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Abstract

Pseudomonas savastanoi pv. savastanoi NCPPB 3335 is a model for the study of the molecular basis of disease production
and tumor formation in woody hosts, and its draft genome sequence has been recently obtained. Here we closed the
sequence of the plasmid complement of this strain, composed of three circular molecules of 78,357 nt (pPsv48A), 45,220 nt
(pPsv48B), and 42,103 nt (pPsv48C), all belonging to the pPT23A-like family of plasmids widely distributed in the P. syringae
complex. A total of 152 coding sequences were predicted in the plasmid complement, of which 38 are hypothetical proteins
and seven correspond to putative virulence genes. Plasmid pPsv48A contains an incomplete Type IVB secretion system, the
type III secretion system (T3SS) effector gene hopAF1, gene ptz, involved in cytokinin biosynthesis, and three copies of a
gene highly conserved in plant-associated proteobacteria, which is preceded by a hrp box motif. A complete Type IVA
secretion system, a well conserved origin of transfer (oriT), and a homolog of the T3SS effector gene hopAO1 are present in
pPsv48B, while pPsv48C contains a gene with significant homology to isopentenyl-diphosphate delta-isomerase, type 1.
Several potential mobile elements were found on the three plasmids, including three types of MITE, a derivative of IS801,
and a new transposon effector, ISPsy30. Although the replication regions of these three plasmids are phylogenetically
closely related, their structure is diverse, suggesting that the plasmid architecture results from an active exchange of
sequences. Artificial inoculations of olive plants with mutants cured of plasmids pPsv48A and pPsv48B showed that
pPsv48A is necessary for full virulence and for the development of mature xylem vessels within the knots; we were unable
to obtain mutants cured of pPsv48C, which contains five putative toxin-antitoxin genes.
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Introduction

The gamma proteobacterium Pseudomonas savastanoi pv. savastanoi

causes olive (Olea europaea L.) knot disease, one of the most

economically relevant diseases of the olive crop [1]. P. savastanoi

pv. savastanoi is part of the P. syringae complex, which includes at

least 10 Pseudomonas species and 60 pathovars of P. syringae, most of

which are pathogenic to plants, and whose taxonomy is confusing

and still unresolved [2,3,4]. Indeed, DNA-DNA hybridization

studies indicate that the P. syringae complex could be split in nine

different genomospecies [2]. In this scheme, P. savastanoi pv.

savastanoi has been assigned to the species P. amygdali (genomos-

pecies 2) together with 16 other P. syringae pathovars, including P.

syringae pv. aesculi, glycinea, phaseolicola and tabaci, whose genomes

were recently sequenced [5,6,7,8,9]. The majority of pathovars from

the P. syringae complex cause foliar necrosis in a large diversity of

herbaceous hosts, including the model plant Arabidopsis, and are

divided into pathovars depending of their particular host range [3].

Only a few pathovars infect woody hosts, such as pvs. aesculi and

morsprunorum, infecting the vascular system and producing trunk

lesions or causing foliar or flower necroses. P. savastanoi pv. savastanoi

also infects woody hosts, but it is significant in that it is one of a few

closely-related pathovars that cause aerial tumors in their plant hosts.

Infection of olive by P. savastanoi pv. savastanoi results in overgrowth

formation on the stems and branches, and rarely on the leaves and

fruits. The disease is considered to reduce both olive yield and

productivity [10,11], and few commercial cultivars are significantly

tolerant to olive knot disease [12].
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P. savastanoi pv. savastanoi strain NCPPB 3335, isolated in

France from a diseased olive tree, is being used as a model

organism, mostly because of its ability to accept foreign DNA with

a high frequency [13] and its capability of inducing olive knots in

young micropropagated olive plants [14,15], a model system that

has recently allowed a description of the endopathogenic lifestyle

of this bacterium in olive knots [15]. Analysis of the NCPPB 3335

draft genome has identified various features that could contribute

to the ability of this strain to survive in a woody host, including

genes related with the transport and catabolism of plant-derived

aromatic compounds, the duplication of sequences related with

well-known pathogenicity and virulence factors such as those

involved in the biosynthesis of the phytohormone indoleacetic

acid, and the inventory of strain-specific putative type III secretion

system (T3SS) effectors [16].

Most strains of the P. syringae complex, regardless of pathovar,

contain at least one indigenous plasmid that belongs to the

pPT23A plasmid family, a group of plasmids that share the major

replication gene repA [17,18,19,20,21]. pPT23A-family plasmids

(PFPs) typically encode determinants that contribute to ecological

fitness in planta of their phytopathogenic bacterial host. These

determinants can include T3SS effectors or phytotoxin biosyn-

thetic genes that contribute to virulence and other determinants

such as the UV radiation tolerance genes rulAB that contribute to

increased survival on sunlight-exposed plant surfaces [22,23,24,25].

In addition, many PFPs are capable of horizontal transfer, and

retrospective comparative sequence analyses have suggested that

most PFPs are mosaics and comprise gene collections that have

been obtained via horizontal transfer by their respective bacterial

host [20].

Strains of P. savastanoi pv. savastanoi typically harbor between

one and four PFPs, and sometimes also contain non-PFP plasmids

[21]. The gene complement of P. savastanoi pv. savastanoi plasmids

includes phytohormone biosynthetic genes, T3SS effectors, two

distinct type IV secretion systems, and multiple insertion elements

[21]. Several indigenous plasmids from P. savastanoi pv. savastanoi

have been shown to contribute to virulence and to competitive

fitness of this pathogen [21,26,27,28,29].

Determination of complete, closed plasmid sequences from

phytopathogens has contributed significantly to our understanding

of the origin and evolution of these molecules, and of their role in

plant pathogenesis [24]. The P. savastanoi pv. savastanoi – olive

model represents an excellent woody host pathosystem from which

to study the role of plasmid-encoded genes in pathogenesis. We

hypothesized that determination of the complete sequence of the

plasmid complement of P. savastanoi pv. savastanoi NCPPB 3335

would facilitate genetic studies detailing the role of these plasmids

in pathogenesis and tumor formation on olive. In this study, we

report the sequence and detailed analysis of three plasmids (42, 45,

and 78 kb) from this strain, as well as the evaluation of the role of

individual plasmids in virulence.

