et al., 2005; Beck et al., 2009). Surprisingly, a
recent study presented protein phosphatase 2A (PP2A) as an

alternative target for luteolin (Ou et al., 2013). This study

suggests that PP2A activation may work with Hsp90 clea-

vage to inactivate Akt and lead to a vicious caspase-

dependent apoptotic cycle.

Stabilization of tumor suppressor protein p53

The tumor suppressor protein p53, a transcription factor,

controls the cell cycle (and arrests it in case of DNA

damage). Inhibition of tumor growth through cell cycle

arrest and induction of apoptosis are functionally related

to p53 (Kobayashi et al., 2002; Didelot et al., 2003).

Luteolin could mediate p53 stabilization and accumula-

tion, which induces apoptosis and prevents cell pro-

liferation in many cancer cell lines, including breast

cancer (Momtazi-Borojeni et al., 2013), Eca109 (Wang

et al., 2012b), gastric cancer AGS (Wu et al., 2008), HT-29

colon cancer (Lim do et al., 2007), and head and neck and

lung cancer (Amin et al., 2010). In two human colorectal

carcinoma-derived cell lines with microsatellite instability

– CO115 with wild-type p53 and HCT15 harboring a p53

mutation – luteolin enhanced p53 expression (Xavier

et al., 2011). In an in-vivo nude mouse xenograft model,

luteolin enhanced cisplatin’s anticancer activity by pro-

moting p53 stabilization and accumulation (Shi et al.,
2007). Also, luteolin ameliorates cisplatin’s nephrotoxi-

city by downregulating the p53-dependent apoptotic

pathway in the kidney (Kang et al., 2011).

Mammalian target of rapamycin signaling

Mammalian target of rapamycin (mTOR), a key regulator

of various cellular activities, belongs to the family of

PI3K-related kinases and is one of the most commonly

activated signaling pathways in human cancer (Faivre

et al., 2006). Chiang et al. (2007) showed that luteolin

inhibited cell proliferation and mediated apoptosis in

HER2-overexpressing cancer cells. Also, in nude mice

with xenografted SKOV3.ip1-induced tumors, luteolin

inhibited HER2 expression and tumor growth. In that

study, but only at low doses, luteolin upregulated the

expression of p21 and transiently inhibited mTOR sig-

naling. That finding suggests luteolin’s inability to cause

sustained Akt/mTOR inhibition, which may contribute

to the p21 induction that may confer a survival advantage

on HER2-overexpressing cancer cells (Fig. 4). Therefore,

suppressing p21 expression along with mTOR inhibition

may be a good way to improve anticancer drugs against

HER2-overexpressing tumors.

Raf and PI3K

KRAS and BRAF mutations are common in colorectal

carcinoma and can activate proliferation and survival
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through MAPK/ERK and/or PI3K signaling pathways. In

KRAS-mutated HCT15 cells, luteolin decreased ERK

phosphorylation, whereas it had no effect on phospho-

ERK in BRAF-mutated CO115 cells. This finding sug-

gests that luteolin’s antiproliferative and apoptotic effects

can be attributed to its activity on KRAS and PI3K, but

not on BRAF (Xavier et al., 2009). In another study,

luteolin inhibited Raf and PI3K activities and attenuated

phosphorylation of MEK and Akt (Kim et al., 2013). The

potential mechanism for this event is that luteolin non-

competitively binds with ATP to suppress Raf activity

and competitively binds with ATP to inhibit PI3K

activity (Fig. 4).

Preventing tumor invasion and metastasis
Metastasis is the major cause of death from cancer (Weng

and Yen, 2012; Lin et al., 2013). In metastasis, cancer cells

migrate from the primary tumor to other sites, forming

secondary tumors. Several reports showed that flavonoids

naturally inhibit cancer invasion and metastasis. As dis-

cussed above, studies have confirmed luteolin’s anti-

proliferative activities in many cancer cell lines, but how

it affects invasion by cancer cells remains unclear.

Figure 5 shows the possible molecular targets whereby

luteolin inhibits the invasion of cancer cells.

