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Abstract

The NF-κB protein RelB controls dendritic cell (DC) maturation and may be targeted 

therapeutically to manipulate T cell responses in disease. Here we report that RelB promoted DC 

activation not as the expected RelB-p52 effector of the non-canonical NF-κB pathway, but as a 

RelB-p50 dimer regulated by canonical IκBs, IκBα and IκBε. IκB control of RelB minimized 

spontaneous maturation but enabled rapid pathogen-responsive maturation. Computational 

modeling of the NF-κB signaling module identified control points of this unexpected cell-type-

specific regulation. Fibroblasts that were engineered accordingly showed DC-like RelB control. 

Canonical pathway control of RelB regulated pathogen-responsive gene expression programs. 

This work illustrates the potential utility of systems analyses in guiding the development of 

combination therapeutics for modulating DC-dependent T cell responses.
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Introduction

Dendritic cells (DCs) are specialized sentinel immune cells essential in both innate and 

adaptive immunity. DC progenitors differentiate to become immature DCs that populate 

both non-lymphoid and lymphoid tissues and perform immune-surveillance functions. When 

encountering pathogens or pathogen-associated molecular patterns (PAMPs), immature DCs 

undergo a maturation program that determines their role in the adaptive immune response1. 

A hallmark of DC maturation is expression of major histocompatibility complex molecules 

(MHC), T cell costimulatory molecules (CD40, CD80 or CD86) and cytokines (for example, 

interleukin 23 (IL-23)) in addition to a gene expression program of intracellular factors that 

enable effective antigen uptake, processing and presentation, and T cell activation. In 

addition, inflammatory molecules such as nitric oxide and cytokines such as tumor necrosis 

factor (TNF) and interferon (IFN) underlies DC functions in innate immune responses2, 3. 

DCs have thus attracted attention for engineering or modulating immune-based therapies4.

The transcription factor NF-κB protein RelB is highly expressed in antigen-presenting cells5 

and critical for DC maturation, their functions as antigen-presenting cells6 and DC-mediated 

immunity. Specifically, siRNA-mediated silencing of RelB expression radically altered the 

DC maturation process and resulted in blunted antigen-specific T cell responses in vitro and 

in vivo7. RelB-deficient mice revealed deficiencies in splenic DC subsets8, 9, but other 

critical roles of RelB in DCs may be masked by other cell types, notably T cells that are 

misregulated in these null animals. DC-specific deletion of the RelB-controlling kinase NIK 

resulted in deficient T cell responses10. Indeed, the extent of RelB activation determined the 

tolerance or rejection of allogenic organ transplants by determining the balance of associated 

activated or regulatory T cells7. These insights have prompted investigations of cell-based 

therapies for autoimmune diseases using RelB-silenced DCs11.

Despite the potential clinical importance of RelB, the molecular mechanisms that control its 

activity in DCs have remained unclear. Mouse embryonic fibroblasts (MEFs) have served as 

a useful model system for many signaling studies. Detailed biochemical studies in MEFs 

showed that unlike classical NF-κB (the RelA-p50 dimer), RelB is not activated from a 

latent cytoplasmic pool via the NEMO-dependent, so-called “canonical” signaling pathway, 

but via the so-called “non-canonical” NF-κB pathway that involves proteolysis and 

processing of newly synthesized NF-κB2 (p100)12-14. Consistent with the critical role of 

RelB in DCs, non-canonical signaling pathway components such as NIK and Nf-b2 were 

reported to be required for proper DC functions10, 15. However, RelB was also found to be 

rapidly activated in DCs by canonical pathway stimuli TNF and lipopolysaccharide 

(LPS)16-19 and the canonical signaling pathway component TRAF6 was shown to be 

essential9. These reports suggest that RelB control in DCs may be different than what has 

been described in MEFs. In DCs, the molecular control mechanisms must provide for 

constitutive RelB expression to enable rapid and decisive induction of maturation programs 

following exposure to pathogens or PAMPs, but must limit spontaneous maturation of DCs 

in their absence.

In this study, we elucidated the molecular mechanisms responsible for regulating RelB in 

DCs. We used a Systems Biology approach of iterative computational modeling and 
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quantitative experimental analyses of the NF-κB signaling network in DCs to reveal that 

RelB activity was limited by classical IκBs, IκBα and IκBε, and regulated via the canonical 

pathway. Modeling studies identified two DC-specific control points that render RelB 

subject to regulation by the canonical pathway, and we demonstrated their sufficiency by 

engineering MEFs accordingly to produce DC-like RelB control. Finally, gene expression 

profiling revealed that RelB-dependent gene expression programs regulated by the canonical 

pathway activity control DC-orchestrated immune responses.