Results

Identification and sequencing of the native plasmid
complement of P. savastanoi pv. savastanoi NCPPB 3335

Native plasmids from strains of the P. syringae group generally

share a large amount of repeated sequences [17,21,24], and our

initial analyses showed that this was the case with the plasmids

from strain NCPPB 3335. Therefore, we approached their

sequencing by first individualizing them and obtaining derivatives

of NCPPB 3335 cured of one or more of the native plasmids; this

strategy would also allow us to additionally assess their role in the

bacterial life cycle and virulence. We followed a simple strategy

that involved tagging individual plasmids with a transposon

conferring antibiotic resistance and conditional lethality [30,31]

using the transposon Tn5-GDYN1 [32], which contains the

levansucrase gene sacB and allows for the selection of derivatives

cured of the tagged plasmids in media with sucrose. Mutagenesis

with Tn5-GDYN1 yielded approximately 23% insertions in native

plasmids, as deduced from their altered mobility in plasmid profile

gels (Figure 1).

We previously identified two native plasmids, pPsv48A (73 kb)

and pPsv48B (42 kb), in strain NCPPB 3335 [21]; after mutagenesis,

we were able to visualize a new plasmid comigrating with pPsv48B,

designated pPsv48C, which had a lower copy number and that was

only evident in mutants with a transposon insertion in either plasmid

B or plasmid C (Figure 1 and not shown). Plasmids pPsv48A and

pPsv48C were successfully transferred to the plasmidless strain P.

syringae pv. syringae (Psy) B728a; however, pPsv48B could not be

transferred intact to this or any other tested pseudomonad strain,

such as P. fluorescens SBW25 or P. putida KT2440, as the plasmid

suffered large deletions in the process (not shown). Additionally, it

was possible to obtain strains Psv48DA and Psv48DAB (Figure 1),

cured respectively of plasmids pPsv48A and of pPsv48A and

pPsv48B. Despite numerous attempts, it was not possible to obtain

a derivative of strain NCPPB 3335 cured of plasmid pPsv48C.

Likewise, repeated attempts to obtain a derivative cured of pPsv48B

by itself resulted in clones containing reorganized plasmid profiles,

and it was possible to successfully cure this plasmid only in strains

lacking pPsv48A.

The complete sequence of the plasmids yielded three circular

molecules belonging to the pPT23A-like family group with the

characteristics summarized in Figure 2 and Table 1. A total of 152

CDSs were predicted for the three plasmids, with the deduced

products of half of them assigned to the categories of ‘‘hypothetical

protein’’ (38 CDSs) and ‘‘DNA metabolism’’ (37 CDSs) (Tables 1

and S1). Coding capacity is variable and is not related to plasmid

size (Table 1); indeed, pPsv48B has the highest density of coding

DNA, with 48 CDSs (excluding transposases), whereas pPsv48C

Figure 1. Derivatives of P. savastanoi pv. savastanoi strain
NCPPB 3335 (syn. Psv48) and P. syringae pv. syringae strain
B728a obtained by plasmid tagging and curing. Uncut plasmids
were separated by electrophoresis in agarose gels. Strain NCPPB 3335
(lane 1, WT) was mutagenized with Tn5-GDYN1 (8.8 kb) and insertions
in plasmids pPsv48A (lane 7, A*), pPsv48B (lanes 2 and 4, B*) and
pPsv48C (lane 6, C*) are evident by a retardation in mobility. Tagging or
curing plasmid pPsv48B reveals the presence of plasmid pPsv48C (lanes
2, 4 and 5), which is of similar size but has a lower copy number. From
the tagged derivatives, we obtained strains cured of plasmids pPsv48A
(lanes 3 and 4, DA) and both pPsv48A and pPsv48B (lane 5, DAB). Lanes
6 and 7 correspond to strain B728a transformed with mutagenized
plasmids pPsv48C and pPsv48A respectively. The molecular weights of
the plasmids are indicated in kb to the left; lpc: Linearized plasmid and
chromosomal DNA.
doi:10.1371/journal.pone.0025705.g001

Plasmids of P. savastanoi pv. savastanoi NCPPB3335
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only contains 33 CDSs, despite being nearly the same size as

pPsv48B. The overall G+C content of the plasmids is close to the

57.12% G+C of the NCPPB 3335 genome, although they

contained 22 CDSs with less than 50% (34.4–49.4% G+C) and

8 CDSs higher than 62% (62–65.1% G+C) (Table S2), that could

have been acquired via horizontal gene transfer. Among these

CDSs there are three putative virulence genes: the type III effector

hopAF1 (47.2% G+C), and two genes putatively involved in the

biosynthesis of phytohormones, gene ipt (47.7% G+C), a putative

isopentenyl-diphosphate delta-isomerase gene, and ptz (43.4%

G+C), an isopentenyl transferase gene. Analysis of the three

plasmids with IslandViewer predicted one genomic island in

pPsv48A (6,140 nt; coordinates 21,767–27,906) and another in

pPsv48B (4,723 nt; coordinates 11,433–16,155). The first putative

island contains CDSs PSPSV_A0019 to PSPSV_A0025, coding

for a putative toxin-antitoxin system, three hypothetical proteins

Figure 2. Genetic maps of plasmids pPsv48A, pPsv48B and pPsv48C. Genes are color-coded according to category or putative function as
follows: genes putatively involved in host-interaction and virulence are shown in blue; putative mobile elements are indicated in green, and
homologs of Type IV secretion systems genes are shown in brown; the remaining genes are shown in orange. The effector transposon ISPsy30 is
shown as a green arrow out of the map of pPsv48A. Prototypical hrp boxes are indicated by brown arrows. The inner circles indicate the GC content
(window, 1000; step, 5), with values above and below the average shown in light and dark grey, respectively. Plasmids are drawn to scale.
doi:10.1371/journal.pone.0025705.g002

Table 1. General characteristics of the three native plasmids of P. savastanoi pv. savastanoi NCPPB 3335.

n6 ORF Coding percentage

Plasmid Size (nt) G+C% Total Without Tnasesa Total Without Tnasesa % ISsb

pPsv48A 78,357 57.87 60 49 77.0 64.8 24.8

pPsv48B 45,220 55.66 50 48 81.4 78.6 3.7

pPsv48C 42,103 54.18 42 33 64.7 51.0 29.5

aTnases, transposases.
bPercentage of the total nucleotide sequence occupied by putative mobile elements.
doi:10.1371/journal.pone.0025705.t001

Plasmids of P. savastanoi pv. savastanoi NCPPB3335
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and ptz. The second island contains CDSs PSPSV_B0011 to

PSPSV_B0020, which also code for a putative toxin-antitoxin

system and a putative stability/partition system; among others, the

putative island contains CDSs coding for a putative bacteriocin

immunity protein and a putative transcription antiterminator (see

Table S2).

