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ABSTRACT
In marine systems, behaviorally-mediated indirect interactions between prey, meso-
predators, and higher trophic-level, large predators are less commonly investigated than
other ecologic interactions, likely because of inherent difficulties associatedwithmaking
observations. Underwater videos (n = 216) from SharkCam, a camera installation
sited beneath Frying Pan Tower, a decommissioned light house and platform, on a
natural, hard bottom site approximately 50 km off Cape Fear, North Carolina, were
used to investigate association behavior of round scad Decapterus punctatus around
sand tiger sharks Carcharias taurus. Videos containing sand tiger sharks were analyzed
for the simultaneous presence of round scad, and six species of scad mesopredators,
with scad-shark interactions assigned to one of three categories of association: no
visible interaction, loosely associated, or tightly associated. The likelihood of scad
being loosely or tightly associated with sharks was significantly higher in the presence
of scad mesopredators, suggesting that sharks provide a predation refuge for scad.
This behaviorally-mediated indirect interaction has important implications for trophic
energy transfer and mesopredator control on hard bottoms, as scad are one of the
most abundant planktivorous fish on hard bottoms in the western Atlantic Ocean.
Although we were not able to provide statistical evidence that sand tiger sharks also
benefit from this association behavior, we have clear video evidence that round scad
association conceals and attractsmesopredators, enhancing predation opportunities for
sand tiger sharks. These interactions potentially yield additional trophic consequences
to this unique association and highlight the value of exploring behaviorally-mediated
interactions in marine communities.

Subjects Animal Behavior, Aquaculture, Fisheries and Fish Science, Ecology, Marine Biology
Keywords Multispecies interaction, BMII, Underwater video, Hard bottom, Carcharias taurus,
Decapterus punctatus, SharkCam, Predator, Prey, Behaviorally-mediated indirect interaction

INTRODUCTION
Multispecies interactions highlight the underlying interdependency between organisms
that exist in all communities (Hutchinson, 1959; Paine, 1984; Beard & Dess, 1988). These
interactions are often categorized as direct, between two species, or indirect, where
the interaction between two species ultimately affects a third species (Wootton, 1993).
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Behaviorally-mediated indirect interactions (BMIIs) are a further classification of
trait-mediated indirect interactions (TMIIs) that are regulated by changes in a species’
behavior (Dill, Heithaus & Walters, 2003). Both direct and indirect interactions produce
changes in a species’ density or behavior and are useful in understanding food webs and
trophic exchanges. Indeed, indirect affects alter the risk landscapes of prey, including
mesopredators which are prey species for larger carnivores (Ritchie & Johnson, 2009),
especially in aquatic ecosystems (Preisser, Bolnick & Benard, 2005; Heupel et al., 2014), and
can initiate trophic cascades (Schmitz, Krivan & Ovadia, 2004; Creel & Christianson, 2008).
Competitor facilitation has been used in the context of BMIIs when the presence of one
species of predator causes a change in the behavior of a prey species that makes that prey
species more accessible for a second species of predator (Dill, Heithaus & Walters, 2003).
For example, some marine, demersal mesopredatory fishes access pelagic prey that are
driven towards the seafloor by pelagic mesopredators, enhancing feeding opportunities
(Auster et al., 2009; Auster et al., 2013; Campanella et al., 2019). Despite their importance,
BMIIs are less commonly investigated than other ecologic interactions because of the
difficulty attributed to quantifying changes in behavior, especially within marine habitats.

Underwater observations
Underwater videography using stationary cameras is an efficacious method to conduct
in-situ marine observations, including surveying marine fish assemblages for species
richness and abundance, and behavioral observations (reviewed in Mallet & Pelletier,
2014). For example, video has revealed that hard bottom habitat near Frying Pan Tower, 50
km offshore of Cape Fear, North Carolina, supports a diverse assemblage of both temperate
and tropical reef fish species that fluctuates seasonally (Burge et al., 2012; Burge & O’Brien,
2020). With few exceptions, the use of underwater video to assess multispecies behavior
that includes large and highly mobile predators, is much more limited (but see Davis et al.,
1999; Dunbrack & Zielinski, 2003; Barker, Peddemors & Williamson, 2011; Bond et al., 2012;
Kanno et al., 2019; Brown et al., 2020), despite evidence that video may be an advantageous
survey method (McCauley et al., 2012).

Once recorded, videos can be reviewed multiple times to optimize the amount of
data collected from a single event, and can potentially increase recognition of behaviors
that would otherwise be difficult to assess during SCUBA diving observations, which are
depth and time limited, especially in multispecies interactions where participants may
have different reactions to the presence of observers. Potential bias associated with SCUBA
surveys can be introduced as fish react to the presence of divers, sometimes for long periods
post-survey (Emslie et al., 2018), and this effect has been observed to be species specific
(Cole, 1994; Kulbicki, 1998; Burge et al., 2012; Lindfield et al., 2014). For example, sand
tiger sharks display increased respiration and movement in the presence of SCUBA divers
(Barker, Peddemors & Williamson, 2011), providing evidence that underwater stationary
videography may be a better alternative to observe the behavior of this species.

Sand tiger sharks (STs)
Sand tiger sharks, Carcharias taurus Rafinesque, 1810, are large (to >4 m), heavy-bodied
lamniforms found in coastal and continental shelf waters of warm-temperate and tropical
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seas worldwide. The diet of C. taurus is diverse and dominated by bony fishes and other
elasmobranchs (Gelsleichter, Musick & Nichols, 1999). Individuals and aggregations occur
especially in coastal areas of Australia (where they are known locally as grey nurse sharks),
the east coast of South Africa (raggedtooth sharks), and the east coast of the United States
(sand tiger sharks). Sand tiger shark aggregations are associated with migratory behavior,
feeding, and reproduction (Compagno, 2001), and complex social networks and behaviors
are described in this species (Haulsee et al., 2016a). Year-to-year site fidelity on shipwrecks
and other artificial structures has been reported in North Carolina (Paxton et al., 2019)
and individuals tagged in Delaware Bay undergo long-distance migrations to overwinter
in continental shelf waters of North Carolina (Teter et al., 2015) and return to Delaware
Bay predictably (Haulsee et al., 2016b). Additionally, sand tiger sharks are one of the few
large-bodied sharks commonly housed in captivity (Govender, Kistnasamy & Van Der Elst,
1991; Gordon, 1993; Smale et al., 2012).