Results

Developing a DC-specific model for NFκB signaling

The established view of NF-κB signaling comprises two separate pathways (Fig. 1a)12. The 

canonical pathway, involving the NEMO-dependent kinase IKK, triggers degradation of 

NF-κB inhibitors, the classical IκBs, IκBα, -β, -ε. Resulting activation of latent RelA- and c-

Rel-containing NF-κB dimers controls inflammatory and proliferative gene expression 

programs. The non-canonical pathway, involving the kinases NIK and IKK1, triggers 

processing of p100 to p52 and generation of the RelB-p52 transcription factor, which is 

implicated in cell survival and maturation. To examine NF-κB RelB signaling in DCs in a 

quantitative manner, we developed a mathematical model that describes the formation and 

regulation of RelA and RelB dimers in terms of mass action kinetics (Supplementary Notes). 

The first version of the model involves 41 molecular species, 132 reactions and 53 unique 

kinetic parameters based on published and newly made measurements that constrain the 

model to a single parameter set ensemble; it recapitulates well-documented NF-κB control 

in MEFs20-22, such as prompt LPS-induced RelA activation and delayed lymphotoxin β-

mediated RelB activation (Fig. 1b).

To adapt the model to DCs, we first measured the expression of key NF-κB proteins in bone 

marrow-derived DCs (BMDCs) in comparison to mouse embryonic fibroblasts (MEFs) and 

bone marrow-derived macrophages (BMDMs). Relative to the housekeeping gene β-actin 

(Actb), expression of Rela mRNA was found to be similar in BMDCs, BMDMs and MEFs, 

and the relative amount of RelA protein in these cell types correlated (Fig. 1c, top,). In 

contrast, 3- to 6-fold more Relb mRNA and protein expression were observed in BMDCs 

than MEFs and BMDMs (Fig. 1c, middle, and Supplementary Fig. 1a). p100, encoded by 

the Nf-b2 gene, is known to inhibit RelB. We therefore tested if p100 expression correlated 

with enhanced RelB expression in BMDCs. We did observe 3.5-fold more Nf-b2 mRNA in 

BMDCs, but quantitative immunoblotting showed little difference in the p100 protein 

abundance among the cell types analyzed (Fig. 1c, bottom, and Supplementary Fig. 1b). 

Lack of correlation between the relative p100 protein and RNA abundance suggested that 

p100 degradation may be elevated in BMDCs. We noted a 2.5-fold increase of p52 protein 

in BMDCs, which suggests that both complete p100 degradation and p100 processing to p52 

may be occurring in BMDCs (Fig. 1c, bottom, and Supplementary Fig. 1b). Consistent with 

this hypothesis, protein expression of IKK1, the kinase determining the activity of non-

canonical NF-κB pathway, gradually increased during DC differentiation with concomitant 

p100 processing to p52 (Fig. 1d), potentially via the control of miRNAs23. Our data indicate 
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that DC differentiation involves not only increased expression of RelB, but also elevated 

constitutive activity of the non-canonical NF-κB signaling pathway.

Based on the measurements, we made specific modifications to the computational model to 

recapitulate RelB control in DCs (Supplementary Notes). First, we increased Relb and Nf-b2 

expression 3-fold, which increased the abundance of RelB but not its nuclear localization. 

Then we destabilized p100 by the IKK1-dependent pathway to achieve comparable p100 

expression as in MEFs (Fig. 1c, bottom right). This change resulted in a substantial increase 

of nuclear RelB activity (Fig. 1e). To test experimentally if RelB in DCs primarily localizes 

into the nucleus, we separated BMDCs into cytoplasmic and nuclear extracts but found that 

more than 75% of the total RelB protein was cytoplasmic (Fig. 1f and Supplementary Fig. 

1c,d). Indeed, whereas RelB was more abundant in the cytoplasm of BMDCs than MEFs or 

BMDMs, p100 was not (Fig. 1g). The fact that the mathematical model, which encodes the 

known mechanisms of RelB control, failed to reproduce our experimental observations 

suggested that there may be as yet undescribed regulatory mechanisms that sequester RelB 

in the cytoplasm.

