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Background: Spontaneous intracerebral hemorrhage (ICH) is a devastating disease with high mortality rate. This
study aimed to predict hematoma expansion in spontaneous ICH from routinely available variables by using sup-
port vector machine (SVM) method.
Methods:We retrospectively reviewed 1157 patients with spontaneous ICHwho underwent initial computed to-
mography (CT) scan within 6 h and follow-up CT scan within 72 h from symptom onset in our hospital between
September 2013 and August 2018. Hematoma region was manually segmented at each slice to guarantee the
measurement accuracy of hematoma volume. Hematoma expansion was defined as a proportional increase of
hematoma volume N 33% or an absolute growth of hematoma volume N 6 mL from initial CT scan to follow-up
CT scan. Univariate andmultivariate analyseswere performed to assess the association between clinical variables
and hematoma expansion. SVM machine learning model was developed to predict hematoma expansion.
Findings: 246 of 1157 (21.3%) patients experienced hematoma expansion.Multivariate analyses revealed the fol-
lowing 6 independent factors associatedwith hematoma expansion: male patient (odds ratio [OR]= 1.82), time
to initial CT scan (OR=0.73), GlasgowComaScale (OR=0.86),fibrinogen level (OR=0.72), black hole sign (OR
= 2.52), and blend sign (OR = 4.03). The SVM model achieved a mean sensitivity of 81.3%, specificity of 84.8%,
overall accuracy of 83.3%, and area under receiver operating characteristic curve (AUC) of 0.89 in prediction of
hematoma expansion.
Interpretation: The designed SVM model presented good performance in predicting hematoma expansion from
routinely available variables.
Fund: This work was supported by Health Foundation for Creative Talents in Zhejiang Province, China, Natural
Science Foundation of Zhejiang Province, China (LQ15H180002), the Science and Technology Planning Projects
of Wenzhou, China (Y20180112), Scientific Research Staring Foundation for the Returned Overseas Chinese
Scholars of Ministry of Education of China, and Project Foundation for the College Young and Middle-aged Aca-
demic Leader of Zhejiang Province, China. The funders had no role in study design, data collection, data analysis,
interpretation, writing of the report.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Spontaneous intracerebral hemorrhage (ICH) refers to bleeding
within the brain parenchyma that may extend into the ventricles or
subarachnoid space [1]. As a devastating disease with high mortality
rate, it accounts for 10–15% of all cases of stroke [1]. Although modern
medical science and technology have been developing fast, a safe and
effective therapeuticmethod for ICH is elusive, and the overallmortality
of ICH remains high. Hematoma volume is a powerful and easy-to-use
njim@163.com (Y. Yang).

. This is an open access article under
determinant of 30-day mortality [2], and hematoma expansion is asso-
ciatedwith poor outcomes [3–5]. Reducing hematomagrowth andmor-
tality is the current focus of clinical trials, such as INTERACT [6], ATACH-
II [7], STOP-AUST [8], FAST [9], STOP-IT [10], and SPOTLIGHT [10]. Be-
cause hematoma expansion is a treatment target of clinical interven-
tions in patients with ICH, it is meaningful to predict hematoma
expansion.

Various factors of hematoma expansion have been determined in re-
cent decades, including initial hematoma volumes [2], anticoagulation
use [11], alcohol consumption [12], time interval between onset and ad-
mission [13], computed tomography (CT) imaging findings such as
black hole sign [5] and spot sign [8], and laboratory parameters such
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study

Spontaneous intracerebral hemorrhage is a devastating disease
with high mortality rate, and it accounts for 10–15% of all cases
of stroke. Previous research shows that hematoma volume is a
powerful and easy-to-use determinant of 30-day mortality, and
hematoma expansion is associatedwith poor outcomes. Reducing
hematoma growth and mortality is the current focus of clinical tri-
als. Therefore, successfully predicting hematoma expansion is
necessary and valuable for therapeutic intervention in patients
with ICH.Many clinical variables have been used for the prediction
of hematoma expansion; however, the prediction performance is
generally not good.