Plasmid pPsv48B contains 15 CDSs that might constitute a

complete Type IVA secretion system (Table S3) and a well

conserved origin of transfer (oriT), which is also present in pPsv48C.

Therefore, it is highly likely that pPsv48B is a conjugative plasmid,

whereas pPsv48C might be mobilizable by plasmid pPsv48B. We

found an incomplete Type VIB conjugation system in pPsv48A

(Table S3), but not an origin of transfer, suggesting that this plasmid

might not be mobilizable by conjugation.

We found seven potential virulence genes in the plasmids of

NCPPB 3335, five of which are preceded by a HrpL regulatory

motif, or hrp box (Tables S1 and S4). Plasmid pPsv48A contains a

gene involved in cytokinins biosynthesis, ptz, and four CDSs

preceded by a hrp box. These four CDSs included three alleles

(PSPSV_A0005, PSPSV_A0035 and PSPSV_A0046) of a highly

conserved gene found in many plant-associated proteobacteria and

a chimeric allele of effector gene hopAF1 captured by transposon

ISPsy30 (see below). pPsv48B contains a putative T3SS effector

identified as hopAO1 (sin. avrPphD2) which functions as a suppressor

of plant resistance triggered by PAMPS [33], and that is preceded

by a consensus hrp box [34]. pPsv48C contains a CDS with

significant homology to isopentenyl-diphosphate delta-isomerase,

type 1 (InterPro family IPR011876), which could participate in

cytokinins biosynthesis.

The three plasmids contained 11 types of insertion sequences

and three miniature inverted-repeats transposable elements

(MITE) (Table S5). Among these, plasmid pPsv48A contains a

putative effector transposon, designated ISPsy30, which has

captured a chimeric DNA fragment containing a fragment of

the effector gene hopAY1 (273 nt before the start codon, including a

hrp box, and the first 18 aa) fused to an allele of hopAF1 (Figure S1).

The 273 nt fragment also includes the 38 nt right inverted repeat

of ISPsy30 in the alleles of hopAY1 found in strains of P. syringae pvs.

eriobotryae and phaseolicola (accession no. AB018553, CP000059,

and AY603426), suggesting that this fragment might have arrived to

P. syringae with the effector transposon and then incorporated to

effector gene hopAY1. Chimeric effectors are very common in

animal and plant pathogens, originating from a shuffling process

called ‘‘terminal reassortment’’ that favors the rapid emergence of

new host specificities [35].

We identified three MITEs, ranging from 0.1 to 0.3 kb and with

varying copy numbers (Table S5). MITEPsy1 (100 nt) is present

in many strains of the P. syringae group and was originally

found altering host range specificity by insertion into the effector

gene avrPphE [36], and later shown to actively transpose [37].

MITEPsy2 is 228 nt and probably originated from ISPsy30

because they have nearly identical terminal inverted repeats

[37]. The four full-length copies of MITEPsy2 present in the three

plasmids (Table S5) are nearly identical, and between 90–92%

identical to a copy in plasmid p1448A-A from P. syringae pv.

phaseolicola 1448A. The copy of MITEPsy2 in pPsv48A is flanked

by a direct 5 nt repetition, as it occurs with the ISPsy30 homolog

in plasmid pGNB1 [38], suggesting that it originated from a true

transposition event. Finally, the terminal ends of MITEPsy3 are

nearly identical to those of transposon ISThsp9, from Thiomonas sp.

(Figure S2), and the element is also present in two truncated copies

in p1448A-A.

The three plasmids contain a replication initiator protein gene

(repA) that defines the pPT23A-like family of plasmids typical of the

P. syringae group [17,24]. In a phylogenetic analysis of repA (Figure

S3), the plasmids of strain NCPPB 3335 clustered with diverse

plasmids from P. savastanoi pv. savastanoi, suggesting that they

share a recent common origin, although they were separated from

plasmids isolated from other pathovars of the genomospecies 2,

including other plasmids from pv. savastanoi, as previously

described [20,39]. The repA sequences of the pPsv48B and

pPsv48C plasmids cluster tightly together on one branch, which

is not surprising given the high identity they share (97.5% amino

acid identity), and also closely to the repA of pPsv48A.

Plasmid pPsv48C contains an additional putative replica-

tion protein, repL (PSPSV_C0043), with homologs in Thiomonas

intermedia K12, Burkholderia and enterobacteriaceae. We were

unable to demonstrate autonomous replication mediated by repL,

with or without the accompanying downstream CDS, coding for a

putative entry exclusion protein, in either E. coli or strains of the

P. syringae complex. This suggests that repL might not contribute to

the maintenance of pPsv48C in P. savastanoi pv. savastanoi or to its

dissemination to the enterobacterial populations that are frequent-

ly found in knots or the olive phyllosphere [40].

To evaluate the conservation of the plasmid backbone, we made

a comparison of the entire plasmid sequences against the NCBI

database. As expected, due to their dynamic nature, the structure

of the three plasmids is not fully conserved in any other sequenced

plasmid, although they shared variable regions of synteny.

pPsv48B most closely resembles the plasmids pPMA4326A

(accession no. AY603979), pPSR1 (AY342395) and p1448A-B

(CP000060), sharing synteny over approximately 24 to 30 kb that

corresponds to the replication region, the Type IVA secretion

system genes, and a fragment including genes mobCB and a gntR-

like transcriptional regulator (Figure S4 and Table S3). Converse-

ly, the structure of plasmids A and C is poorly conserved, with only

stretches smaller than 10 kb found in other plasmids. Nevertheless,

a total of around 10 kb of pPsv48C shares at least 80% nucleotide

identity with pPsv48B, including 2.5 kb surrounding gene repA

(Figure S4).