IκBα restrains RelB:p50 and spontaneous DC maturation

To search for inhibitors of RelB in DCs, we immunoprecipitated RelB from BMDC whole 

cell lysates and analyzed the associated proteins (Fig. 2a). As expected, p100, the known 

RelB inhibitor and non-canonical regulator, was found to be associated with RelB. 

Unexpectedly, IκBα and IκBε, the classical IκB inhibitors regulating the canonical NF-κB 

pathway, were also immunoprecipitated with RelB, but IκBβ and p105 were not. 

Interestingly, substantial amounts of p50, known as the binding partner of RelA in the 

canonical pathway, were found in RelB immunoprecipitates, and this complex was primarily 

cytoplasmic (Supplementary Fig. 2a,b). Reciprocal immunoprecipitation of various NF-κB 

inhibitors further confirmed that RelB not only directly interacts with p100 but also 

associates with IκBα and IκBε in BMDCs (Fig. 2b and Supplementary Fig. 2c), and RelA is 

associated with IκBα as expected (Supplementary Fig. 2d). Furthermore, the observations 

that IκB immunoprecipitates did not contain other IκB isoforms confirmed the specificity of 

the antibodies used and that only one IκB isoform associates with each RelB molecule. 

Analyses of the amounts of RelB captured (IP) and remaining in the flowthrough (FT) 

following immunoprecipitation with various IκB antibodies provides a quantitative 

understanding of RelB protein distribution in BMDCs (Fig. 2c). This analysis revealed that 

37% to 45% of RelB was associated with p100 and 12% to 17% with IκBε. Further, we 

found a substantial proportion of RelB (19% to 34%) associated with IκBα, which prompted 

us to investigate the function of this interaction further.

To test whether IκBα may inhibit RelB activity in BMDCs, we took advantage of IκBα-

deficient mice22 and developed two strategies to focus our experimental analysis on RelB 

activity. First, we bred the mice onto a c-Rel-deficient background (Rel−/−), then we 

modified the standard electrophoretic mobility shift assay with κB-site containing probes 

(κB-EMSA) to include shift-ablating antibodies for RelA, resulting in a specific RelB-

EMSA. Using these tools, we found that RelB activity was more than two-fold elevated in 

IκBα-deficient BMDCs (Fig. 2d). Supershift analysis with antibodies, that were shown to be 
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specific for p50 and p52 (Supplementary Fig. 2e), revealed that while control BMDCs 

contained primarily constitutive RelB:p52 activity, ablation of IκBα resulted in a substantial 

increase in active RelB:p50 dimer, rendering RelB:p50 the predominant NF-κB activity in 

IκBα-deficient BMDCs (Fig. 2e). We examined the functional consequences of RelB 

misregulation by monitoring the frequency of matured DCs as indicated by surface 

expression of the activation markers CD86 and MHC II. Strikingly, IκBα-deficiency 

resulted in an increased percentage (42% vs. 28%) of MHCIIhiCD86hi BMDCs in the 

absence of external stimuli (Fig. 2f). Although RelB-deficiency does not affect the 

frequency of MHCIIhiCD86hi BMDCs prior to exposure to maturation stimuli 

(Supplementary Fig. 2f), the inappropriate spontaneous DC maturation phenotype of IκBα-

deficient BMDCs was dependent on RelB, as compound deletion of the Relb gene fully 

reversed the phenotype (Fig. 2f). We then examined the antigen-presenting functions of DCs 

by testing their ability to activate proliferation and cytokine production of antigen-specific T 

cells in DC–T cell co-cultures (Fig. 2g-i). We found that IκBα-deficiency increased the 

antigen-presenting functions in BMDC co-cultures with OVA-responsive T cells exposed to 

ovalbumin peptide, and this effect was largely but not entirely dependent on RelB (Fig. 2h), 

correlating with the partial RelB-dependence of surface MHC expression (Fig. 2f). 

However, when these co-cultures were exposed to ovalbumin protein, which must be taken 

up and processed before being presented, T cell activation showed a near absolute 

dependence on RelB (Fig. 2i), correlating with previous studies of RelB-deficient DCs6, and 

suggesting a specific function for RelB in regulating the antigen uptake and processing 

program of antigen-presenting cells. Together, these data demonstrate that the classical NF-

κB inhibitor, IκBα, not only restrains the expression of RelB by controlling RelA or c-

Rel24, in immature DCs it also has a critical functional role in restraining RelB activity to 

prevent inappropriate spontaneous maturation.