The conservation status of C. taurus is listed as globally Vulnerable (Pollard & Smith,
2009) with some regional populations considered endangered or critically endangered
(Cavanagh et al., 2003; Chiaramonte, Domingo & Soto, 2007). Assessment of C. taurus in
the northwestern Atlantic has suggested this population declined precipitously since the
1970s from overfishing in the 1980s to the mid-1990s (Musick, Branstetter & Colvocoresses,
1993; Musick et al., 2000), but analyses of multiple datasets now suggest only low to
moderate declines in abundance (0.2–6.2%) (Carlson et al., 2009), in conflict with previous
reports. More recent data suggest that the northwestern Atlantic population may be
stabilized (Frazier, Paramore & Rootes-Murdy, 2019; Latour & Gartland, 2020). Regardless,
conservative management is recommended due to the very low productivity for this
species (Goldman, Branstetter & Musick, 2006; Carlson et al., 2009). Harvest of sand tigers
is currently prohibited in the United States under HighlyMigratory Species regulations and
Habitat Area of Particular Concern designations are under further consideration (NOAA
Fisheries, 2019).

Round scad (RS)
Round scad, Decapterus punctatus (Cuvier, 1829), are small-bodied (<300 mm) carangids
found in the western Atlantic Ocean southward from Nova Scotia, at Bermuda, and in
the Gulf of Mexico, Caribbean Sea, and along continental shores of South America to
Rio de Janiero (Naughton, Saloman & Vaught, 1986). In the South Atlantic Bight (SAB),
round scad (typically 60–170 mm) are abundant in continental shelf waters in summer
and fall, and move to hard bottoms in deeper, warmer areas of the mid- and outer shelf in
winter (Hales Jr, 1987). Throughout their range, adult round scad are diurnal zooplankton
specialists with the diet dominated by pelagic species and life stages (for meroplankton),
as opposed to demersal plankton (Hales Jr, 1987; Donaldson & Clavijo, 1994).

Round scad are very frequently reported as stomach contents of pelagic and demersal
piscivores (Matheson, Huntsman & Manooch, 1986; Naughton, Saloman & Vaught, 1986),
and are often the most abundant species on FADs (Rountree, 1990), wrecks (Lindquist &
Pietrafesa, 1989), and natural live bottoms (Parker, Chester & Nelson, 1994; Kendall, Bauer
& Jeffrey, 2009; Burge et al., 2012) in portions of the SAB. Round scad schooling behaviors
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around artificial structures (Rountree, 1989; Rountree, 1990; Lindquist & Pietrafesa, 1989;
Rountree & Sedberry, 1991), while feeding (Rountree & Sedberry, 1991), and in response to
their predators (Auster et al., 2009; Auster et al., 2013; Campanella et al., 2019) suggest an
affinity for physical objects which can include larger fishes and elasmobranchs (Fuller &
Parsons, 2019).

Mesopredators (MPs)
A diverse assemblage of pelagic and demersal piscivorous mesopredatory fishes inhabit
hard bottom habitats of the SAB (Chester et al., 1984; Sedberry & Van Dolah, 1984; Kendall,
Bauer & Jeffrey, 2009; Burge et al., 2012; Burge & O’Brien, 2020). Pelagic mesopredators
include medium to large-sized jacks (e.g.: greater amberjack Seriola dumerili (Risso, 1810),
almaco jack Seriola rivoliana Valenciennes in Cuvier and Valenciennes, 1833, blue runner
Caranx crysos (Mitchill, 1815), crevalle jackCaranx hippos (Linnaeus, 1766)) and scombrids
(e.g.: little tunny Euthynnus alletteratus (Rafinesque, 1810), and Atlantic bonito Sarda sarda
(Bloch, 1793)). All are reported to prey on round scad or similar small fishes (Manooch III
& Haimovici, 1983; Saloman & Naughton, 1984; Manooch, Mason & Nelson, 1985; Campo
et al., 2006; Sley et al., 2009; Fletcher, Batjakas & Pierce, 2013).

Hard bottom habitat
Hard bottoms, or ‘‘live bottoms’’, are rocky habitats and conspicuous geological features
on the mainly soft sediment-dominated continental shelf within the SAB. In the Carolina
Capes region of the SAB (offshore of North and South Carolina) (Riggs et al., 1996)
estimates of hard bottom areal coverage vary on both latitudinal and longitudinal bases,
with the greatest proportions on the shelf to the south of Cape Lookout, North Carolina
(Parker, Colby & Willis, 1983; SAFMC, 1998). Extensive areas of hard bottom have been
mapped and detailed geological descriptions have been published for the arcuate coastal
embayments of Onslow Bay (southeastern North Carolina; Cape Lookout to the north and
Cape Fear, North Carolina, to the south), and Long Bay (southeastern NC and northeastern
South Carolina; Cape Fear to Cape Romaine, South Carolina) (Milliman, 1972; Parker,
Colby & Willis, 1983; Riggs, Cleary & Snyder, 1995; Cleary et al., 1996; Riggs et al., 1996;
Ojeda et al., 2004; Denny et al., 2007; Taylor et al., 2016; Wheaton, 2018; NC Division of
Marine Fisheries, 2020). These bays are separated at Cape Fear by the Frying Pan Shoals, an
area of shallow, shifting sediments that extend offshore approximately 50 km.