Virulence on olive plants of plasmid-cured derivatives of
strain NCPPB 3335

P. savastanoi pv. savastanoi strains NCPPB 3335, Psv48DA

(cured of pPsv48A), and Psv48DAB (cured of both pPsv48A and

pPsv48B) were inoculated on the stem of 1 year-old olive plants. In

agreement with previous reports [13,41,42], the wild-type strain

induced typical dark brown hyperplastic knots on the stems of the

olive plants at 90 days post-inoculation (dpi), whereas symptoms

induced by cured strains Psv48DA and Psv48DAB were less severe

(Figure 3A), probably due to the lack of the pPsv48A-encoded ptz

gene. No visible symptoms were observed in the stems of control

plants inoculated with a solution of MgCl2 (not shown).

P. savastanoi pv. savastanoi strains NCPPB 3335, Psv48DA and

Psv48DAB were tagged with the green-fluorescent protein (GFP)

using plasmid pLRM1-GFP [14] and inoculated at a cell

concentration of approximately 103 cfu on the stem of young

micropropagated olive plants. In agreement with data reported by

Rodrı́guez-Moreno et al. [14], strain NCPPB 3335 induced

swelling of the stem tissue already observed at 7 dpi. As the

swollen tissues continued to grow, typical hyperplastic knots were

clearly visible at 28 dpi. In contrast, symptoms induced by the

plasmid-cured derivatives were less severe. In all cases, swelling of

the tissue evolved into attenuated hyperplastic knots, also showing

a slight necrosis at 28 dpi (Figure 3B). Growth and survival of the

different strains in the olive tissue was tested for all three strains. As

reported for the wild-type strain [14], Psv48DA and Psv48DAB

were able to multiply in the olive tissue during the first week

Plasmids of P. savastanoi pv. savastanoi NCPPB3335
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post-inoculation reaching around 107–108 cfu per knot at 7 dpi

(not shown). No significant difference in the number of cfu

extracted from the olive plants was observed at 30 dpi between the

wild type strain and any of the mutants tested. In all cases, the total

number of cfu extracted per knot was about 108.

As we previously reported [14], we were able to monitor P.

savastanoi pv. savastanoi infection in real time using epifluorescence

microscopy in plants infected with GFP-tagged strains. Despite the

reduced knot size observed in plants infected with plasmid-cured

strains, knots induced by the wild-type strain, Psv48DA and

Psv48DAB exhibited a similar pattern of fluorescence emission

composed by green fluorescent clusters that spanned the entire

surface of the knot at 28 dpi (Figure 3C). The localization of GFP-

tagged bacterial cells in knot tissues was monitored by epifluor-

escence and scanning confocal laser microscopy. As it occurs with

the wild-type strain [14], transverse sections of knots induced by

Psv48DA and Psv48DAB at 28 dpi clearly showed expanded areas

of green fluorescent spots colonizing the apoplast as well as the

internal open cavities and periphery of the knot tissues (not

shown). Together, and in agreement with a previous report [41],

all these results suggest that plasmid-cured P. savastanoi pv.

savastanoi strains are able to multiply, survive and invade olive

tissue as efficiently as the wild-type strain.

To view the parenchymal tissues of the olive plant knots in more

detail, transverse semi-thin sections of the knots induced at 35 dpi

by NCPPB 3335-GFP and Psv48DA were stained with toluidine

blue and visualized by light microscopy. The characteristic

internal cavities filled by bacteria formed in knots induced by

the wild-type strain [15] were also visualized in knots induced by

Psv48DA (Figure 4A). In addition, transverse sections of knots

induced at 28 dpi by the wild-type strain stained with methylene

blue-picrofuchsin showed newly formed bundles of spiral xylem

vessels stained in purple-blue (secondary cell wall) inside the

hypertrophied area (Figure 4B). In contrast, the smaller size of the

tumors induced by Psv48DA was consistent with a lower presence

of spiral vessels whose cells were not blue-stained, indicating that

they were not completely differentiated into xylem cells containing

secondary cell walls (Figure 4C). Thus, the development of mature

xylem vessels within the knots induced by P. savastanoi pv.

savastanoi NCPPB 3335 on young micropropagated olive plants

seems to be partially dependent on the gene content of plasmid

pPsv48A.

Discussion

Plasmids are considered the predominant factors mediating

horizontal gene transfer between bacteria in the environment [43].

Likewise, plasmids were shown to be very important vehicles for

the dissemination of genes with agricultural value in the P. syringae

group and other bacterial plant pathogens [24,25,44]. In the

genomics era, the availability of closed plasmid sequences is pivotal

to understand how plasmids originate, their gene dynamics and

Figure 3. Symptoms induced by derivatives of strain NCPPB
3335 cured of native plasmids. (A) Symptoms induced on the
stems of 1-year-old olive plants 90 days after inoculation with P.
savastanoi pv. savastanoi NCPPB 3335 (wild type), Psv48DA (cured of
pPsv48A) or Psv48DAB (cured of pPsv48A and pPsv48B). (B) Images of
knots induced by the indicated GFP-tagged P. savastanoi pv. savastanoi
strains on young micropropagated olive plants. (C) Complementary
epifluorescence microscopy images of knots induced by the indicated
strains.
doi:10.1371/journal.pone.0025705.g003

Figure 4. Microscopic analysis of knots. Young micropropagated
olive plants were inoculated with P. savastanoi pv. savastanoi NCPPB
3335 (wild type) and Psv48DA (cured of pPsv48A). (A) Light microscopy
images of semithin cross sections of knots (35 dpi) stained with
toluidine (B, C) Cross-sections of knots, collected at 28 dpi, stained with
methylene blue-picrofuchsin. Asterisks indicate the position of newly
formed xylem vessels. (B) Parenchymatous-like cells showing a blue-
purple stain of the cell walls (wild type) due to the formation of
secondary walls during differentiation. (C) Detail of newly formed
bundles of xylem vessels.
doi:10.1371/journal.pone.0025705.g004