Added value of this study

By combining different variables, including patients' demographic
parameters, clinical status, laboratory test parameters, and image
signs, we developed a prediction model by using support vector
machine method. Our model demonstrated a good performance
in prediction of hematoma expansion.

Implications of all the available evidence

Support vector machine may provide a valuable tool in prediction
of hematoma expansion for patients with spontaneous intracere-
bral hemorrhage. Our prediction model may be practical and
widely applicable, especially in many institutions where CTA is
not readily available or routinely performed for spontaneous intra-
cerebral hemorrhage patients.
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as platelet counts and fibrinogen levels [12]. However, accurately
predicting hematoma expansion remains challenging because of the
complex association between these risk factors and hematoma expan-
sion [14]. Machine learning technique may be used to solve this prob-
lem. As a promising supervised machine learning technique, support
vector machine (SVM) is capable of learning from the observing data
sets, devising complex models to capture the intrinsic relationships be-
tween input and output variables, and making data-driven predictions
or decisions, and it has been successfully applied in multiple biomedi-
cine fields and demonstrated great performance [15,16].

In this study,we aimed to predict hematomaexpansion in spontane-
ous ICH from routinely available variables using SVM method.

2. Materials and methods

2.1. Patients and clinic variables

This study was approved by our institutional ethics committee, and
written informed consentwaswaived.We retrospectively reviewed pa-
tients aged N18 yearswhohad spontaneous ICH in our hospital between
September 2013 and August 2018. A total of 8722 patients were identi-
fied from the radiological information system by use of the search key
words “hemorrhage” and “hematoma”, and they were eligible for the
study if the initial and follow-up CT scans were performed within 6
and 72 h after symptom onset, respectively. Patients were excluded
from the study if they had hemorrhage due to cerebral aneurysm, arte-
riovenousmalformation, brain tumor, traumatic brain injury, or hemor-
rhagic infarction. Those receiving anticoagulation or antiplatelet
therapy or those underwent surgical intervention before the follow-up
CT scan were also excluded from the study. Finally, a total of 1157 pa-
tients were enrolled in this study. For the purpose of model validation,
additional independent dataset for testing was collected from a differ-
ent affiliated hospital of our university betweenMarch 2017 and August
2018. After exclusion from 1960 patients, 105 patients were included as
the additional test dataset.

After admission, patients' age, sex, and neurological findings were
recorded. Parameters of laboratory blood test, including glucose, white
blood cell count, platelet count, hemoglobin, red blood cell, albumin, al-
anine transaminase, aspartate transaminase, total cholesterol, triglycer-
ide, high density lipoprotein cholesterol (HDL-C), low density
lipoprotein cholesterol (LDL-C), triglycerides, international normalized
ratio, and fibrinogen etc., were collected. In addition, Glasgow Coma
Score, history of hemorrhage, history of hypertension, history of infarc-
tion, history of diabetesmellitus, and smoking and drinking habits were
documented.

2.2. Image acquisition

Noncontrast CT scan images were acquired by using a 64-channel
multidetector CT scanner (LightSpeed VCT 64; GEMedical Systems,Mil-
waukee, WI, USA) with a slice thickness of 5 mm and a reconstruction
interval of 5 mm, or a 16-channel multidetector CT scanner
(BrightSpeed; GE Medical Systems, Milwaukee, WI, USA) with a slice
thickness of 5 mm and a reconstruction interval of 5 mm. Patient orien-
tation was head first. Reconstruction algorithm was ‘Stnd’. The image
matrix size was 512 × 512.

2.3. Radiological characterization and definition of hematoma expansion

Hematoma region in each slicewasmanually segmented, and corre-
sponding hematoma volume was measured on initial and follow-up CT
scans using GE Healthcare Advantage Workstation 4.6. Hematoma ex-
pansion was defined as a proportional increase of hematoma volume
N 33% or an absolute growth of hematoma volume N 6 mL from initial
CT scan to follow-up CT scan [14,17,18].