TLRs activate RelB:p50 via the canonical NFκB pathway

To explore the regulatory consequences of RelB-p50 interactions with IκBα and IκBε 

proteins during dendritic cell maturation, we incorporated them into the mathematical model 

as kinetic rate equations, and used the quantitative immunoprecipitation results as 

constraints in a multi-dimensional parameter optimization protocol (Supplementary Notes). 

We simulated NF-κB regulation during Toll-like receptor (TLR)-induced dendritic cell 

maturation using experimentally measured time-course data of the NEMO-dependent IKK 

kinase activity as an input. Such simulations indicated rapid and substantial activation not 

only of RelA but also RelB (Fig. 3a). To test this prediction experimentally, BMDCs and 

MEFs were stimulated with the TLR9 ligand CpG, the TLR2 ligand Pam3CSK4 and the 

TLR4 ligand LPS as well as an agonistic antibody to LTβR to induce the non-canonical NF-

κB pathway. To specifically examine the activation profiles of RelA- and RelB-containing 

NF-κB dimers, we employed the newly developed RelA-EMSA22 and RelB-EMSA using 

shift-ablating antibodies for activation domain-containing Rel proteins (Supplementary Fig. 

3b). RelA activation was similar in BMDCs and MEFs stimulated with TLR ligands (Fig. 

3b, left). Interestingly, we found rapid RelB activation in response to TLR stimuli in 

BMDCs but not in MEFs, although MEFs do activate RelB at later time points when 

stimulated with anti-LTβR (Fig. 3b, right, and Supplementary Fig. 3c). Similarly, rapid 

activation of RelB was observed in splenic DCs stimulated with CpG or Pam3CSK4 
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(Supplementary Fig. 3d). Further, computational simulations suggested that this induced 

RelB activity consists of RelB-p50 rather than RelB-p52 dimer (Fig. 3c, top). 

Experimentally, supershift analyses of nuclear extracts revealed that both RelB-p50 and 

RelB-p52 activities were present in unstimulated conditions, but that CpG stimulation 

primarily increased RelB-p50 activity (Fig. 3c, bottom, and Supplementary Fig. 3e), unlike 

LTβR stimulation of MEFs which induces RelB-p52. These data suggest that during DC 

maturation RelB activation is regulated by the canonical pathway.

A hallmark of canonical signaling is the release of a pre-existing NF-κB dimer, whereas 

non-canonical signaling involves the stimulus-responsive de novo generation of the 

dimer12, 25. In CpG-responding DCs we did not detect increases in protein expression of 

RelB or p50, or Relb mRNA, whereas Nfkbia mRNA, encoding IκBα, was induced more 

than four-fold (Supplementary Fig. 3f). Furthermore, inhibition of protein synthesis by 

cycloheximide did not block CpG-induced RelB activation whereas resynthesis of IκBα 

protein was blocked (Supplementary Fig. 3g), suggesting that de novo RelB protein 

synthesis is not required for CpG-inducible RelB activation. In contrast, immunoblotting 

confirmed that in DCs nuclear accumulation of RelB was accompanied by disappearance of 

cytoplasmic RelB after CpG stimulation, indicative of stimulus-responsive nuclear 

translocation of a pre-existing pool of RelB (Supplementary Fig. 3h). Further, inhibition of 

IKK2 activity, a hallmark of the canonical pathway, by the inhibitor PS-1145 (ref. 26) 

resulted not only in reduced RelA activity and IκBα protein degradation but also in reduced 

RelB activation (Supplementary Fig. 3g,i), suggesting that IKK2 signaling is required for 

RelB activation. We monitored the abundance of known NF-κB inhibitor proteins during the 

CpG time course: the abundance of the potential RelB inhibitors p100 and p105 remained 

unaltered; however, IκBα and IκBε were rapidly degraded, correlating with the activation 

kinetics of RelB activation (Fig. 3d). Importantly, in coimmunoprecipitation assays the 

amount of IκBα associated with RelB decreased in response to CpG (Fig. 3e). Together, 

these data suggest that degradation of IκBα allows for the release of RelB from pre-existing 

IκBα–RelB complexes.