In general, hard bottoms within the Carolina Capes region are emergent areas of
sedimentary and biogenic rock (fossiliferous limestones) formed from earlier Pleistocene
and Tertiary deposits. They are typically surrounded by much more extensive areas of
unconsolidated sediments (mainly sands) deposited during the Holocene. Hard bottoms
vary in emergent relief from flat pavements with shallow veneers of sediment (Riggs et al.,
1996), and typically depauperate epifauna and a near absence of infauna (Renaud et al.,
1996; Renaud et al., 1997; Renaud, Syster & Ambrose Jr, 1999), to high-relief scarped hard
bottoms (often called ledges) that may be meters above the surrounding sands with vertical
or sloped cliffs and combinations of undercuts and overhangs (Riggs et al., 1996). Ledges
in particular have rich communities of epifauna and rock-boring infauna (Wenner et al.,
1983).
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Hard bottoms provide structural habitat for the settlement of benthic sessile foundation
species, including rich assemblages of sponges, scleractinian and octocorallian corals,
ascidians, and macroalgae (Struhsaker, 1969; Miller & Richards, 1980; Wenner et al., 1983).
The growth of these sessile organisms contributes to hard bottom reef structural complexity.
Compared to adjacent soft-sediment dominated areas of the sea floor, hard bottoms create a
striking contrast in habitat that supports high richness and abundance of fishes (Sedberry &
Van Dolah, 1984; Hopkinson, Jansson & Schubauer-Berigan, 1991), invertebrates (Wenner
et al., 1983; Peckol & Searles, 1984), and macroalgae (Schneider & Searles, 1973; Schneider &
Searles, 1991; Schneider, 1976; Freshwater & Idol, 2013). Specifically, hard bottom reefs are
home to often large aggregations of small schooling fishes, such as scads (Decapterus spp.)
and young tomtate (Haemulon aurolineatum Cuvier in Cuvier and Valenciennes, 1830),
that serve as important prey resources for many pelagic and demersal piscivorous fishes
(Kracker, Kendall & McFall, 2008; Auster et al., 2013).

On hard bottoms off the coast of Georgia, competitive facilitation, an example of a BMII,
was observed as schools of round scad and tomtate retreated frommultispecies associations
of pelagic piscivorous fish towards the seafloor, increasing predation opportunities for
demersal piscivorous fishes (Auster et al., 2009; Auster et al., 2013). Furthermore, Auster et
al. (2009) observed round scad and tomtate responding to the presence of pelagic predators
by reducing nearest neighbor distance and forming more polarized aggregations.

Polarity in fish schools describes the likelihood of alignment and synchronization of
movement among individuals (Shaw, 1978; Soria, Freon & Chabanet, 2007). Increased
polarization is a common response to predators for many prey species that form
aggregations and has been found to reduce the vulnerability of prey aggregations (reviewed
in Lima & Dill, 1990). In addition to increasing polarization, prey fishes use several other
strategies to reduce vulnerability to predators. Alternative strategies include temporal
and spatial changes in forage fish distribution (Campanella et al., 2019) and forming
aggregations around physical objects, which is hypothesized to be advantageous to prey by
serving as a ‘‘schooling companion’’ (Klima &Wickham, 1971).

The abundance and taxonomic richness of species on hard bottom reefs and ledges
facilitate unique interspecies interactions that are often driven by enhanced feeding
opportunities or decreased vulnerability to predators (McFarland & Kotchian 1982;
Diamant & Shpigel, 1985; Baird, 1993). For example, associations between blue runner,
greater amberjack, and other large piscivorous fishes have been observed during
coordinated predatory foraging on hard bottoms (Auster et al., 2009). Additionally,
facilitative changes in predator behavior and prey reaction are linked to population
processes (Auster et al., 2013) and patterns of temporal and spatial use of habitat by
both predators and prey (Campanella et al., 2019). Effects of such associations containing
multiple predators on prey mortality has been heavily debated and several studies have
reported both additive and reduced predation effects (reviewed in Sih, Englund & Wooster,
1998).
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Objectives
In this study, we examined association behavior between sand tiger sharks (STs), round
scad (RS), and scad mesopredators (MPs) using video records from a unique, long-term
underwater video installation sited on a hard bottom system off the coast of Cape Fear,
North Carolina. Based on video observations collected to assess the fish species assemblage
(E. Burge, 2020, unpublished data) and video and in situ observations by Burge and
others, we repeatedly noticed the unusual association between STs and RS. Consequently,
we hypothesized that association behaviors between round scad and sand tigers were
more frequent in the presence of pelagic mesopredators than in their absence because
the presence of mesopredators represents a potential predation threat for round scad.
Strength of the association behavior was believed to be a response to mesopredators that
reflects round scad vulnerability. We also suspect that aggregations of round scad may
be mutually beneficial to sand tiger sharks by providing camouflage (Auster et al., 2013)
and increasing predation opportunities on mesopredators. Direct, visual observations
of wild behavior of sand tiger sharks are very limited (but see Smith, Scarr & Scarpaci,
2010; Barker, Peddemors & Williamson, 2011), and this species is currently IUCN Red
listed globally as Vulnerable, making research and conservation efforts necessary for
protection of this species. Investigating this association behavior may be insightful for a
deeper understanding of predation strategies of sand tiger sharks, protective behaviors of
a common prey species, and contribute knowledge of trophic dynamics on hard bottom
reefs in the South Atlantic Bight.

MATERIALS & METHODS
Study site and infrastructure
Video collected in this project are from SharkCam, an underwater, live-streaming camera,
publicly-viewable from https://explore.org/livecams/oceans/shark-cam (Explore.org, Los
Angeles, CA). The camera is sited beneath Frying Pan Tower (33◦29′N, 77◦35′W) which is
located at the seaward edge of Frying Pan Shoals, approximately 50 km off the coast of Cape
Fear, North Carolina. Frying Pan Shoals is within the biogeographic Carolina Province
(Cape Hatteras to Cape Canaveral, Florida), a warm-temperate to subtropical zone of the
Western Atlantic Region (Floeter et al., 2008; Briggs & Bowen, 2012; Briggs & Bowen, 2013;
Toonen et al., 2016). The camera is attached to a horizontal support at the base of Frying
Pan Tower in about 15 m of water and is surrounded by an expansive area of natural hard
bottom (Riggs et al., 1996; NC Division of Marine Fisheries, 2020) and steel debris, such as
large pipes, beams, and gratings, from the exterior of the tower (Collins Engineers Inc, 2010)
(https://www.youtube.com/playlist?list=PLK1g13VpyT6oYUJL7U3hRPlt2U5L_mcKL).
To date, videos from SharkCam have been used to identify 116 temperate and tropical
marine fish species (November 2014–February 2020) (Burge & O’Brien, 2020).