Radiological characteristics were independently evaluated by two
experienced radiologists who were blinded to the clinical information
of patients. Midline shift [19] in the CT slice with the maximum hema-
toma area was measured on GE Healthcare Advantage Workstation
4.6. CT image findings, including intraventricular extension [20], black
hole sign [5], blend sign [21], and satellite sign [22]were assessed on ini-
tial CT scan. Fig. 1 shows typical examples of black hole sign, blend sign,
and satellite sign.

2.4. Support vector machine

In recent years, SVM has been introduced to solve various biomedi-
cine problems [23,24]. As a supervised machine learning method, SVM
aims to classify data points by maximizing the margin between classes.
It can be used for non-linear classification using kernel trick [23], implic-
itlymapping the inputs into high-dimension feature spaces using differ-
ent kernel function. In this study, the radial basis function (RBF) kernel
function was adopted. Of the included 1157 patients, 925 random pa-
tients (80%) were selected for training and the remaining 232 patients
(20%) for testing. The recursive feature eliminationmethodwas applied
for feature selection using the training dataset. The input features can be
recorded in the formats of ‘xlsx’ or ‘cvs’ and uploaded into the SVM
model. Randomized search strategy was implemented for tuning pa-
rameters of our classifier, and a 10-fold cross-validation approach was
used during the training. Parameters C and γ were determined to be
9.222 and 0.009, respectively. An interpreted, high-level, and open-
source programming language Python 2.7 and an efficient data mining
tool Scikit-learn 0.20.1 were used for machine learning coding [25].

The performance of SVM was evaluated by sensitivity, specificity,
overall accuracy, and area under the receiver operating characteristic
curve (AUC). Overall accuracy is the ratio of correctly predicted patients.



Fig. 1. Illustration of CT image findings: (a) Black hole sign; (b) Blend sign; (c) Satellite sign.

Table 1
Comparison of variables between expanders and nonexpanders.

Clinical variables Expander (246) Nonexpander (911) P Value

Men 187 (76.0%) 573 (62.9%) b.001
Age (years) 61.0 ± 12.9 61.7 ± 12.8 .408
Glasgow Coma Score a 10.9 ± 3.5 12.4 ± 3.1 b.001
Time to initial CT scan (h) 2.6 ± 1.3 3.2 ± 1.4 b.001
Reexamine time (h) 16.0 ± 14.4 23.5 ± 15.9 b.001
Platelet (×109/L) b 197 ± 64 209 ± 76 .026
Hemoglobin (g/L) b 142 ± 19 138 ± 16 .001
White blood cell (×109/L) b 9.49 ± 4.01 9.94 ± 3.70 .066
Red blood cell (×1012/L) b 4.61 ± 0.57 4.50 ± 0.56 .005
Glucose (mmol/L) b 7.74 ± 2.65 7.77 ± 2.68 .860
International normalized ratio c 1.05 ± 0.27 1.01 ± 0.15 .014
Fibrinogen (g/L) c 3.15 ± 0.81 3.50 ± 1.03 b.001
Albumin (g/L) d 39.1 ± 5.3 40.0 ± 5.5 .043
Alanine transaminase (U/L) e 31 ± 20 29 ± 32 .365
Aspartate transaminase (U/L) f 33 ± 19 30 ± 22 .130
Total cholesterol (mmol/L) g 4.95 ± 1.48 5.29 ± 1.28 .002
Triglycerides (mmol/L) g 1.57 ± 1.34 1.67 ± 1.44 .346
HDL-C (mmol/L) g 1.26 ± 0.35 1.29 ± 0.59 .476
LDL-C (mmol/L) g 2.90 ± 1.14 3.17 ± 0.99 .001
Baseline hematoma volume (mL) 26.83 ± 18.64 19.84 ± 15.03 b.001
Location of hemorrhage .279
Deep gray matter 205 (83.3%) 745 (81.8%)
Lobar regions 20 (8.1%) 78 (8.6%)
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2.5. Statistical analysis