Integrin β1 and focal adhesion kinase

Hypoxia-induced epithelial–mesenchymal transition

(EMT) is an essential step in cancer metastasis. Luteolin

inhibits the expression of integrin β1 and focal adhesion

kinase (FAK), which are closely related to EMT forma-

tion. This relationship suggests that luteolin inhibits

hypoxia-induced EMT, at least in part, by inhibiting the

expression of integrin β1 and FAK (Ruan et al., 2012a).
Luteolin also inhibits EMT in malignant melanoma cells

both in vitro and in vivo by regulating β3 integrin (Ruan

et al., 2012b). Taken together, these findings show

luteolin’s potential as an anticancer chemopreventive and

chemotherapeutic agent to prevent EMT.

Cycle 42

A recent study showed that luteolin prevents the migra-

tion of glioblastoma cells by affecting PI3K/AKT activa-

tion, modulating the expression of cell division protein

cycle 42 (Cdc42), and facilitating its degradation by the

proteasome pathway (Cheng et al., 2013). This finding

suggests that pharmacological inhibition of migration by

luteolin is likely to preferentially facilitate the degrada-

tion of Cdc42. Understanding Cdc42’s function and

degradation by specific inhibitors adds another dimen-

sion for the development of potent therapeutic mod-

alities in the context of invasion and metastasis and may

be useful for cancer patients.

Fatty acid synthesis

Fatty acid synthesis is now associated with clinically

aggressive tumor behavior and tumor cell growth and has

become a novel target pathway for chemotherapy

development (Cheng et al., 2014; Hamada et al., 2014).
Coleman et al. (2009) reported a novel connection

between fatty acid synthesis activity and c-Met protein

expression, suggesting that luteolin could act as a novel

hepatocyte growth factor (HGF)/c-Met inhibitor by

reducing the expression of this receptor. However, add-

ing palmitate prevented luteolin from suppressing c-Met

protein expression.

c-Met tyrosine kinase

c-Met tyrosine kinase plays paramount roles in cancer

invasion and metastasis in many types of cancer cells.

c-Met tyrosine kinase acts as a membrane receptor for

HGF. Aberrant activation of the HGF/MET signaling is

strongly implicated in the malignant transformation and

progression of many tumors which are characterized by

an aggressive metastatic phenotype and a poor prognosis

(Hack et al., 2014; Lee et al., 2014; Vigna and Comoglio,

2014). Luteolin acts as a novel HGF/c-Met inhibitor by

suppressing phosphorylation of c-Met tyrosine kinase.

Luteolin thus inhibits HGF-induced cell invasion in

Fig. 4
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human DU145 prostate and hepatoma HepG2 cancer

cells (Lee et al., 2006; Coleman et al., 2009). Luteolin’s
inhibition of HGF/MET signaling represents a validated

and effective therapeutic tool in the battle against cancer.

E-cadherin

E-cadherin, a marker of epithelial cells, maintains

cell–cell adhesion. Decreased expression of E-cadherin

thus leads to a prominent increase of cell invasion

(Borchers et al., 1997; Soncin et al., 2009; Chen et al., 2010;
Lin et al., 2011).

Luteolin prevents the invasion of prostate cancer PC3 cells

by inhibiting mdm2 expression and inducing E-cadherin

expression (Zhou et al., 2009). Moreover, pretreatment of

A549 lung cancer cells with luteolin prevented TGF-β1

from downregulating E-cadherin, maintained normal mor-

phological appearance, and prevented EMT of lung cancer

cells (Chen et al., 2013). Furthermore, TGF-β1’s activation
of the PI3K–Akt–IκBα–NF-κB–Snail pathway reduced the

activity of E-cadherin, which pretreatment with luteolin

prevented. This finding suggests that luteolin could be

involved as a juvenile agent with chemotherapeutics to

prevent EMT of a wide spectrum of cancer cells.

Angiogenesis
Angiogenesis, the formation of new blood vessels from

existing vascular beds, plays a marginal role in tumor

growth, invasion, and metastasis. Luteolin exerted strong

antiangiogenesis activity in chick chorioallantoic mem-

brane and anti-invasive activity on breast cancer cells.
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It also downregulates the expression of astrocyte elevated

gene 1 (AEG-1), a novel oncoprotein, and matrix metallo-

proteinase-2 (MMP-2) (Jiang et al., 2013). Luteolin can

inhibit the in-vivo growth of gastric tumors; this mechan-

ism may correlate with downregulated expression of

VEGF-A and MMP-9 (Lu et al., 2013). In prostate cancer

cells, luteolin suppressed VEGF-A-induced phosphoryla-

tion of VEGF receptor 2 and their downstream protein

kinases AKT, ERK, and mTOR, reducing cell viability,

followed by induction of apoptosis (Pratheeshkumar et al.,
2012). Alternatively, luteolin can reduce the expression of

VEGF mRNA by inhibiting NF-κB transcription activity,

inhibiting VEGF secretion in pancreatic carcinoma cells

(Cai et al., 2012).

