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Aging is accompanied by a time-dependent progressive 
deterioration of multiple factors of the cellular system. The 
past several decades have witnessed major leaps in our 
understanding of the biological mechanisms of aging using 
dietary, genetic, pharmacological, and physical interventions. 
Metabolic processes, including nutrient sensing pathways and 
mitochondrial function, have emerged as prominent regulators 
of aging. Mitochondria have been considered to play a key 
role largely due to their production of reactive oxygen species 
(ROS), resulting in DNA damage that accumulates over time 
and ultimately causes cellular failure. This theory, known as 
the mitochondrial free radical theory of aging (MFRTA), was 
favored by the aging field, but increasing inconsistent 
evidence has led to criticism and rejection of this idea. 
However, MFRTA should not be hastily rejected in its entirety 
because we now understand that ROS is not simply an 
undesired toxic metabolic byproduct, but also an important 
signaling molecule that is vital to cellular fitness. Notably, 
mitochondrial function, a term traditionally referred to 
bioenergetics and apoptosis, has since expanded considerably. 
It encompasses numerous other key biological processes, 
including the following: (i) complex metabolic processes, (ii) 
intracellular and endocrine signaling/communication, and (iii) 
immunity/inflammation. Here, we will discuss shortcomings of 
previous concepts regarding mitochondria in aging and their 
emerging roles based on recent advances. We will also discuss 
how the mitochondrial genome integrates with major theories 
on the evolution of aging. [BMB Reports 2019; 52(1): 13-23]

INTRODUCTION

Mitochondria are unique cellular organelles in that they 
inherently possess their own genome in the form of a circular 
DNA (mitochondrial DNA; mtDNA) which presumably 

derived from endosymbiotic alpha-proteobacteria. Traditionally, 
the main function of mitochondria has been considered to be 
ATP production by oxidative phosphorylation. However, 
recently, mitochondria have been increasingly appreciated as 
a major hub that transmits adaptive regulatory signals to 
control a wide range of cellular functions, including immunity, 
survival, and homeostasis, with strong implications in aging. 
Mitochondria regulate many age-related pathways including 
senescence, unfolded protein response (UPR), autophagy, and 
inflammation. Some prominent pathways include the 
following: (i) reactive oxygen species (ROS) signaling that have 
a broad cellular impact including nuclear gene regulation, (ii) 
mitochondrial unfolded response (UPRmt) whereby 
mitochondrial perturbations activate stress-responsive trans-
criptional responses in the nucleus via factors such as acti-
vating transcription factor associated with stress-1 (ATFS-1) in 
C. elegans and ATF-5 in mammals, (iii) metabolite signaling, 
(iv) mitochondrial damage-associated molecular patterns 
(mtDAMPs) that consist of molecules released from injured 
mitochondria, and (v) mitochondrial-derived peptides (MDPs) 
that are factors encoded within the mtDNA.

Notably, mitochondrial communication is an emerging 
biology with increasing evidence for a key role in normal 
aging and age-related disease, but the mechanistic details are 
largely unclear. In this review, we will discuss mitochondrial 
communication, with an emphasis on its influences on cellular 
function, homeostasis, and aging. 

MITOCHONDRIAL GENOMIC INSTABILITY AND 
AGING

Several theories have been proposed to unravel the biological 
basis of aging. The mitochondrial free radical theory of aging 
(MFRTA) has been a prominent concept that describes 
mitochondria as a major driving force of aging. First proposed 
by Denham Harman in the 1950s, the theory posits that the 
progressive accumulation of cellular damages inflicted by free 
radicals generated during mitochondrial metabolism leads to 
aging (1, 2). However, MFRTA has been increasingly 
unfavored because of inconsistent data that suggest alternative 
mitochondrial contributions to aging. Here, we will discuss the 
past, present, and future of the role of mitochondria in lifespan 
and healthspan.