Plasmids of P. savastanoi pv. savastanoi NCPPB3335
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their role in gene trading in the bacterial community. The recent

advances in sequencing technologies and reductions in cost have

yielded a very large amount of nucleotide sequences in very little

time, and resulted in a consequent shift towards the generation of

an increasing amount of draft genome sequences [45,46,47]. This

imposes a range of difficulties to make full use of genome data

[46], especially with microbial genomes, and provides a very

fragmented set of plasmid sequences, because these molecules

usually contain a large amount of repeated sequences that make

assembly difficult [9,48]. Indeed, although the genomes of 39

strains of the P. syringae group will soon be sequenced, closed

plasmid sequences are available for only four of these strains (see

http://pseudomonas-syringae.org/). Here we present the closed

sequence of the native plasmid complement of P. savastanoi pv.

savastanoi strain NCPPB 3335, whose draft genome is available

[16], and demonstrate that at least one of these plasmids is

required for full virulence in olive plants.

Sequencing of the plasmids was greatly hampered by the large

amount of repeated sequences they contain and share among them,

and that are common in plasmids of the P. syringae group [17,21,49].

For instance, pPsv48C contains two copies of IS51 that show 1 nt

difference over 1,312 nt and two identical copies of ISPsy16

(1,461 nt), which recombine between them resulting in an active

flipping of the intervening DNA (Figure 2). Additionally, plasmids B

and C share an estimated 25% of their sequences, often showing a

high degree of identity. An extreme case was pPsv48A containing

three copies of a large DNA region, encompassing a putative

effector (PSPSV_A0005, PSPSV_A0035 and PSPSV_A0046) and

associated adjacent DNA, that showed areas of up to 5.9 kb with

95% nucleotide identity. These repetitions resulted in the

misassembly of the pyrosequencing data, which we solved here by

cloning and sequencing a collection of EcoRI fragments obtained,

when possible, from individualized plasmids and by sequencing of

PCR products for gap closure. The misassembly of the draft genome

of strain NCPPB 3335 is illustrated by its comparison with the

assembled, curated sequence of pPsv48B. Although this plasmid

contains a very low number of mobile elements, it was distributed

among four contigs in the pyrosequencing data (counting only those

with at least 1 kb of continuous homology with pPsv48B with

.99% identity; contigs ADMI01000061 to ADMI01000064). A

3 kb pair-end library analysis significantly improved assembly and

resulted in a single supercontig for pPsv48B (ASAPContig021;

51,830 nt), but there were still near 4.6 kb missing and 15

mismatches in the pair-end assembly as well as extra DNA that

did not belong to this plasmid (Figure S5). A comparison of the draft

genome with plasmids pPsv48A and pPsv48C indicate that they are

distributed among a much larger number of contigs (not shown),

many of which contain repeated sequences. Likewise, there are

inconsistencies in between the draft genome and the closed plasmid

sequence, with some of the plasmid sequences missing from the draft

genome; for example, only one homolog of gene PSPPH_1525 is

found in the draft genome, although we confirmed the existence of

three copies (PSPSV_A0005, PSPSV_A0035 and PSPSV_A0046)

in plasmid pPsv48A by PCR, sequencing and DNA hybridization.

Therefore, future analyses of plasmid population genetics in P.

syringae would require the generation of genomic sequences of

sufficient quality to guarantee the closure.

There is a large variability in the coding percentage for each

plasmid, which is partially correlated with the content in putative

mobile elements (Table 1), that amount to 24.8 to 29.5% of pPsv48A

and pPsv48C, respectively, but only a 3.7% of pPsv48B. These

percentages are well out of the usual ranges, which average 5–15%

for plasmids larger than 20 kb [48], and might indicate a high level

of transposition and recombination in these native plasmids.

The phylogenetic analysis of the repA gene (Figure S3) strongly

suggests that plasmids pPsv48B and pPsv48C originated by

duplication of an ancestral plasmid; their repA deduced products

show nearly 98% aa identity, with seven nonsynonymous

substitutions of which four are located within the first 20 amino

acids. This is in contrast with previous observations of a higher

variability in the C-terminal end of RepA proteins of PFP plasmids

[18,20], and suggests that modifications in the N-terminal end

might be important to avoid incompatibility in co-resident PFP

plasmids. Although pPsv48C contains a second putative replica-

tion protein gene (repL), we were unable to demonstrate its

functionality in E. coli and diverse pseudomonads.

Two of the putative virulence genes found in the plasmids

code for putative effector genes (PSPSV_A0028, hopAF1, and

PSPSV_B0010, hopAO1) homologous to effectors already found in

bacteria of the P. syringae complex [16] and that are preceded by

typical hrp promoters, suggesting that they might be part of the

HrpL regulon in strain NCPPB 3335. The availability of the

complete, closed plasmid sequences allowed us to establish that

they contain only two of the known effectors, as opposed to our

previous results suggesting the presence of effectors hopD1 and

hopW1 in the plasmids of NCPPB 3335 [16,21]. Effector gene

hopAO1, located in pPsv48B, is 87% identical to the one present in

P. syringae pv. tomato DC3000 [34], and codes for a putative

tyrosine phosphatase. Gene hopAF1, harbored by pPsv48A, is

widely distributed in the P. syringae complex, and is unusual in that

in strain NCPPB 3335 it is included into a transposon, which

might facilitate its dissemination. Although this type of mobile

element is not common in the P. syringae complex, a functional

transposon containing effector gene avrPphE (syn. hopX1) has been

described in P. syringae pv. tomato DC3000 [50].

Plasmid pPsv48A contains three alleles (PSPSV_A0005,

PSPSV_A0035 and PSPSV_A0046) of a hypothetical gene widely

conserved among plant-associated proteobacteria that are preced-

ed by a hrp box. The closest homologue, PSPPH_1525, from P.

syringae pv. phaseolicola 1448A, was shown to be inducible by

HrpL and suspected to be a T3SS substrate, although secretion

could not be shown due to the large size of the protein [34].