Luteolin with other anticancer drugs
MDR is an obstacle in cancer treatment, often because

less drug accumulates in tumor cells owing to enhanced

drug efflux (Limtrakul et al., 2004). In oxaliplatin-

resistant cell lines, luteolin inhibited the Nrf2 pathway

and reversed MDR (Chian et al., 2014a). Furthermore, in

non-small-cell lung cancer, luteolin inhibits the Nrf2

pathway in vivo and can serve as an adjuvant in che-

motherapy (Chian et al., 2014b). Pretreatment of BxPC-3

human pancreatic cancer with luteolin, followed by

gemcitabine inhibited protein expression of nuclear

GSK-3β and NF-κB p65, was accompanied by increased

proapoptotic cytosolic cytochrome c (Johnson and

Gonzalez de Mejia, 2013). Coadministration of luteolin

and paclitaxel activated caspase-8 and -3 and increased

expression of Fas by blocking STAT3 (Yang et al., 2014).
In an in-vivo nude mouse xenograft model, luteolin

enhanced p53 accumulation, reinforcing cisplatin’s ther-

apeutic activity (Shi et al., 2007). Surprisingly, luteolin
prevented cisplatin from causing nephrotoxicity by

downregulating the p53-dependent apoptotic pathway in

the kidney (Kang et al., 2011). Finally, luteolin may act

against metastasis because it can suppress the production

of MMP-9 and MMP-2 and upregulate TIMP2 gene

expression (Pandurangan et al., 2014). Taken together,

these findings show that luteolin can serve as an adjuvant

– not only to enhance the potency of chemotherapeutics

but also to reduce their cytotoxicity.

Epigenetic regulation
In recent years, researchers have extensively docu-

mented that epigenetic mechanisms such as DNA

methylation and histone modification regulate activities

of many cancer cells (Mirza et al., 2013; Yu et al., 2013;
Farkas et al., 2014). Therefore, epigenetic regulation is an

attractive target for cancer therapeutics (Ptak and

Petronis, 2008). In fact, the human genome has four

DNA methyltransferase genes (DNMT), encoding pro-

teins with distinct functions (Mirza et al., 2013). However,

histone tails (and their modifications) regulate diverse

biological processes such as transcription, DNA repair,

cell division, and differentiation (Van Attikum and

Gasser, 2005; Duncan et al., 2008). Unfortunately, the

literature offers no precise information on the epigenetic

regulation of luteolin in cancer cells. In a study on the

HeLa cell line, luteolin-induced E3 ubiquitin-protein

ligase UHRF1 and DNMT1 downregulation was

accompanied by global DNA hypomethylation (Krifa

et al., 2013). Attoub et al. (2011) first presented luteolin as

a potent histone deacetylase (HDAC) inhibitor that

enhances cisplatin cytotoxicity in LNM35 cells and

reduces the growth of LNM35 tumor xenografts in

athymic mice (Attoub et al., 2011). However, an urgent

need remains to study epigenetic regulation of luteolin in

different cancer cell lines. By taking advantage of epi-

genetic modifications, we can use HDAC and DNMT

inhibitors to control various cancer cell activities.

Moreover, luteolin may be a promising HDAC inhibitor

for cancer treatment. The US Food and Drug

Administration has already approved some HDAC and

DNMT inhibitors, such as azanucleoside drugs, to treat

myelodysplastic syndromes and acute myeloid leukemia

(Garcia-Manero and Fenaux, 2011; Yu et al., 2013).

Conclusion
Luteolin is a potent anticancer agent that could halt a

wide spectrum of tumors and cancer cells, including

MDR cells. Preclinical and clinical trials using luteolin as

an adjuvant supplement for cancer therapy should place

this fascinating agent at the forefront of new therapeutic

approaches and then translate this study’s concepts into

clinical applications.
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