Free radicals are molecules with at least one unpaired 
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electron. During mitochondrial oxidative phosphorylation, 
electrons can ‘leak’ to form free radicals that react with 
surrounding oxygen to generate reactive oxygen species 
(ROS), which in turn can damage cellular macromolecules 
such as lipids, protein, and DNA. Mitochondrial DNA 
(mtDNA), due to its proximity to the site of ROS production, 
was thought to be highly vulnerable (3). In addition, a 
contemporary notion that the mitochondrial DNA repair 
system was inferior to the nuclear counterpart provided added 
support to MRFTA (4). However, mtDNA integrity is 
maintained at multiple levels, including a repair system that is 
more versatile than previously thought (5), physical shielding 
by nucleoids (6, 7), mitochondrial fission and fusion (8, 9), and 
mitophagy (10). Nonetheless, mtDNA mutation frequency 
increases with age in various animal models and humans 
(11-14), although their role as the driver of aging has been 
unclear (15, 16). A mutation load greater than 60%-90%, 
which is beyond what is incurred by aging, has been 
suggested to be necessary for age-related phenotypes to 
manifest (17-19). 

Genetic manipulations of the antioxidant system intended to 
test MFRTA (i.e., the role of ROS in aging) more directly has 
been inconsistent and inconclusive (20). Only some cellular 
antioxidant systems that were inactivated shortened lifespan in 
yeast [i.e. copper-zinc superoxide dismutase (CuZnSOD; 
sod1), manganese superoxide dismutase (MnSOD; sod2), and 
copper chaperone (ccs1)] (21, 22), worms (sod isoforms) (23), 
flies (sod1 and sod2) (24-27), and mice (i.e. sod1) (28). 
Notably, many antioxidant genes did not significantly affect 
lifespan in these model organisms. On the contrary, it has 
been shown that overexpression of antioxidant components 
including sod1 and sod2 can increase lifespan in yeast (29), 
worms (30, 31), and flies (32-34). In mice, it has been shown 
that overexpression of human catalase localized to 
mitochondria (mCAT) can decrease oxidative stress and extend 
lifespan (35). It can also improve age-dependent insulin 
resistance (36). One caveat of the report by Schriner et al. (35) 
was that lifespan extension was significant in mCAT mice that 
were two to four generations backcrossed to the C57BL/6J 
strain. However, the longevity effect diminished after ＞ 9 
generations. This could be a secondary effect derived from 
epistasis and/or CMV element methylation (37). 

Perhaps the most direct challenge to MFRTA comes from the 
failure to detect age-dependent increase in ROS-induced 
mtDNA damage. DNA mutations that arise from ROS can 
cause an 8-oxo-2’-deoxyguanosine (8-oxodG)-mediated G-to-T 
transversion (38). However, mtDNA mutations in brain and 
heart of old mice (＞ 24 mo. vs ＜ 10 months) were transitions 
whereas G-to-T transversions were modest (39). Notably, 
transitions are mostly caused by replicative infidelity (i.e., 
DNA polymerase errors), indicating that replicative errors, not 
ROS, are the main culprit of age-dependent mtDNA mutations. 
In addition, ultra-deep hepatic mtDNA sequencing showed 
increased age-dependent replicative errors, not ROS-dependent 

damage (40). Similarly, highly sensitive duplex sequencing of 
aged human pre-frontal cortex mtDNA (＞ 75 yrs vs. ＜ 1 yr) 
revealed higher proportions of replication errors rather than 
oxidative damage (41). 

Inactivating the proofreading activity of mitochondrial- 
specific DNA polymerase  (mtDNA mutator in mice) by 
targeted mutagenesis at amino acid position 257 (D257A) 
increased mtDNA mutation frequency to supraphysiological 
levels in mice: ∼2,500-fold and ∼500-fold higher in 
homozygous (polgmut/mut) and heterozygous (polg＋/mut) mutant 
mice, respectively (39). Although homozygous (polgmut/mut) 
mice exhibited accelerated aging phenotypes and significantly 
reduced lifespan, heterozygous (polg＋/mut) mice did not show 
early signs of aging. They had a normal lifespan (39, 42). 
Furthermore, mtDNA mutator mice exhibited OXPHOS 
dysfunction without significant increase of oxidative damage 
(43-45). Notably, ROS levels in young mtDNA mutator mice 
were not increased despite high levels of mtDNA mutations 
(46). Nonetheless, these mutations have been implicated in 
more than 300 diseases that are linked to aging and 
age-related diseases listed in the Human DNA Polymerase 
Gamma Mutation Database (http://tools.niehs.nih.gov/polg) 
(47). Lastly, mtDNA deletions that become prevalent with 
aging (48-50) are significantly increased in short-lived 
homozygous (polgmut/mut) mice, but not in heterozygous 
(polg＋/mut) mice that had a normal lifespan (51). These results 
suggest a more complicated connection between mtDNA 
mutation frequency and aging. Further investigations are 
needed to identify other aspects of mtDNA mutator mice such 
as mitochondrial communication. 