Additionally, homolog mlr6361, from Mesorhizobium loti, is respon-

sible for restriction of host range in Lotus halophilus, and the T3SS-

dependent translocation of its product was unequivocally demon-

strated [51,52]. Together, these data suggest that these large genes

might code for T3SS effectors. Although plasmid curing did not

reveal any apparent role for these three loci (PSPSV_A0005,

PSPSV_A0035 and PSPSV_A0046), two lines of evidence support

the idea that they are functional and relevant for the bacterial life

cycle. First is the fact that they are highly conserved among a wide

range of plant-related bacteria belonging to very different

phylogenetic taxa, such as Bradyrhizobium and Ralstonia, suggesting

that they are involved in basic processes of the interaction with the

plant hosts. Secondly, they are very large CDSs, from 7.1 to

7.8 kb, and are located in a plasmid, pPsv48A, that contains

mobile elements accounting for nearly a quarter of its size; in spite

of that, the CDSs do not contain any premature stops or any

insertion of a mobile element, suggesting that they contribute to

increasing fitness. Remarkably, these CDSs contain a variable

number of tandem repeats of around 126 nt that conform an

Armadillo-like domain (InterPro IPRO11989 and IPR016024);

the superhelical structure of this domain is suited to binding large

substrates, such as proteins and nucleic acids. In line with this, the

products of mlr6361 and mlr6331, both homologs of PSPPH_1525,

interacted between them in a yeast-two hybrid assay [53]. It is

conceivable that variations in the number and type of repeat could

afford specificity during the interaction with the plant host, as it
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happens with type III effectors of the TAL family of Xanthomonas

[54] and, indeed, a rapid loss/gain of repeats has occurred

frequently during evolution in this family of proteins.

Genes for phytohormone biosynthesis have a disparate genomic

localization in different tumor-inducing strains of P. savastanoi, with

genes for the biosynthesis of cytokinins preferentially located in

plasmids of the pPT23A-family in P. savastanoi pv. savastanoi

[21,26,28,55]. In accordance with our previous macroarray

hybridization results [21], we found gene ptz in pPsv48A. This

gene is well conserved among an exceptionally wide panoply of

bacteria with very diverse lifestyles, ranging from enterobacteria to

free living cyanobacteria, although it is also present in various

plant pathogens. These in particular are representative of different

pathogenic strategies, including pathogens that induce tumors,

such as P. savastanoi pv. savastanoi and Agrobacterium spp., or

colonize the vascular system, such as X. albilineans and Ralstonia

solanacearum, although the role of cytokinins in most of these

pathosystems is as yet unknown. Gene ptz is included in a potential

genomic island in pPsv48A, characterized by a low G+C content,

although blast comparisons did not reveal the presence of the

complete island in any other bacterium; additionally, we did not

find any terminal repeated sequence typical of genomic islands,

raising the possibility that it could be an artifact. Symptoms

induced in olive plants by Psv48DA (Figure 3), which lacks the ptz

gene, are in agreement with data previously reported by Iacobellis

and co-workers [41]. In fact, symptoms induced by this plasmid-

cured derivative nearly resembled those induced in 1-year-old

olive and oleander shoots by a P. savastanoi pv. nerii strain cured of

a pCK plasmid which encodes ptz. Growth and survival of this

cytokinin-deficient strain in young micropropagated olive plants

was shown to be similar to that of the wild type strain [14].

Cytokinins are involved in the regulation of procambial cell

differentiation into vascular cells [56]. Thus, the formation of

immature xylem vessels observed in tumors induced by Psv48DA

(Figure 4) is most likely a consequence of the lack of the ptz gene in

this strain which could result in a deficiency in cytokinin

biosynthesis. Symptoms induced by Psv48DAB were similar to

those induced by Psv48DA (Figure 3). This observation indicates

that the visible effect on virulence of pPsv48A could be dominant

over that of pPsv48B. However, we could not test this hypothesis,

since plasmid-cured derivatives lacking only pPsv48B or pPsv48C

could not be constructed using Tn5-GDYN1.

In summary, we report the complete sequence and annotation

of three native plasmids from P. savastanoi pv. savastanoi NCPPB

3335, and demonstration of a link between pPsv48A and

virulence. Additional functional analysis of specific plasmid-

encoded genes in NCPPB 3335 will help us to uncover the precise

role of each of these three plasmids in the virulence and host range

of P. savastanoi pv. savastanoi.

Materials and Methods

Bacterial strains and growing conditions
The bacterial strains and plasmids used in this study are listed in

Table S6. Pseudomonas spp. and Escherichia coli strains were grown in

LB medium [57] at 28 and 37uC respectively. GFP-tagged

derivatives of P. savastanoi pv. savastanoi NCPPB 3335, Psv48DA

and Psv48DAB harboring the pLRM1-GFP plasmid (Table S6)

are referred to here as NCPPB 3335-GFP, Psv48DA-GFP and

Psv48DAB-GFP, respectively. Transformation of electrocompe-

tent P. savastanoi pv. savastanoi cells with pLRM1-GFP was

performed as previously described [13]. When necessary, media

were supplemented with (final concentrations in mg/ml): ampicil-

lin, 100; kanamycin, 7, to select for Tn5-GDYN1, or 50, in the

remaining cases; nitrofurantoin, 100; 5-bromo-4-chloro-3-indolyl-

beta-D-galactopyranoside (X-Gal), 40; and isopropyl-beta-D-

thiogalactopyranoside (IPTG), 0.5 mM.

Molecular techniques
For sequencing, we attempted to individualize and separately

purify each of the native plasmids of strain NCPPB 3335. Plasmid

pPsv48C and pPsv48A::Tn5-GDYN1 were successfully isolated

from strains Psv48DAB and B728a(pPsv48A::Tn5-GDYN1),

respectively (see Table S6). We used strain Psv48DA as a source

of pPsv48B, from which a mixture of pPsv48B and pPsv48C was

obtained. We extracted native plasmid DNA using an alkaline lysis

method [21,58] and further purified the plasmids by isopycnic

centrifugation in CsCl [59]. Intact plasmids were separated by

electrophoresis in 0.8% agarose gels using 16 TAE [13,19].