To investigate the role of IκBα in TLR-induced RelB activation, we utilized the 

mathematical model to computationally simulate the effect of IκB deletions on RelB 

activation. We found that in silico deletion of individual inhibitors had little effect, except in 

the case of IκBα (Supplementary Fig. 3j). Even compound deficiency of IκBβ, IκBε and 

IκBδ (which elevated basal RelB activity; Supplementary Fig. 3k), showed robust RelB 

activation in response to canonical pathway activation, as opposed to greatly diminished 

activation in an IκBα-deficient model (Fig. 3f). To test these computational modeling 

predictions, we utilized IκBα-deficient mice22 and generated Nfkbib−/−Nfkbie−/− Nfkb2−/− 

mice. The lack of protein products was confirmed by immunoblotting (Supplementary Fig. 

3l). Indeed, RelB activation was found to be robust in Nfkbib−/− Nfkbie−/−Nfkb2−/− BMDCs, 

whereas IκBα-deficient BMDCs showed a diminished increase and delayed kinetics (Fig. 3g 

and Supplementary Fig. 3m). Together, these data provide genetic and mechanistic evidence 

that IκBα is required for CpG-induced RelB activation in DCs.

Shih et al. Page 6

Nat Immunol. Author manuscript; available in PMC 2013 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Engineered MEFs show DC-like RelB control

We previously showed that hallmarks of the NF-κB signaling system in mature but 

unstimulated DCs are abundant basal RelB expression and basal non-canonical pathway 

activity. To investigate whether these mechanisms are sufficient and what their relative 

contributions may be, we performed computational simulations of RelB activation for a 

range of parameter values governing basal RelB mRNA synthesis and NIK protein half-life. 

These in silico analyses showed that activation of RelB mildly increased when either 

parameter was increased, however, substantial enhancement occurred only when both 

parameters were concomitantly elevated (Fig. 4a). Our simulations suggest that the DC-

specific, rapid RelB activation upon canonical pathway stimulation can be explained by DC-

specific, constitutively elevated RelB mRNA synthesis and non-canonical IKK activity.

To test this model-derived hypothesis experimentally, we asked whether genetically 

engineering these two mechanisms into MEFs may be sufficient to allow for DC-like 

canonical regulation of RelB. We took advantage of MEFs deficient in TRAF3, an E3-ligase 

controlling NIK degradation27, to increase constitutive non-canonical signaling. As further 

suggested by the model simulations, we then transduced a retroviral Relb transgene to 

increase RelB expression about 3-fold relative to untransduced MEFs (Fig. 4b and 

Supplementary Fig. 4a). Remarkably, the engineered MEFs did indeed show substantial 

RelB activation in response to LPS (Fig. 4c) or TNF (Supplementary Fig. 4b), whereas the 

parental control MEFs did not, and RelA activation by these stimuli remained unchanged. 

Furthermore, neither single genetic alteration produced substantial RelB activation, 

indicating that enhanced RelB expression and non-canonical pathway activity function 

synergistically, as predicted by the model, to push RelB into the canonical pathway and 

render it responsive to TLR agonists. Further, antibody supershift and depletion analysis 

(Fig. 4d and Supplementary Fig. 4c) confirmed that canonical signaling primarily activated 

the RelB:p50 dimer (7-fold) rather than the RelB-p52 dimer (2-fold) as observed in DCs and 

predicted by the computational model (Fig. 3c). Overexpression of a RelB-GFP fusion 

protein retrovirally transduced into single cells also revealed nuclear translocation upon TNF 

stimulation in the Traf3−/− context but not in control cells (Fig. 4e).

These iterative computational-experimental studies support a model in which the NF-κB 

protein RelB may function in either non-canonical or canonical pathways (Fig. 4f). When 

dimerized to p100 or p52, RelB is subject to control by the non-canonical pathway; when 

dimerized to p50, RelB may be bound by IκBα and IκBε and is regulated by NEMO-

dependent canonical signals. Our analysis indicates that low constitutive RelB expression 

and non-canonical pathway activity characterizes one steady state (found in MEFs) and 

allows for RelB-p52 activation by stimuli such as LTβ that engage the non-canonical 

pathway (Supplementary Fig. 4d). High constitutive RelB expression and non-canonical 

pathway activity characterizes another steady state (found in DCs) and allow for RelB:p50 

activation by stimuli such as CpG that engage the canonical pathway (Supplementary Fig. 