CELL-AUTONOMOUS MITOCHONDRIAL 
COMMUNICATION AND AGING

Eukaryotic cells are functionally compartmentalized into 
organelles with assigned distinct tasks that work in concert. 
Such subcellular coordination is mediated by inter-organellar 
communication to maintain cellular homeostasis. The 
mechanism underlying inter-organellar communication is an 
emerging topic in biology that has much implications for 
aging. On that line, the connection between mitochondria and 
the nucleus is of special interest considering that they uniquely 
possess independent genomes (Fig. 1A). 

Mitonuclear communication
Mitochondria presumably originate from -proteobacteria that 
have sustained an endosymbiotic relationship with our 
ancestral cells ∼1.5 billion years ago. Notably, mitochondrial 
retained a portion of the original bacterial genomes that 
co-evolved with nuclear genome. However, mitochondria 
import over a thousand proteins encoded in the nuclear 
genome to maintain their diverse functions, reflecting their 
close relationship. Therefore, it is critical that mitochondria and 
the nucleus dynamically communicate (i.e., mitonuclear 
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Fig. 1. Mitochondrial Communication 
Modes. (A) Mitochondria communicate 
to the nucleus and other cells (i.e., 
mitochondrial endocrine signaling) 
using various mediators such as ROS, 
UPRmt, DAMPs, and mitochondrial- 
encoded MDPs. (B) Mitochondria also 
communicate with other organelles 
(e.g., endoplasmic reticulum, lysosomes,
and peroxisomes) to coordinate com-
plex cellular processes. 

communication) with each other to coordinate adaptive 
responses to the constantly changing intrinsic and extrinsic 
cellular milieu and maintain homeostasis. In fact, impaired 
mitonuclear communication is strongly implicated in aging and 
age-dependent diseases. Mitonuclear communication is 
bi-directional. It is mediated by several factors transmitted from 
each organelle. In this review, we will focus on signals 
transmitted from mitochondria to the nucleus (i.e., retrograde 
signals), including reactive oxygen species (ROS), 
mitochondrial unfolded protein response (UPRmt), metabolites, 
mitochondrial damage-associated molecular patterns (mtD 
AMP), and mitochondrial derived peptides (MDPs). 

Reactive Oxygen Species (ROS) signaling 
ROS is often considered as a toxic metabolic byproduct that 
causes detrimental damage to multiple cellular components, 
thereby contributing to the aging process (3, 52). However, as 
discussed above, mitochondrial ROS is not the major cause of 
mtDNA mutations, indicating a more complex cellular role. 
Actions of ROS are pleiotropic. They cause oxidative stress at 
higher concentrations (pathological) while they act as signaling 
molecules at lower levels (physiological). In fact, physiological 
ROS response has been suggested as eustress (53) that 
increases mitohormesis as an adaptive response to promote 
health and extend lifespan (54). Increasing interest in ROS as 
signaling molecules that regulate normal physiological 
processes has provided insight into its role in regulating 
lifespan and/or healthspan (53, 55, 56). In fact, lifespan 
extension in various model organisms such as worm, fly, and 
mice is mediated by retrograde ROS. In worms, RNAi screens 
have identified long-lived animals that harbor mutations in 
mitochondrial respiration (57, 58). On that line, retrograde 
ROS signaling can mediate lifespan extension in worms with 
impaired insulin/IGF-1 signaling while inhibition of ROS 
signals using antioxidants can reduce such longevity by up to 
60% (59). Furthermore, a mild increase in ROS levels by 
inhibiting respiration can activate transcription factor 
hypoxia-inducible factor 1 (HIF-1) and consequent nuclear 

gene expression to promote longevity in worms (60). In 
addition to modulating factors, ROS can also lead to 
epigenetic alternations (61, 62). For instance, ROS can 
regulate the chromatin binding capacity of histone 
demethylase Rph1p, thereby extending chronological lifespan 
in yeast (63). Moreover, ROS can promote mitochondrial 
unfolded protein response (UPRmt). This will be further 
discussed in the following section. 