View Into The Blue R© (Boulder, CO) cameras with CleanSweepTM hardware were
used for all footage captured (https://www.viewintotheblue.com/). The cameras used (six
during the span of this project) featured HD 720p (November 2014–July 2016 footage)
or HD 1080p (after October 2016) video resolution, 360◦ pan–tilt-zoom that rotated on
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a pre-determined schedule, or with manual remote control, and a field of view of 62◦ ×
37◦ (horizontal × vertical). Automatic white balance (color control) was enabled in April
2017 to more closely approximate surface light for color correction. Power is provided by
a solar installation atop Frying Pan Tower and data transmission used a line-of-sight radio
to shore (Burge & O’Brien, 2020).

Video selection and analysis
SharkCam video files containing sand tiger shark Carcharias taurus (STs) records were
extracted from a larger video database of all fish species occurrences gathered from
non-consecutive, 20-min clips (n= 1024) analyzed as part of a larger community analysis
project (E. Burge 2020, unpublished data). Video files were recorded during local daylight
hours between November 2014 and January 2019.

All 20-min clips containing STs were re-analyzed to confirm shark identification,
presence or absence of round scad (RS)Decapterus punctatus or a visually indistinguishable
species, such as mackerel scad D. macarellus (Cuvier in Cuvier and Valenciennes, 1833) or
redtail scad D. tabl Berry, 1968, and the identification of mesopredators (MPs). Duration
of the STs on screen (seconds) was recorded to obtain average observation time.

This more detailed analysis of clips from the larger video database resulted in the
rejection of some data records (n= 26) because the initial shark identification was not
confirmed (n= 11 clips), only a fleeting glimpse of STs was available and/or visibility
was poor (n= 12), or the original video could not be located (n= 3). Poor visibility
compromised identification of RS or MPs. To these confirmed STs records from the
larger database we were able to add 24 clips that contained STs from other video files not
previously included in the larger video database by using more recently analyzed clips,
personal observations, or reports from citizen scientists recorded with the live video stream
on-line (https://explore.org/livecams/oceans/shark-cam). In these added clips, the shark
was located and a 20-min clip of video was analyzed as described with the shark centered
in the middle. In total, 216 clips with the confirmed presence of STs were analyzed.

Clips with STs were reviewed for the simultaneous co-occurrence of RS and assigned
a descriptive category of the association behavior between them using the following
categories: no visible interaction (NVI), loosely associated (LA), and tightly associated
(TA) (Fig. 1). No visible association was defined as both species moving independently of
each other or in opposing directions and with their heads oriented in different directions.
Loosely associated aggregations were defined as both species moving in a similar direction,
their heads oriented in a similar direction, and RS maintaining an estimated five scad body
lengths or more from STs and other school members. Tightly associated aggregations were
defined as both species moving as one entity, their heads oriented in the same direction, and
RS maintaining less than five estimated body lengths from STs and other school members.
These behaviors represent a spectrum of association that we hypothesize correlates with
the vulnerability of RS to predation in response to the presence of pelagic mesopredators
(MPs); NVI representing the least vulnerable and TA representing the most vulnerable.
Video files with multiple sightings of STs were treated as independent occurrences if
shark observations were separated by 10-min or greater. Multiple association observations
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Figure 1 Sand tiger sharks and round scad in association behaviors. (A) No visible interaction (NVI).
Image from 18 April 2017, 12:43 EDT, (B) Loosely associated (LA). Image from 11 November 2019, 16:05
EST, (C) Tightly associated (TA). Image from 13 March 2018, 14:14 EDT. Image credits: Erin Burge/Ex-
plore.org.

Full-size DOI: 10.7717/peerj.11164/fig-1
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within a 10-min interval were assigned a descriptive category that best described the general
association behavior of the recurring individuals. We were not able to individually identify
observed STs, however, we have no reason to believe that this association behavior was
limited to individual sharks given themulti-year duration over which videos were collected.

Mesopredators (MPs) were hypothesized to be mediators of RS and STs association
behavior, and so in order to assess this behaviorally-mediated response, we documented
the presence, identity, and occurrence of six pelagic MPs selected a priori within all 20-min
video clips that also contained STs. These were almaco jack (Seriola rivoliana, AJ), Atlantic
bonito (Sarda sarda, AB), blue runner (Caranx crysos, BR), crevalle jack (Caranx hippos,
CJ), greater amberjack (Seriola dumerili, GA), and little tunny (Euthynnus alletteratus,
LT). Mesopredators were selected based on preliminary observations of co-occurrence and
predation attempts on RS recorded in the larger video database (E. Burge, 2020 unpublished
data), published reports that suggest facilitated, or even cooperative, hunting (Auster et
al., 2013; Auster et al., 2019), and shared characteristics of size (individual body size
approximately 0.5 m–1.5 m), highly active feeding behavior, and diet overlap (Manooch III
& Haimovici, 1983; Saloman & Naughton, 1984; Manooch, Mason & Nelson, 1985; Campo
et al., 2006; Sley et al., 2009; Fletcher, Batjakas & Pierce, 2013).

Data analysis
Hierarchical cluster analysis using Bray-Curtis similarity on presence or absence data
was used to illustrate the strength of co-occurrences between STs, RS, and each species
of mesopredator in all recorded instances of sharks (n= 216). Statistical significance
was tested with 1,000 simulation permutations by Simprof (α = 0.05) in PRIMER-e 6
(Plymouth Marine Laboratory UK).

Pearson’s chi-squared test (χ2) was used to further investigate whether the frequency of
association behaviors between STs and RS were more commonly observed than expected
if each category of association had an equal chance of occurring (33%). Equal likelihoods
of each association category occurring were assumed to represent a condition in which
RS did not benefit from a close physical association with STs. Pearson’s χ2was also used
to test the frequency of association behaviors in the presence of one or more species of
mesopredator. The behavior categories were used to represent a continuum of association
that reflected the relative vulnerability of RS to pelagic MPs.