Statistical analysis was performed using the software package IBM
SPSS 22.0 (IBM SPSS, Armonk, New York, USA). Continuous variables
were presented as means ± standard deviations and categorical vari-
ables as frequency (percentage). Student t-tests or Mann-Whitney U
tests were applied for comparison of continuous variables, and χ2

tests or Fisher exact tests were used for comparison of categorical vari-
ables, as appropriate. It was of great significance to understand the rela-
tionship between independent variables and the dependent variable in
clinics. Themultivariate logistic analysis could be used to determine the
independent risk factors and obtain odds ratio in the presence of more
than one explanatory variable [26]. Multivariate logistic regression
model with a forward method was performed to identify factors that
were independently associated with hematoma expansion. Baseline
variables clinically relevant with outcome with a P-value b .05 on uni-
variate analysis were considered in the multivariate logistic regression
analysis. Variables with N5% missing values were not involved in the
multivariate logistic regression analysis. Given the number of events
available, the variables for inclusion were determined to ensure parsi-
mony of the final logistic regression model. Note that feature selection
was applied to select a subset of relevant feature for use in the machine
learning model for shorting training time, avoiding the curse of dimen-
sionality, and simplifying models [27]. The selected features were not
necessary to be exactly the same as the independent risk factors from
multivariate analysis.
Cerebellum 5 (2.0%) 44 (4.8%)
Brain stem 6 (2.4%) 20 (2.2%)
Multiple locations 10 (4.1%) 24 (2.6%)
Intraventricular extension 101 (41.1%) 328 (36.0%) .145
Black hole sign 68 (27.6%) 111 (12.2%) b.001
Blend sign 88 (35.8%) 115 (12.6%) b.001
Satellite sign 147 (59.8%) 429 (47.1%) b.001
Midline shift (mm) h 4.17 ± 2.95 3.38 ± 2.57 b.001
History of hemorrhage 15 (6.1%) 31 (3.4%) .055
History of infarction 8 (3.3%) 42 (4.5%) .353
History of diabetes mellitus 23 (9.3%) 100 (11.0%) .586
History of hypertension 176 (71.5%) 728 (79.9%) .005
Smoking 71 (28.9%) 253 (27.8) .735
Drinking 76 (30.9%) 248 (27.2%) .255

Note: HDL-C = high density lipoprotein cholesterol, LDL-C = low density lipoprotein
cholesterol.

a 30/1157 (2.6%) missing values.
b 4/1157 (b1.0%) missing values.
c 7/1157 (b1.0%) missing values.
d 146/1157 (12.6%) missing values.
e 88/1157 (7.6%) missing values.
f 112/1157 (9.7%) missing values.
g 185/1157 (16.0%) missing values.
h 28/1157 (2.4%) missing values.
3. Results

Of the included 1157 patients with ICH, 246 (21.3%) experienced he-
matoma expansion. Themean agewas 61.6± 12.8 years (range 19–95)
and 760patients (65.7%)weremale. The incidence of hematomaexpan-
sion in femalewas lower than that inmale patients (59 of 397 [14.9%] vs
187 of 760 [24.6%]). Of the validation patients, there were 67 men and
38 women; their mean age was 60.4 ± 14.0 years; 19 patients had he-
matoma expansion.

A comparison of variables between expanders and nonexpanders is
provided in Table 1. Hematoma expansion occurredmore commonly in
male patients (P b .001), and it was associated with shorter time from
symptom onset to initial CT scan (2.6 ± 1.3 vs. 3.2 ± 1.4 h, P b .001)
and larger mean hematoma volume on the initial CT scan (26.83 ±
18.64 vs. 19.84 ± 15.03 mL, P b .001). Laboratory examine parameters,
including platelet, hemoglobin, red blood cell count, albumin, fibrino-
gen, total cholesterol, and LDL-Cwere statistically different between ex-
panders and nonexpanders. CT imaging findings, including black hole



Table 3
Prediction results for two independent test datasets.

Actual class Predicted class

Expander Nonexpander % correct

(a) Test dataset 1
Expander 41 8 83.7%
Nonexpander 26 157 85.8%
Overall 85.3%

(b)Test dataset 2
Expander 15 4 78.9%
Nonexpander 14 72 83.7%
Overall 81.3%
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sign, blend sign, and satellite sign, were more commonly found in ex-
panders than in nonexpanders (all P b .001). Midline shift was larger
in patients with hematoma expansion than those without (P b .001).
The multivariate logistic regression analysis (Table 2) revealed that
male patient, time to initial CT, Glasgow Coma Scale, fibrinogen level,
black hole sign, and blend sign were independently associated with he-
matoma expansion.