Mitochondrial unfolded protein response (UPRmt)
Mitochondrial unfolded protein response (UPRmt) is a 
mitochondria-to-nuclear communication mechanism that 
promotes adaptive regulation of nuclear genes related to 
mitochondrial chaperones, proteases, antioxidants, xenobiotic 
response, and metabolism, ultimately rewiring the cell to 
survive. UPRmt was initially thought to be triggered by mtDNA 
depletion or by protein misfolding in the mitochondrial matrix 
(64). However, it now encompasses various mitochondrial 
stress conditions, including dysfunctional metabolism, defective 
iron sulfur cluster assembly, and immune response (64, 65). 
The activating transcription factor associated with stress 1 
(ATFS-1) in worms is a major mediator of UPRmt. Normally, 
ATFS-1 is imported into mitochondria for proteolytic 
degradation. However, mitochondrial stress will trigger ATFS-1 
to translocate from mitochondria to the nucleus where it 
regulates the expression of a considerable portion of mito-
chondrial stress-responsive genes (65, 66). Such bi-organellar 
trafficking to coordinate mitonuclear communication is 
possible because ATFS-1 possesses both a mitochondrial- 
targeting sequence (MTS) and a nuclear localization signal 
(NLS) (65, 66). ATFS-1 also plays a role in chromatin 
remodeling which is required for full activation of UPRmt via 
the histone methyltransferase met-2 and a nuclear co-factor 
lin-65 to promote longevity (67). CLOCK-1 (CLK-1; human 
homolog COQ7) acts as a ROS barometer that mediates 
mitochondria to nuclear signaling by activating UPRmt. clk-1 
null worms have extended lifespans (68). Such effect appears 
to be mediated by UPRmt (66). In mice, the loss of clk1 also 
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increases cellular fitness and lifespan (69). 

Metabolite signaling
Mitochondria are metabolic hubs that perform a wide range of 
catabolic and anabolic processes, thereby generating a variety 
of metabolites. Mitochondrial metabolites can also act as 
secondary messengers for genetic or epigenetic regulation (70, 
71). Of these metabolites, many are products of the 
tricarboxylic acid (TCA) cycle, such as acetyl-coenzyme A 
(acetyl-CoA), succinyl-CoA, and nicotinamide adenine 
dinucleotide (NAD＋). The pyruvate dehydrogenase (PDH) 
complex that normally resides in mitochondria and generates 
acetyl-coenzyme A (acetyl-CoA) can translocate from 
mitochondria to the nucleus where it is involved in producing 
acetyl-CoA in the nucleus and modulate histone acetylation 
which requires acetyl-CoA as a substrate for lysine acetylation 
(72, 73). Under growth conditions, acetyl-CoA levels are 
higher in the nucleus and cytosol for lipid synthesis and 
histone acetylation. However, under starvation conditions, 
acetyl-CoA predominantly resides in mitochondria for ATP and 
ketone body production (74). Succinyl-CoA is another TCA 
cycle intermediate that can post-translationally modify proteins 
by succinylating lysine residues of proteins (75) such as 
histones, thereby affecting chromatin dynamics and con-
sequently the epigenome (76). In a similar way, other TCA 
intermediates, including oxaloacetate, malate, fumarate and 
-ketoglutarate, can also induce genetic and epigenetic 
reprogramming and extend worm lifespan (77). NAD＋ is also 
a crucial mitochondrial gero-metabolite that declines with age 
(78, 79). Reduced age-dependent NAD＋ availability is linked 
to decreased deacetylase sirtuin activities, ultimately affecting 
the communication between mitochondria and nucleus (80, 
81). It also affects longevity (82, 83). Retrograde Ca2＋ is 
another important inorganic gero-metabolite (84). Nuclear 
skeletal muscle gene expression is regulated by mitochondrial 
Ca2＋ which mediates mitochondria to nucleus route (85). 

Mitochondrial damage-associated molecular patterns 
(mtDAMP)
Our immune system becomes progressively impaired with 
age, leading to the loss of immune function (i.e., immuno-
senescence) and elevated chronic low-grade inflammation 
(i.e., inflammaging) (86). Immune responses can be triggered 
not only by foreign materials/organisms, but also by 
endogenous factors. Pathogen-associated molecular patterns 
(PAMPs) derived from bacteria, fungi, and viruses can induce 
innate immune responses via inflammasomes that are 
intracellular complexes capable of promoting pro-inflammatory 
cytokines such as interleukin-1 (IL-1) and IL-18 (87). 
Damage-associated molecular patterns (DAMPs) derived from 
endogenous intracellular components that are released during 
cellular stress and/or damage can also mount an immune 
response (88). Especially, injured mitochondria can release 
their contents known as mitochondrial damage-associated 