Multinomial logistic regression (‘multinom’, R version 3.5.1) was used to calculate the
log-odds of association behavior (i.e., LA and TA behaviors) in the presence or absence
of one or more species of mesopredator. This analysis expanded on the results from the
χ2analysis, which only compared the frequency of association behavior in the presence of
MPs, by making predictions of the frequency of association behavior in the presence and
absence of MPs. Odds ratios were exponentially transformed to obtain percentage values.
We hypothesized that MPs facilitated association behavior between STs and RS, therefore
presence or absence data of MPs was used as the independent variable and the association
behavior was the dependent variable for this analysis. We expected to see the log-odds of
association behavior increase in the presence of mesopredators, therefore the association
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Table 1 Occurrence of sand tiger sharks, round scad, and six mesopredator species in SharkCam videos.Videos analyzed (n = 1024, 20-min
clips) were collected November 2014–January 2019. Frequency of occurrence data are for all videos, and those known to contain STs (n = 216, 20-
min clips). The frequency of STs+ RS in all clips was 0.138.

Frequency of occurrence

CommonName Species Acronym Videos
containing

In STs clips
(n= 216)

In all clips
(n= 1024)

Sand Tiger Shark Carcharias taurus STs 216 1.000 0.213
Round Scad Decapterus punctatus RS 186 0.861 0.648
Greater Amberjack Seriola dumerili GA 106 0.491 0.580
Almaco Jack Seriola rivoliana AJ 89 0.412 0.351
Blue Runner Caranx crysos BR 61 0.282 0.210
Crevalle Jack Caranx hippos CJ 25 0.116 0.164
Little Tunny Euthynnus alletteratus LT 34 0.157 0.078
Atlantic Bonito Sarda sarda AB 9 0.042 0.015

MPs

Frequency containing STs
+ RS+≥1 MPs=

0.837 0.163

Note.
MPs are in bold.

category that represented the least degree of round scad vulnerability, NVI, was used as the
baseline in the analysis.

RESULTS
All clips (n= 216) that contained one or more sand tigers sharks (STs) were used for
hierarchical cluster analysis with Bray-Curtis similarity. Among all clips, 186 (86%)
included simultaneous observations of RS and STs and were used in multinomial logistic
regression. Of the videos that contained STs and RS, 159 (85%) contained one or more
species of MPs and were used in the Pearson’s χ2 (Table 1). Average observation time of
STs and RS association behavior within clips was 36 ± 37.5 s (mean ± SD), range 3–254 s,
median 26 s.

Visual observations
In the absence of MPs and STs, RS were commonly observed swimming in unpolarized,
distributed schools as they foraged for plankton. Foraging and plankton feeding were
inferred from a commonly seen behavior where individuals flex their bodies slightly
upward while simultaneously opening the mouth (head-tipping), often with slight lateral
adjustments, presumably to ingest individual plankters (https://youtu.be/7_i8hoQXeAU;
Table S1).

When STs were not observed and MPs were actively foraging on RS, RS responded
by forming denser schools (i.e., reducing nearest neighbor distance), and often retreated
to the sea floor or associated with the structure of Frying Pan Tower (https://youtu.be/
IesLMb9OStw, https://youtu.be/CTwih5UYaqw, https://youtu.be/CIFLIu2FVfA; Table S1).

During LA behavior with STs, RS exhibited unpolarized schooling behaviors, but
maintained proximity and speed with the STs (https://youtu.be/_CIqWVUprmU). During
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TA aggregation behavior, RS decreased distance to nearest neighbor and STs, and moved
with the STs as a highly coordinated group (https://youtu.be/P37lg7iiDJo; Table S1).

Distinct transitions between behavioral categories were rarely observed, and the few
observed transitions captured the movement from LA aggregations to TA aggregations
(Fig. 2). During these observations, RS displayed an immediate response (less than one
second) to MPs. In some of these occurrences, RS can be described as ‘‘pulsating’’
around the shark, as they transitioned constantly between a LA and TA state (https:
//youtu.be/9WuEyByf_Pw, https://youtu.be/1Ss-AvAMkVg, Table S1).

Predation attempts
Regardless of the species involved, apparently successful piscivorous predation seen on
SharkCam is exceedingly rare (E. Burge, 2020, unpublished data). During data collection
from 1024, 20-min intervals of video (>340 h), we recorded all likely successful fish-on-fish
predation events and noted the species involved. Only a small number of observations
of STs predation attempts on MPs or other species were made (n= 5, Table 2) and
these were always on prey species much larger than round scad. Attempted predation was
documented on twoMPs species, little tunny and blue runner, with two additional attempts
on gag Mycteroperca microlepis (Goode and Bean, 1879) and red drum Sciaenops ocellatus
(Linnaeus, 1766). Additionally, STs were only observed making predation attempts on
other fishes when tightly associated with RS, with no observations of attempted predation
during NVI and LA behaviors. The timing of these events did not suggest a bias towards
crepuscular feeding although a very small sample size currently exists (Table 2).

During these rare phenomena, sand tiger sharks made quick lunges toward approaching
fishes that appeared oblivious to the presence of the STs, presumably due to shrouds of
RS tightly associated with the shark (Fig. 3). Although STs were never observed capturing
prey during these attempts, it appeared that schools of RS concealed the presence of STs
and attracted scad predators to the STs (see videos in Table 2).

Descriptive frequencies
Sand tiger sharks are fall-winter-spring visitors seen most frequently during cool months
(21.3%overall frequency of occurrence among allmonths, n= 1024; Fig. 4). Round scad are
ubiquitous during cool months and appear to depart inMay–June and September–October
(64.8% overall frequency of occurrence among all months, n= 1024; Fig. 4), but are most
frequently seen during periods of STs residency. The combinatorial frequency of occurrence
for these two species (co-occurrence) was 13.8% within the 1024 videos. Additionally, the
frequency of videos (of 1024) that contained STs, RS, and one or more species of up to six
different MPs was 16.3% (combinatorial frequency of occurrence for 3+ species) (Table 1).