Nine features were selected as the input of SVMmodel, including fi-
brinogen level, sex, Glasgow Coma Score, time to initial CT scan, black
hole sign, blend sign, satellite sign, midline shift, and baseline hema-
toma volume. Table 3 demonstrates the prediction results for the two
independent test datasets using the developed SVM model. For the
first independent test dataset, the sensitivity was 83.7%, the specificity
was 85.8%, and the overall accuracy was 85.3%, respectively. For the ad-
ditional independent test dataset, the sensitivitywas 78.9%, the specific-
ity was 83.7%, and the overall accuracy was 81.3%. Fig. 2 illustrates the
ROC curves for the two independent test datasets. The AUC values for
the internal and external test datasets were 0.93 and 0.85, respectively.
Thus, the mean values of sensitivity, specificity, overall accuracy, AUC
for the two test datasetswere 81.3%, 84.8%, 83.3%, and 0.89, respectively.

4. Discussion

In the present study, the association betweenmany clinical variables
and hematoma expansion were assessed and the independent predic-
tors were determined by multivariate logistic regression analysis from
1157 patients with spontaneous ICH. A SVM model was developed
and applied to predict hematoma expansion, and a good performance
was achieved.

The incidence of hematoma expansion varies from 13% to 34% across
different studies [3,14,28],most likely because of different definitions of
hematoma expansion, time to initial CT scan, and hematoma volume
measurement. In our study hematoma expansion occurred in 21.3% pa-
tientswith ICH. Using same definition of hematoma expansion and time
to initial CT scan as ours, 33.7% patients with ICH had hematoma expan-
sion in the study of Li et al. [28]. Accuracy of hematoma volume mea-
surement is also crucial for hematoma expansion analysis. Methods of
ABC/2 and modified ABC/2 have been developed for hematoma volume
measurement [2,5,29]; however, these techniques should be used with
caution, especially in calculation of irregular and discontinuous hemato-
mas [30]. Hematoma region in our study was manually drawn slice by
slice, and corresponding volumewas calculated after 3-dimensional re-
construction. Although our volume measurement is relatively time-
consuming, hematoma volume measurement may be more accurate.

This study revealed that 6 factors were independently associated
with hematoma expansion.Male patientwas an independent predictor.
Hematoma expansion occurred more often in male patients. Our study
included a Chinese population, and only a few of the women had
smoking and drinking habits because of the Chinese tradition. Smoking
and drinking were potential risk factors of hematoma expansion
[12,31]. The sex difference of hematoma expansion may be caused by
the difference of living habits betweenmen andwomen. The time inter-
val from onset to baseline CTwas confirmed as a significant predictor of
hematoma expansion in our study. Previous research reported that the
Table 2
Results of multivariate logistic regression analysis.

Variable β coefficient† OR 95% CI P-value

Men 0.60 ± 0.19 1.82 1.26–2.63 .001
Time to initial CT scan −0.32 ± 0.06 0.73 0.65–0.83 b.001
Glasgow Coma Score −0.15 ± 0.03 0.86 0.82–0.90 b.001
Fibrinogen level −0.33 ± 0.10 0.72 0.59–0.87 .001
Black Hole sign 0.93 ± 0.21 2.52 1.69–3.78 b.001
Blend sign 1.39 ± 0.19 4.03 2.77–5.85 b.001