molecular patterns (mtDAMP) recognized as PAMPs owing to 
their bacterial ancestry. Some well described mtDAMPs 
include mtDNA, N-formyl peptides (specific to mitochondrially- 
translated proteins), and fragments of mitochondrial proteins 
(89, 90). The innate immune system can express pro- 
inflammatory cytokines upon sensing circulating mtDNA and 
N-formyl peptides using pattern recognition receptors (PRR) 
such as toll-like receptors (TLRs) and NOD-like receptors 
(NLRs) (90). Notably, circulating mtDNA levels are increased 
with age. Their increase is associated with elevated levels of 
cytokines and inflammatory markers, indicating a role of 
mtDNA in inflammaging (91) and may contribute to the 
development of age-related diseases (92, 93). 

Mitochondrial-derived peptides (MDPs)
The human mtDNA encodes only 13 protein-coding genes that 
are all structural components of the electron transport chain 
(ETC) without known signaling roles. Thus, active gene- 
encoded mitonuclear communication pathways were known 
to be exclusively mediated by factors encoded in the nuclear 
genome. More recently, short open reading frames (sORFs) 
encoded in the mitochondrial genome that yield bioactive 
peptides, collectively referred to as mitochondrial-derived 
peptides (MDPs), have been identified (94). There are now 
eight published MDPs, including humanin, MOTS-c 
(mitochondrial open reading frame of the twelve S rRNA 
type-c), and small humanin-like peptide (SHLP) 1-6. They 
regulate various cellular functions. Humanin is encoded 
within the mitochondrial 16S rRNA. It was identified from a 
surviving brain fraction of an Alzheimer’s disease (AD) patient 
as a protective factor against AD-related toxins such as 
-amyloid (95). It is also a binding partner of insulin-like 
growth factor binding protein 3 (IGFBP-3) (96) and an 
anti-apoptotic factor that inhibits Bax (97). SHLP 1-6 were also 
identified within the 16S rRNA (98). MOTS-c is encoded 
within the mitochondrial 12S rRNA. It acts as a regulator of 
metabolic homeostasis that can prevent diet-induced obesity 
and insulin resistance, and age-dependent insulin resistance in 
mice (99-101). Notably, MOTS-c can translocate to the 
nucleus upon cellular stress to regulate adaptive nuclear gene 
expression by interacting with other stress-responsive 
transcription factors including nuclear factor erythroid 
2-related factor 2 (NFE2L2/NRF2) and binding to chromatin 
(102-104). HEK293 cells that over-express MOTS-c were 
significantly protected against metabolic stress (i.e., glucose 
and serum deprivation) (102). This indicates that our 
co-evolved mitonuclear genomes have established a 
genetically integrated bi-directional communication system.

Humanin, SHLP2, and MOTS-c levels decline with age and 
their actions are positively correlated with longevity (94, 98, 
100, 105). Humanin levels are negatively regulated by the 
GH/IGF axis in both mice and humans (106). Circulating 
humanin levels are elevated in long-lived GH-deficient Ames 
mice, but decreased in short-lived GH-transgenic mice (106). 
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MOTS-c can reverse age-dependent insulin resistance. A 
functional MOTS-c polymorphism is related to exceptional 
longevity in a Japanese population (107, 108). Furthermore, 
MOTS-c actions are, in part, dependent on sirtuin 1 (SIRT1) 
and AMPK (100, 102), two prominent related factors shown to 
regulate longevity in various model organisms (109, 110). 