However, in videos selected because they contained STs (100% frequency of occurrence,
n= 216), RS were much more likely to be seen (86.1% frequency of occurrence), and the
likelihood of this co-occurrence was strongly clustered with the presence of one or more
MPs species (Fig. 5) (83.7%, combinatorial frequency of occurrence for 3+ species). Of
the six species of MPs selected for this study, four species (almaco jack, blue runner, little
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Figure 2 Association behavior between round scad (RS) and sand tiger sharks (STs) as a response to
mesopredators (MPs). Two sets of screen captures (A–D and E–H, lower left of each image) are repre-
sentative of transitions between loose association (LA) and tight association (TA) that occur between RS
and STs in the presence of MPs, little tunny (LT) and blue runner (BR). (A–D) RS are in LA with a STs.
Two LT successively cause a rapid transition to TA. Once attacking mesopredators depart, RS transition
to LA rapidly. View video at https://youtu.be/1Ss-AvAMkVg?t=180 (0:03:00). (E–H) RS are in LA with
STs. A school of BR approaches and RS rapidly transition to TA behavior. View video at https://youtu.
be/1Ss-AvAMkVg?t=925 (0:15:25). Video files are deposited in a public online repository on Zenodo
(doi:10.5281/zenodo.4477423). Note that sandbar sharks (Carcharhinus plumbeus) are also present in
some images. Image credits: Erin Burge/Explore.org.

Full-size DOI: 10.7717/peerj.11164/fig-2

tunny, and Atlantic bonito) were more frequently observed within the data set of only STs
videos (n= 216) than the SharkCam occurrence data set (n= 1024) (Table 1).
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Table 2 Attempted predation events by sand tiger sharks (STs) onmesopredators (MPs in bold) while in association with round scad (RS+

STs). All association behaviors were tightly associated (TA). Date (DDMmm YYYY) and time (U.S. Eastern Standard Time, UTC/GMT -5) are lo-
cal to the camera. Video time refers to the time within the video clip of the attempt (H:MM:SS). Video files are deposited in a public online reposi-
tory on Zenodo (doi: https://doi.org/10.5281/zenodo.4477423).

Prey species RS+STs Date of
occurrence

Clock time of
occurrence

Video
time

Video reference

TA 19 Dec 2015 1121 EST 0:00:08 https://youtu.be/P37lg7iiDJoLittle Tunny Euthynnus
alletteratus TA 06 Jan 2019 1040 EST 0:00:09 https://youtu.be/PllHZr-ioeo
Red Drum Sciaenops
ocellatus

TA 12 Jan 2019 1148 EST 0:19:45 https://youtu.be/i5wO7ILbbd8

Blue Runner Caranx
crysos

TA 12 Jan 2019 1150 EST 0:20:52 https://youtu.be/i5wO7ILbbd8

GagMycteroperca mi-
crolepis

TA 15 Jan 2019 0740 EST 0:00:07 https://youtu.be/cfGFAq1cQtI

Figure 3 Association behavior and sand tiger shark predation. Screen captures (A–D) are representa-
tive of tight association (TA) behavior between sand tiger sharks (STs1 and STs2) and round scad (RS).
(A) GagMycteroperca microlepis, approaches, apparently not recognizing the presence of STs1. (B) Simul-
taneously, a little tunny (LT), approaches shrouded STs1 in what appears to be predation behavior on RS,
disrupting the shroud. (C) The STs attempts to prey upon the gag, but (D) is unsuccessful. See the exam-
ple video for additional information (https://youtu.be/cfGFAq1cQtI). Video files are deposited in a public
online repository on Zenodo (doi:10.5281/zenodo.4477423). Image credits: Erin Burge/Explore.org.

Full-size DOI: 10.7717/peerj.11164/fig-3

Association behavior
Sand tiger sharks and RS clustered together the strongest (92.5%), while MPs had lower
similarities (Fig. 5). Among MPs, GA was significantly clustered with RS and STs and had
the highest similarity value of all MPs (63.4%). Almaco jack (AJ; 54.2% similarity) and BR
(37.9% similarity) were also significantly clustered with STs, RS, and GA, while LT, CJ, and
AB were not significantly clustered within the group.

Coleman and Burge (2021), PeerJ, DOI 10.7717/peerj.11164 13/30

https://peerj.com
https://doi.org/10.5281/zenodo.4477423
https://youtu.be/P37lg7iiDJo
https://youtu.be/PllHZr-ioeo
https://youtu.be/i5wO7ILbbd8
https://youtu.be/i5wO7ILbbd8
https://youtu.be/cfGFAq1cQtI
https://youtu.be/cfGFAq1cQtI
https://doi.org/10.7717/peerj.11164/fig-3
http://dx.doi.org/10.7717/peerj.11164


 Sand Tiger Shark
Carcharias taurus

Sampling month

Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec  Jan  

Se
a 

su
rfa

ce
 te

m
pe

ra
tu

re
 (°

C)

5

10

15

20

25

30

35

Fr
eq

ue
nc

y 
of

 o
cc

ur
re

nc
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Round Scad
Decapterus punctatus

2016 SST (°C; mean daily±SD)
2003-2008 SST (°C; mean monthly±SD) 

2003-2008 SST monthly MIN-MAX (°C)

Frequency of occurrenceFrequency of occurrence

n = 123 57 122 56 87 110 224 104 45 24 33 39

 

Figure 4 Frequency of occurrence of sand tiger sharks and round scad indicate the seasonality of their
presence at Frying Pan Tower. Seasonality of sand tiger sharks (STs) and round scad (RS) are represented
by frequency of occurrence data (solid line, STs; dashed line, RS) from SharkCam videos (n = 1024, 20
min clips) from November 2014–January 2019. Video clips analyzed by month are indicated as (n =).
Sea surface temperatures (SST) are plotted as 2016 mean daily water temperature (◦C)±SD (open cir-
cles), 2003–2008 long term mean monthly SST (black circles on gray line), and 2003–2008 minimum and
maximum monthly SST (gray stippled lines) at Frying Pan Tower (data from NOAA NBDC Station 41013
(LLNR 815)–Frying Pan Shoals, NC).