Note: OR = odds ratio, CI = confidence interval.
† Values are means ± standard errors.
incidence of hematoma expansion decreased as the time interval from
onset to baseline CT increased. Patients admitted earlier after symptom
onset might have a relatively high possibility of undergoing a CT scan
before the stabilization of hematoma growth [12]. Glasgow Coma
Score provides a reliable and objective way of recording the conscious
state of a patient for initial as well as subsequent assessment. Patients
with disturbed consciousness had a likelihood of having hematoma ex-
pansion [12]. Our study demonstrated that expanders had lower Glas-
gow Coma Score than nonexpanders. Fibrinogen plays a significant
role in platelet aggregation and glycoprotein IIa/IIIb on the surface of
platelets requires fibrinogen for aggregation, and low levels of fibrino-
gen might be associated with an impairment of hemostasis [12]. Black
hole sign and blend sign have been proved to be significantly correlated
with hematoma expansion recently [5,21]. Our study further confirmed
these findings. Both black hole sign and blend density sign imply the
heterogeneity of hematoma. The presence of the two signs within he-
matoma may reflect different age of bleeding; fresh blood shows
hypoattenuating on nonenhanced CT scan; after clot retraction, serum
sequesters out of hematoma, which make the bleed hyperintense on
CT scan [32].

Various variables have been used to predict hematoma expansion.
Quantitative CT densitometry values of ICH density distribution were
adopted for predicting intracerebral hemorrhage growth, and AUC of
0.73 was obtained with a conventional binary logistic regression
model incorporating baseline hematoma volume, time-to-scan, and co-
efficient of variation of ICH attenuation [33]. A novel imaging sign, black
hole, was found to be independent predictor, based onwhich a sensitiv-
ity of 32% was achieved in predicting early hematoma growth [5]. More
recently, island sign was proposed for predicting early hematoma ex-
pansion and poor outcome in patients with ICH; corresponding predic-
tion sensitivity of the island sign was 45% [28]. The spot sign of
computed tomography angiography (CTA) was well-established imag-
ingmarker of hematoma expansion; a recent prospective observational
study [34] reported that sensitivity of the spot sign in predicting
Fig. 2. Receive operating characteristic curves for two independent test datasets.
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hematomaexpansionwas51%. In addition to CTA spot sign, leakage sign
on delayed-phase CT after CTA was valuable to predict hematoma ex-
pansion, and corresponding sensitivity was even as high as 93% [35].
However, delayed-phase CT after CTA is not a routine examination; an
additional CT scanwas required to confirm the leakage sign and patient
would suffer greater radiation exposure [35]. Moreover, contrast ad-
ministration may be not applicable for patients with kidney disease or
severe diabetes because X-ray contrast medium can further harm kid-
ney function [5,36]. Machine learning is capable of effectively learning
from training data to make accurate predictions or decisions on new
data, and has been successfully applied for hemorrhage detection in
CT scans [37], outcome prediction of patients with subarachnoid hem-
orrhage [38], and mortality prediction of spontaneous ICH [39]. The
novelty of our work was the use of SVM machine learning technique
to predict hematoma expansion from routinely available variables.
Our model achieved an average sensitivity of 81.3%, a specificity of
84.8%, and an AUC of 0.89, which indicated that our model presented
good performance in prediction of hematoma expansion and might be
widely applied in clinics.

There are several limitations in our study. First, our study data were
collected from two affiliated hospital of our university in the same city;
the population may not represent the general ICH populations. Second,
as a retrospectively study, timing of the follow-up CT scanwas not stan-
dardized, which may limit our model in other institutions. Third, as a
machine learning technique, SVM required hardware and software con-
figuration, and each institution would need the technical knowledge to
perform the analysis. Finally, our model require different features of pa-
tients' demographic factor, neurological status, parameter from labora-
tory test, time to initial CT scan, CT imaging characteristics. To use the
model, same features of a patient should be provided; however, these
features may not be readily available in all hospitals.

In summary, we conductedmultivariate analysis of predictors of he-
matoma expansion in spontaneous ICH and predicted hematoma ex-
pansion by using SVM approach. The SVM model demonstrated good
performance in predicting hematoma expansion. Moreover, the devel-
oped SVM model was based on simple routinely available variables
and corresponding clinical examinations to acquire these variables
were safe to patients. Those who are predicted to suffer hematoma ex-
pansion using SVMmodelmay benefit from the intervention. Therefore,
our prediction model may be practical and widely applicable, especially
inmany institutionswhere CTA is not readily available or routinely per-
formed for spontaneous ICH patients.
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