Because of the unique bi-genomic cellular setup, it is 
important to consider mitonuclear epistasis. mtDNA is 
maternally transmitted, which forces a cell to coordinate gene 
expression with a foreign (i.e., paternal) genome upon 
fertilization. The compatibility between maternal mtDNA and 
paternal nuclear DNA is a major ground for intergenomic 
epistasis (111-113). Nuclear gene expression is dependent on 
the mtDNA background. Nuclear mutations can manifest very 
differently under varying mtDNA context. For instance, 
patients with a mutation in the adenine nucleotide translocator 
1 gene (SLC25A4, ANT1) exhibit a wide range of cardio-
myopathies that are correlated with their mtDNA lineage 
(114). In 2015, the United Kingdom approved mtDNA 
replacement therapy to allow a woman to transfer her nuclear 
genome to an egg with healthy mitochondria to prevent 
transmission of mtDNA disease (so-called three-parent baby). 
Such forced mtDNA-nDNA combinations may be incompat-
ible. It can cause dysregulated mitonuclear communication 
(Hamilton 2015). In fact, alloantigenicity and immune 
rejection have been documented in nuclear-transfer-derived 
embryonic stem cells (NT-ESCs) (115). In addition, 
Mitochondrial-Nuclear eXchange (MNX) mice with 
interchanged nuclear and mitochondrial genomes from 
different mice (similar to three-parent baby) have differential 
oxidative stress, resistance to heart failure, lipid concentration, 
and bioenergetics (116, 117). Aging is a complex process with 
strong genetic components. It is likely to be dependent on 
both of our genomes. Thus, the interaction between factors 
encoded in each genome may further our understanding of 
aging genetics. 

Other mito-organellar communication 
Cellular functions are compartmentalized into various 
organelles with unique roles. Their orchestrated processes 
together support survival. Therefore, inter-organellar com-
munication is key to cellular homeostasis and ultimately 
organismal fitness. On that line, mitochondria not only 
communicate with the nucleus, but also dynamically interact 
with other organelles (118) (Fig. 1B). Although the field of 
inter-organellar communication is still in its early stages, it is 
undoubtedly of great interest. Further investigation of 
mito-organellar communication with high spatial and temporal 
resolution and identification of key signaling mediators are 
necessary to understand the complex coordination of 
subcellular processes and their roles in aging. Here, we will 
focus on mitochondrial communication with the ER, 
peroxisomes, and lysosomes in the context of aging. 

Mitochondria and Endoplasmic Reticulum (ER) 
Communication
The ER physically interacts with mitochondria to regulate 
organelle morphology and various metabolic signaling (119). 
The contact sites that ER forms with mitochondria are called 
mitochondria-associated membranes (MAM), which have 
numerous roles in controlling lipid and calcium homeostasis, 
mitochondrial metabolism, insulin and glucose signaling, and 
ultimately aging (120). Proteome analysis of MAM has 
revealed its connection to various age-related diseases, such as 
Alzheimer’s disease and type 2 diabetes (120). Cisd2 knockout 
mice also provide evidence that MAM may play a role in 
aging. Cisd2 is a regulator of intracellular Ca2＋ and glucose 
homeostasis that localizes to the ER, mitochondrial 
membranes, and MAM (121). Mice that lacked Cisd2 showed 
mitochondrial degeneration and functional decline in skeletal 
muscle and neurons, glucose intolerance, premature aging 
phenotypes (e.g. ocular degeneration, dermal deterioration, 
sarcopenia, etc.), and shortened lifespan (122), implying that 
disruption of mitochondria and ER communication could 
affect the aging process. 

Mitochondria and Peroxisome Communication
Increasing evidence points to the mitochondrial-peroxisomal 
connection as an important aspect of aging and age-related 
disease (123, 124). Restoring the import of peroxisomal 
catalase which decomposes hydrogen peroxide can restore 
mitochondrial integrity and reverse the senescent phenotype of 
human fibroblasts (125). Another study demonstrated that 
peroxisome proliferation and higher peroxisomal antioxidant 
activity can regulate the aging of hippocampal neurons (126, 
127). Furthermore, the three-way communication among 
mitochondria, peroxisome, and ER may contribute to the aging 
process by fine-tuning redox and ion signaling pathways (128). 
Redox-regulatory enzymes can assemble at the “redox 
triangle” created by these three organelles to sense ROS 
accumulations and redox imbalances. The redox triangle may 
become dysfunctional with age (128). However, further 
investigations on the mechanistic details regarding the 
multidirectional communication among mitochondria, ER, and 
peroxisome and their roles in aging are needed. 