Full-size DOI: 10.7717/peerj.11164/fig-4

Figure 5 Cluster analysis of Bray-Curtis similarity to illustrate associations between sand tiger sharks
(STs), round scad (RS), and individual mesopredator species (MPs). See Table 1 for species acronyms.
STs and RS cluster strongly (92.5% similarity), while MPs have lower similarities. Clusters containing red-
dashed branches are significant (Simprof, α= 0.05).

Full-size DOI: 10.7717/peerj.11164/fig-5
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Figure 6 Association behavior counts between sand tiger sharks (STs) and round scad (RS). (A) With-
out and with the presence of mesopredators (MPs), and observed and expected frequencies (B) of associa-
tion behaviors in video clips collected from SharkCam (n= 186, 20-min clips). Tightly associated behavior
between STs and RS occurred significantly more often than expected (Pearson’s χ 2

= 20.981 (df 2), p <
0.000) in the presence of MPs.

Full-size DOI: 10.7717/peerj.11164/fig-6

Analysis of the 186 videos containing co-occurrence of STs and RS resulted in 40
observations of NVI, 58 observations of LA behavior, and 88 observations of TA behavior
without regard to the presence or absence of MPs (Fig. 6). In the presence of MPs
the frequency of LA and TA behaviors increased. NVI was least frequently observed
(n= 33), and TA behavior was most frequently observed (n= 79). There was a significant
difference in the observed occurrences of behavioral categories compared to their expected
frequencies, assuming equal likelihoods of occurrence in the presence of MPs (Pearson’s
χ2
= 20.981; df 2; p< 0.000). Compared to no visible association, the log-odds of round

scad being loosely associated with STs was 82.9% greater, and tightly associated behavior
was 196% greater in the presence of mesopredators, but these results were not statistically
significant (LA, p= 0.727; TA, p= 0.218), likely due to the number of NVI behaviors seen
even when MPs were present.

DISCUSSION
Based on SharkCam underwater video observations conducted over more than 5 years
and representing over 340 h of underwater footage, we demonstrate that round scad
(RS) are significantly more likely to be associated with sand tiger sharks (STs) in the
presence of potential scad mesopredators (MPs), than in their absence. This example of a
behaviorally-mediated indirect interaction (BMII) has important implications for trophic
energy transfer on hard bottoms in the SAB.
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Round scad are one of the most abundant pelagic, planktivorous fish species observed
on hard bottom habitats (Lindquist & Pietrafesa, 1989; Rountree, 1990; Burge et al., 2012),
and high densities of RS are especially apparent on mid-shelf live bottoms of the SAB in
winter (Hales Jr, 1987). Under these circumstances, MPs are likely dependent on RS and
similar species such as mackerel scad D. macarellus and redtail scad D. tabl as primary prey
resources, especially in cooler months. Given this, it was important to investigate round
scad association behavior with sand tiger sharks and be aware that this interaction may
relate to trophic transfer and mesopredator control. We have no reason to believe this STs
and RS association behavior is unique to the hard bottom habitat off Cape Fear, North
Carolina, therefore describing this behavior and its stimulus aids in understanding trophic
interactions and prey strategies that influence predation success for pelagic predators.

While the possibility of benefit to STs as increased predation opportunities remains an
open question, available observations (see videos in Table 2) provide evidence that STs
use this association to perform an undocumented predation strategy. The concealment
provided to STs by RS and the attraction of MPs to the shark suggest that this association
behavior facilitates the feeding and foraging behavior of sand tiger sharks (Table 2). Feeding
behaviors and bite kinematics in captive C. taurus have been described (Ferrara et al., 2011;
Moyer, Shannon & Irschick, 2019), but foraging behavior in wild STs remains unclear,
although several lines of evidence suggest that crepuscular and night foraging are probable
in this species, with a need for substantial additional research (Hammerschlag et al., 2017).
For example, Kneebone et al. (2018) report that juvenile sand tigers are more active at
night in a nursery area of Plymouth, Kingston, Duxbury (PKD) Bay, Massachusetts.
Using acoustic detections, accelerometer data, geospatial modelling, and field observations
Kneebone et al. (2018) inferred that foraging behavior may be an important aspect of
increased activity.

Admittedly, the limited field of view of SharkCam served as a constraint to fully
observe behavior between STs, RS, and MPs because interactions occurred rapidly and in
three-dimensional space (see videos in Table S1). In this study, occurrences of MPs outside
the perspective of SharkCam undoubtedly influenced events captured on camera, and this
is likely responsible for many of the observations of loosely associated (LA) and tightly
associated (TA) behaviors that occurred in the absence of MPs (STs+RS-MPs, n= 27). One
or more species of selected MPs occurred in approximately 84% of videos containing STs
and RS (Table 1). Additionally, many other species of potential scad mesopredators are also
present at Frying Pan Tower, including a diverse assemblage of demersal piscivores, and
other pelagic species not designated asMPs in analyses (Table S2). Recent work by Brown et
al. (2020), also on sand tiger sharks in North Carolina, has revealed that the presence of the
sharks alters short-term reef fish community richness on shipwrecks, with the prevalence
of pelagic mesopredators elevated, and those of demersal mesopredators depressed. They
suggest that these differences in richnessmay be behaviorally-mediated responses attributed
to mesopredator optimization of foraging strategy, with sharks as short-term drivers of
spatial and temporal community composition for mesopredators. Given this, it is likely that
there are few circumstances when aggregations of round scad are not exposed to potential
predators. The inclusion of STs+RS-MPs videos in the multinomial logistic regression
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likely resulted in the lack of statistical significance (p= 0.727 for LA and p= 0.218 for
TA), despite the relatively large increases in the odds of association behavior as association
strength increased (82.9% for LA and 196% for TA). This pattern is supported by the
results of the chi-square analysis that show the frequency of occurrence of association
behavior increased with association strength (p< 0.000, Fig. 6).