Transposon mutagenesis and plasmid curing was carried out

essentially as described by Brom et al. [31], except that derivatives

of strain NCPPB 3335 containing the transposon were selected on

LB containing kanamycin and nitrofurantoin, that insertions in

plasmids were identified by their change in mobility after

electrophoresis in agarose gels and that plasmid cured derivatives

were selected in media containing 5% sucrose.

To assay the ability of gene repL (PSPSV_C0043) to sustain

autonomous replication, appropriate PCR products containing the

complete CDS and 240 nt upstream of the start codon were

cloned in the vectors pSW25T and pSW29T, which contain an

R6K origin of replication [60]. In the same way, we constructed

clones that also contained the downstream CDS (PSPSV_C0044),

coding for a putative entry exclusion protein. All of the cloned

fragments were identical to the original sequence, as determined

by DNA sequencing. The replication ability of the resulting

recombinant plasmids was tested by transformation into E. coli

DH5a, P. syringae pv. syringae B728a, P. syringae pv. phaseolicola

1448A and P. savastanoi pv. savastanoi NCPPB 3335. pAori1,

containing repA from a P. syringae pv. tomato PT23 native plasmid

[17], was used as a replication control.

PCR reactions, using a Taq polymerase (BioTaq, Bioline,

London, UK) or a high fidelity enzyme blend (Expand High-

Fidelity, Roche), restriction enzyme digestions, cloning, transfor-

mation of constructs and minipreparation of E. coli plasmids were

all conducted using standard methodology [57]. When needed,

PCR products were cloned using either pGEM-T Easy Vector

System I kit (Promega, Corp, Madison, WI) or pCR2.1

(Invitrogen). Oligonucleotide primers were designed using Pri-

mer3plus software [61]. All DNA sequencing was done at

Macrogen Inc. (Seoul, Korea).

Plasmid sequencing and assembly
For the sequence assembly we used two sets of sequences,

comprising those of the draft genome dataset of strain NCPPB

3335 and cloned EcoRI fragments from individual plasmids (see

below). The draft genome was obtained by 454 pyrosequencing at

156 depth of total DNA from strain NCPPB 3335 and it was

composed of 287 contigs larger than 1.5 kb [accession no. N-

Z_ADMI00000000; 16]. For sequencing of the cloned EcoRI

fragments, DNA from each purified native plasmid was digested

with EcoRI and the resulting fragments were ligated en masse into

the E. coli vectors pBluescript SK II (Stratagene, La Jolla, CA) or

pGEM-3Z (Promega Corp, Madison, WI). Constructs were then

transformed into E. coli DH5a or XL1-Blue cells, and recombinant

plasmids were digested with EcoRI and separated by gel

electrophoresis, along with native plasmid DNA digested with

the same enzyme. We only end sequenced those constructs with a

single EcoRI insert that co-migrated with a band present in the
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native plasmid restriction profile. These sequences were compared

to the draft genome dataset using the Blast algorithm included in

BioEdit Sequence Alignment Editor (Ibis Therapeutics, Carlsbad,

CA, USA) in order to identify those contigs containing plasmid

DNA. Confirmation of the order and orientation of EcoRI

fragments in contigs, as well as the bridging of contigs into a

circular structure, was done by PCR amplification and sequencing

of at least 0.5 kb on each side of the DNA surrounding the

junction of two consecutive EcoRI fragments, as well as by

sequencing of selected complete EcoRI fragments.

DNA sequences were manipulated, assembled and annotated

using the Vector NTI suite (Informax, Inc., Frederick, MD) and

Artemis [62,63]. Annotation was done using Blast2GO [64] and

RAST [65] and it was manually refined using BLAST outputs

[66]. Pairwise alignments between the assembled plasmids was

made with WebACT [67] and viewed using ACT [68]. IS

elements and their borders were identified, by BLAST compar-

ison, using the IS Finder database (http://www-is.biotoul.fr). DNA

or amino acid sequences alignment using Clustal and construction

of phylogenies was done with MEGA5.02 [69]. Trees were

constructed using the Neighbor-Joining and Maximum Parsimony

methods, and the option pairwise deletion was chosen to eliminate

position with gaps; confidence levels of the branching points were

determined using 2,000 bootstrap replicates. The presence of

genomic islands was predicted using the web site IslandViewer

(http://www.pathogenomics.sfu.ca/islandviewer) [70], which uses

three methods for island prediction.

Plasmid sequences were deposited in EMBL databases under

accession numbers FR820585 (pPsv48A), FR820586 (pPsv48B)

and FR820587 (pPsv48C).

Plant inoculation and growing conditions
Olive plants (Olea europaea L.) derived from seeds germinated in

vitro (originally collected from a cv. Arbequina plant) were

micropropagated and rooted, as previously described [14], in

Driver Kuniyuki Walnut (DKW) medium [71]. Rooted explants

were transferred to DKW medium without hormones and kept for

at least two weeks in a growth chamber at 2561uC with a 16-h

photoperiod prior to infection. The olive plants used for in vitro

studies were 60 to 80-mm long (stem diameter 1 to 2 mm) and

contained three to five internodal fragments.

Micropropagated olive plants were wounded by excision of an

intermediate leaf and infected in the stem wound with a bacterial

suspension under sterile conditions. For this purpose, bacterial

lawns were grown for 48 h in LB plates and resuspended in

10 mM MgCl2. Bacterial suspensions were adjusted to an OD600

of 0.1, corresponding to 107 colony forming units (cfu)/ml, and

2 ml (approximately 104 cfu) were used to infect plant wounds;

plants were then incubated in a growth chamber at 2561uC with

a 16-h photoperiod and a light intensity of 35 mmoles6m2/s. To

estimate population dynamics, we prepared macerates from the

infected explants at different time points that were spotted onto LB

plates to recover and count bacteria as previously described [14].

Population densities were averaged from at least three replicates.

The morphology of the olive plants infected with bacteria was

visualized using a stereoscopic microscope (Leica MZ FLIII).