Mitochondria and Lysosome Communication
Lysosomes are subcellular sites of protein turnover and 
metabolite storage. Its dysfunction is linked to aging and 
age-associated diseases (129). Mito-lysosomal communication 
is mediated by physical contact, lipids, and metabolite 
exchange (130). In yeast, lysosome-like vacuoles are 
functionally linked to mitochondria. Increased vacuolar pH 
gives rise to age-dependent mitochondrial dysfunction (131), 
indicating that mito-lysosomal communication is important for 
organismal homeostasis and lifespan. In addition, the contact 
site between mitochondria and yeast lysosome-like vacuoles 
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known as vCALMP (vacuole and mitochondria patch) is 
enriched with ion and amino acid transporters. It is important 
for lipid exchange between the two organelles (132). 
Furthermore, the inter-organellar lipid homeostasis coordinated 
among mitochondria, lysosomes, and ER [ER-mitochondria 
encounter structure (ERMES)) may be important in aging (132, 
133). This is also supported by Ltc1 (lipid transfer at contact 
site 1), a sterol-dependent regulator of organelle and cellular 
homeostasis via its dual localization to ER-mitochondria and 
ER-vacuole contact sites (134). It is especially important in 
nutrient sensing and signaling (135) as well as replicative 
aging in yeast (131). 

NON-CELL AUTONOMOUS MITOCHONDRIAL 
COMMUNICATION AND AGING

Mitochondrial communication is not confined to intracellular 
coordination. Recent studies have shown that mitochondria 
can also transmit signals to distal cells of different tissues as 
described in this section. Such non-cell autonomous mito-
chondrial signals are often referred as mitochondrial cytokines 
(mitokines) or mitochondrial hormones. The evolutionary 
aspect of intra-organ mitochondrial communication is 
interesting in that they may represent an archaic endocrine 
system. Non-cell autonomous mitochondrial signals provide 
another layer of endocrine regulation of longevity (Fig. 1A). 

Mitokines
The connection between UPRmt and longevity has been 
investigated in mutant worms with perturbed mitochondrial 
ETC (e.g., cco-1 knockdown) that exhibited extended lifespan 
(136). Interestingly, cco-1 knockdown in neurons activated 
UPRmt in the intestine, indicating a soluble factor that could 
relay signals between distal tissues, dubbed mitokine (136, 
137). In addition, Wnt signaling may be a mitokine in worms 
(138). Neuronal expression of the Wnt ligand/EGL-20 in 
worms activated cell-non-autonomous UPRmt that required 
orchestrated actions of a retromer complex, Wnt signaling, 
and serotonin (138). In flies, mild ETC disruption in muscles 
prolonged lifespan through UPRmt and insulin signaling (140). 
In mice, fibroblast growth factor 21 (Fgf21) has also been 
proposed as a mitokine because its production by muscle cells 
can trigger mitochondrial biogenesis, browning of white 
adipose tissue (WAT), and increase lipid oxidation (140). 
These results support the existence of systemic mitochondrial 
communication factors that can regulate longevity, including 
neurotransmitters and neuropeptides (141, 142). The scope of 
factors that can act as mitokines is likely to be broad. 

Mitochondrial derived peptides (MDPs) 
MDPs are found in circulation. They can act on certain tissues. 
Thus, they have been dubbed mitochondrial hormones (84, 
143, 144). Circulating humanin levels are decreased with age 
in mice and humans (105, 106, 145). Humanin is integrated 

with the GH/IGF-1 axis which is the most prominent 
endocrine regulator of aging. Long-lived GH-deficient Ames 
mice showed higher circulating humanin levels whereas 
short-lived GH-transgenic mice had lower humanin levels 
compared to their wild type counterparts (106). Notably, an 
Ecuadorian cohort with GH receptor deficiency (GHRD) that 
have very low levels of IGF-I are exceptionally protected 
against cancer and diabetes (146). However, they showed 
80% increase in circulating humanin levels compared to their 
unaffected relatives. These studies indicate a role for humanin 
as an endocrine regulator of aging that is tethered with the 
GH/IGF-1 axis. Similar to humanin, levels of circulating SHLP2 
are also decreased with age, indicating its relevance to aging 
as a mitochondrial hormone (147). Plasma levels of MOTS-c 
are also decreased ∼30% in old mice. Systemic injection of 
MOTS-c reversed age-dependent skeletal muscle insulin 
resistance in mice (100). 

CONCLUSION

Mitochondria are versatile organelles that play roles in 
multiple cellular functions that ultimately affect organismal 
fitness and lifespan/healthspan. The multifaceted nature of 
mitochondria indicates its complex roles in aging and 
age-related diseases. Thus, it is imperative to investigate how 
mitochondria contribute, and even drive, aging with a 
comprehensive and holistic approach. The silver lining of the 
downfall of MFRTA is that dynamic expansion of concepts and 
experimental data have continued to reveal the complexity 
and breadth of mitochondria in aging and age-related diseases. 
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