In research analyzing predator influence on prey behavior, Seghers (1974) hypothesized
that guppies formed schools because they were always exposed to predation threats.
Constant exposure to predators provides a strong explanation for why round scad are
observed forming associations with sand tiger sharks when designated MPs are not seen
on SharkCam. While observations of round scad association with sand tiger sharks in the
absence ofMPs observationsmay be a result of sampling bias (i.e.,MPs were present but not
observed on camera), it suggests that aggregation behavior is driven by perceived predation
risk assessed by the scad, and further suggests near constant exposure to mesopredators.
Experimental manipulation of mesopredators, their prey, and higher trophic-level predator
presence have tested perceived predation risk to prey andmesopredators inmarine (Del Mar
Palacios, Warren & McCormick, 2016) and terrestrial (Gordon et al., 2015) settings—one
commonality that emerges is that the presence of a high trophic-level predator alleviates
perceived risk to prey by providing a ‘‘refuge effect’’ associated with behavioral changes in
prey.

For example, the mackerel scad Decapterus macarellus, an ecologically similar and
sympatric relative of round scad D. punctatus, associated with goliath grouper Epinephelus
itajara (Lichtenstein, 1822) presumably to reduce their vulnerability to predation by the
horse-eye jackCaranx latusAgassiz in Spix and Agassiz, 1831.Mackerel scad were described
as forming a dense aggregation around the grouper while under threat by jacks, and the
school of scad moved with the grouper as one unit. The authors concluded that this
behavior was likely advantageous for mackerel scad by reducing their risk of predation by
a mesopredator (jack) that was itself potential prey for the grouper (Macieira et al., 2010).

Behavioral descriptions of RS and STs association were created to classify three distinct
levels of association based on preliminary observations. Inclusion of a continuous,
quantitative variable to measure aggregation strength may have increased the accuracy
of identifying round scad responses to mesopredators but was not necessary given how
distinct existing behavioral categories were. Nearest neighbor distance is a structural
measurement of fish aggregations and it is used to calculate the positional preference of
individual fish within an aggregation based on the positions andmovements of adjacent fish
(Parrish, Viscido & Grunbaum, 2002). Evidence supports that synchronization and group
coordination are mediated by an individual’s interactions with nearest group members
(Soria, Freon & Chabanet, 2007; Ballerini et al., 2008; Niizato & Gunji, 2011). We visually
estimated nearest neighbor distance of round scad to other aggregation members and to
sand tiger sharks to incorporate a measure of aggregation structure into our behavioral
descriptions in order to reduce observer bias. Conventionally, model simulations have
been effectively used to understand the mechanisms that influence strength, response
to stimulus, and coordination of fish schools (Huth & Wissel, 1992; Parrish, Viscido &
Grunbaum, 2002). Observations of RS becoming more aggregated in response to perceived
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predation threats are consistent with prior literature (Rountree & Sedberry, 1991; Auster et
al., 2009; Auster et al., 2013). Reduction in nearest neighbor distance and increased polarity
likely facilitates more efficient communication between school members which enhances
group synchrony and coordination (Rieucau, Fernö & Ioannou, 2015).

In-situ marine field experiments analyzing fish aggregation dynamics are uncommon,
likely given the difficulty to track individual fish in an open setting. Dual frequency
identification sonar (DIDSON) has recently become a reliable method to conduct in-situ
analysis of fish schooling behavior and has the capability of monitoring the movement of
individual fish (Moursund, Carlson & Peters, 2003; Boswell, Wilson & Cowan, 2008; Price,
Auster & Kracker, 2013; Rieucau et al., 2016). Auster et al. (2013) used DIDSON techniques
to effectively analyze prey distribution during predator–prey interactions similar to those
observed in this study on hard bottoms in the SAB. DIDSON analysis would support
more quantitative data on the structure of associations between RS and STs, but was not
necessary to understand interactions between RS and MPs and would introduce additional
cost for support and maintenance.

Sharks were always the nucleus of association for round scad in our study. We
hypothesized that proximity to sharks by round scad, in addition to changes in scad
polarization and reduced nearest neighbor distance, served as an additional predation
defense for round scad against mesopredators. Although we focused on association
as protective for round scad with sharks, it is important to consider other potential
explanations for this behavior.

Fuller & Parsons (2019) reported observations of association between RS and several
species of sharks. In the Gulf of Mexico, aggregations of round scad and another carangid,
Atlantic bumper (Chloroscombrus chrysurus (Linnaeus, 1766)), associated with blacktip
sharks (Carcharhinus limbatus (Müller and Henle, 1839), spinner sharks (Carcharhinus
brevipinna (Müller and Henle, 1839)), and blacknose sharks (Carcharhinus acronotus
(Poey, 1860)). In situ observations of association between RS and STs had not been
previously described prior to the current study, but photographs available online document
associations between round scad and sand tiger sharks on North Carolina reefs and wrecks
(https://ncaquariums.wildbook.org/gallery.jsp), and these are mentioned by Fuller &
Parsons (2019). Their potential explanations for association behavior include protection
frommesopredator predation, optmotor responses (Shaw & Tucker, 1965), and scatophagy
on shark fecal clouds. We did not document the frequency of round scad feeding during
associations or observe foraging on fecal clouds, but round scad foraging for plankton was
common during observations (Table S1). As fish forage, especially pelagic planktivores like
round scad, they become more vulnerable to predation; therefore, future studies should
consider foraging benefits and how associations with sharks reduced vulnerability during
foraging. It is also important to continue to explore the possible benefit of this association to
sand tiger sharks to fully understand how this association influences trophic interactions.
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CONCLUSIONS
Based on underwater video observations from SharkCam, we hypothesized that association
behaviors between round scad and sand tiger sharks were more frequent in the presence
of pelagic mesopredators than in their absence because the presence of mesopredators
represents a potential predation threat for round scad. Scad were shown to be significantly
more likely to be tightly associated with sand tiger sharks in the presence of mesopredators,
compared to in their absence. This example of a behaviorally-mediated indirect interaction
suggests that the presence of a large predator alleviates perceived risk to prey from
mesopredators. These results illuminate a previously undescribed behaviorally-mediated
indirect interaction with important consequences for trophic transfer and mesopredator
control on hard bottom habitats, and supports the usage of long-term underwater camera
installations for addressing questions in marine ecology.
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