To analyze the pathogenicity of P. savastanoi pv. savastanoi

isolates in one-year-old olive explants, micropropagated olive

plants were transferred to soil and maintained in a greenhouse at

27uC with a relative humidity of 58% under natural daylight. The

plants were wounded at five sites on the main stem. The wounds,

which were 0.5 cm deep and spanned from the stem surface to the

cambial area, were made with a sterile scalpel and were infected

with approximately 106 cfu of the strain being tested using

bacterial suspensions prepared as previously described [12,13].

Morphological changes, scored 90 days after infection, were

captured with a high-resolution digital camera (Nikon DXM

1200), and the images were processed using Adobe Photoshop CS

software.

Real-time monitoring of bacterial infection by
epifluorescence microscopy

To visualize bacterial infection within tumors in real time,

whole knots were directly examined with a stereoscopic fluores-

cence microscope (Leica MZ FLIII) equipped with a 100-W

mercury lamp and a GFP2 filter (excitation, 480/40 nm). Images

were captured using a high-resolution digital camera (Nikon DXM

1200), and the images were processed using Adobe Photoshop CS

software.

To visualize bacterial infection within the tumors of the olive

plants, the knots were sampled on different dpi at locations 1 cm

above and 1 cm below the inoculation point. These samples were

fixed and embedded in agarose as previously described [15].

Samples were fixed overnight at 4uC in 2.5% paraformaldehyde

(PFA) prepared in 0.1 M phosphate buffer, pH 7.4. The fixed

samples were then transferred into 2.5% PFA with an ascending

gradient of 10%, 20%, and 30% sucrose for 10, 20, and 30 min,

respectively. Finally, samples were embedded in 7% low-melting-

point agarose and cooled to 4uC. Sections (40 and 60 mm thick)

were cut from the knot samples using a freezing microtome (Leica

CM1325). Fluorescence of the bacterial cells within knot sections

was visualized by epifluorescence microscopy using a Nikon

Microphot FXA microscope.

Toluidine blue and methylene blue-picrofuchsin stains
Olive knot samples, sectioned and fixed as described above,

were stained for 10 s in 1% methylene blue. Then they were

washed in ethanol (96%), followed by distilled water and finally

stained for 5 min in picrofuchsin. Picrofuchsin contained 0.1%

acid fuchsin in a saturated picric acid solution. Semithin (1-mm-

thick) sections of the knots were cut using an ultramicrotome

(Ultracut E; Leica, Germany), mounted on glass slides and stained

with 1% toluidine blue. Stained sections were dehydrated,

mounted on slides with Canadian balsam and visualized with a

Nikon Eclipse 800 light microscope.

Supporting Information

Figure S1 Structure of the effector transposon ISPsy30
found in pPsv48A. Open reading frames are indicated by block

arrows, terminal inverted repeats as red rectangles, and hrp boxes as

black triangles. Grey bars indicate collinear regions, with the

percentage of identity shown. ISPsy30 was compared to the genome

of P. syringae pv. tomato DC3000 (accession no. AE016853) and the

larger plasmid from P. syringae pv. phaseolicola 1448A (accession

no. CP000059).

(PPT)

Figure S2 Inverted repeats of MITEPsy3. Comparison of

the repeats of MITEPsy3 and the Tn3 family transposon ISThsp9,

from Thiomonas sp. Identical nt in at least three sequences are

boxed in black.

(PPT)

Figure S3 Phylogenetic analysis of full nucleotide
sequences of the repA gene from PFP plasmids from
strains of the P. syringae complex. The evolutionary history

was inferred by Neighbor-Joining using MEGA5 [69]; evolution-

ary distances were computed using the Maximum Composite
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Likelihood method, and pairwise deletion, and are in the units of

the number of base substitutions per site; a similar topology was

obtained using Maximum parsimony with default settings. The

percentages of replicate trees in which the associated taxa clustered

together in the bootstrap test (2000 replicates) are shown next to

the branches. The tree was constructed with 44 repA sequences

previously described [20], plus those from the three plasmids of P.

savastanoi pv. savastanoi NCPPB 3335 (arrows) and using the repA

from Thiomonas intermedia K12 plasmid pTINT01 (accession

no. CP002022, locus tag Tint_3234) as an outgroup; the pathovar

of origin of each sequence is shown after the name of the plasmid.

Phylogenetic groups are as described [20]; groups A, B and D are

shown as triangles proportional to the number of sequences they

contain; numbers after the name of groups indicate the

genomospecies of the pathovars from which the plasmids were

isolated.

(PPT)

Figure S4 Conservation of plasmids backbone. Pairwise

blast alignment of native plasmids pPMA4326A (AY603979; top),

pPsv48B (middle) and pPsv48C (bottom), done with WebACT and

visualized with ACT; red and blue indicate collinear and inverted

regions of identity, respectively.. Only those matches longer than

100 nt with at least 80% identity are shown.

(PPT)

Figure S5 Example of inadequate assembly of plasmid
sequences in the draft genome of P. savastanoi pv.
savastanoi NCPPB 3335. Comparison of the closed, curated

sequence of pPsv48B (upper sequence; 45,220 nt) with supercontig

ASAPContig021 (lower sequence; 51,830 nt; https://asap.ahabs.

wisc.edu/asap/home.php) obtained after 454 shotgun sequencing

and pair-end library analysis. A Blastn comparison was done with

WebACT and visualized with ACT; red and blue indicate

collinear and inverted regions of identity, respectively.

(PPT)

Table S1 Number of putative genes predicted in
the annotation of the native plasmids of P. savastanoi

pv. savastanoi NCPPB 3335, separated by functional
categories.

(DOC)

Table S2 Plasmid features with low (,50%) or high
(.62%) G+C content.

(DOC)

Table S3 Genes coding for components of Type IV
secretion systems.

(DOC)

Table S4 Putative virulence genes found in the native
plasmids from P. savastanoi pv. savastanoi NCPPB
3335.

(DOC)

Table S5 Type and number of mobile elements found in
the native plasmids of P. savastanoi pv. savastanoi
NCPPB 3335.

(DOC)

Table S6 Bacterial strains and plasmids used in this
work.

(DOC)
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