4e).
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RelB and c-Rel cooperate in TLR-induced DC maturation

Given that RelB-p50 is induced by PAMPs during DC maturation, we wondered whether it 

controls the expression of inflammatory regulators or DC activation markers. Following 

stimulation with the TLR9 ligand CpG or the TLR2 ligand Pam3CSK4 for 24 h, we indeed 

observed reduced surface expression of DC activation markers MHCII, CD86, CD80 and 

CD40 in Relb−/− DCs (Fig. 5a and Supplementary Fig. 5a,b). Further, we found that 

expression of pro-inflammatory genes, Tnf and Il23a, correlated with the kinetics of CpG or 

Pam3CSK4-induced RelB activation and were reduced in Relb−/− DCs (Fig. 5b). In EMSAs, 

activated RelB-p50 was found to be able to bind to DNA probes containing the κB sites 

found in the Tnf and Il23a promoters (Fig. 5c), indicating that RelB-p50 can directly interact 

with these regulatory regions. In vivo, recruitment of RelB to the promoter regions of Tnf 

and Il23a genes following DC maturation with CpG was also observed using the chromatin 

immunoprecipitation assay (Fig. 5d).

We noted that RelB bound to consensus κB site sequences28 associated with the known 

canonical NF-κB pathway effectors, RelA and c-Rel, rather than the unconventional 

sequences previously ascribed to RelB in splenic stromal cells29 or MEFs20. Because single 

knockouts did not show overt defects in CD11c+ cell generation in BM cultures 

(Supplementary Fig. 5d), we tested whether c-Rel and RelB have overlapping functions in 

regulating the DC maturation program by examining gene expression in c-Rel and RelB 

doubly-deficient DCs. Genome-wide expression profiling activated by TLR ligands CpG 

and Pam3CSK4 revealed a group of 157 genes that were statistically significantly down-

regulated in Rel−/−Relb−/− BMDCs (Fig. 5e and Supplementary Table 1). To delineate the 

contribution of RelB in activating these genes, we examined the expression phenotype of the 

50 most severely c-Rel–RelB-dependent genes in Relb−/− BMDCs stimulated with TLR 

ligands. Expression phenotypes in fold induction were calculated between wild-type and 

null DCs, and the order of genes was sorted in increasing degree of RelB-dependency (Fig. 

5f and Supplementary Table 2). This analysis revealed a continuous spectrum of RelB-

dependency rather than two distinct classes (of RelB-dependent and RelB–independent 

genes), suggesting an overlap in DNA interaction specificities between c-Rel and RelB 

dimers. Interestingly, Tnf and Il23a were identified in this analysis as regulated by both 

RelB and c-Rel. Quantitative RT-PCR further validated the requirements of RelB and c-Rel 

in activating Cxcl2, Cd40 and Il1b gene expression (Supplementary Fig. 5c).

Given overlapping functions of c-Rel and RelB in regulating DC gene expression programs, 

we investigated their relationship within the signaling system. Whereas RelA and c-Rel 

proteins were found to be expressed similarly in wild-type BMDCs and those lacking RelB, 

Rel−/− BMDCs showed decreased RelB protein expression (Fig. 6a). Further, Relb 

transcripts were reduced ~40% in Rel−/− BMDC (Fig. 6b). This reduction resulted in 

severely diminished activation of RelB DNA binding activity in Rel−/− BMDCs in response 

to LPS (Fig. 6c). These data indicate that one of the key determinants of RelB control by the 

canonical pathway, namely RelB expression, is in fact controlled by c-Rel (Fig. 6d). The 

feed-forward circuit architecture suggests that expression of RelB in differentiated but 

immature DCs may reflect the exposure of differentiating cells to c-Rel-inducing stimuli. 

We therefore tested whether c-Rel-deficient DCs may also be defective in RelB-responsive 
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gene expression by comparing the expression of RelB-target genes in Rel−/− and 

Rel−/−Relb−/− DCs. Indeed, Rel−/− BMDCs showed reductions of surface marker and 

inflammatory cytokine expression (Supplementary Fig. 6a,b). These data support a model in 

which RelB acts as a downstream mediator of c-Rel in DC activation programs.

Discussion

The present study revealed how canonical and non-canonical NF-κB signaling pathways 

integrate to control the RelB transcription factor during DC development and maturation. 

NF-κB signaling is generally classified as either “canonical” (i.e. NEMO-dependent and 

involving classical IκBα, -β, and -ε) when activated by acute inflammatory agents or “non-

canonical” (i.e. NEMO-independent and involving Nf-b2/p100) when activated by 

developmental signals12. NFκB family members were thought to follow this distinction: 

RelA and c-Rel as effectors of the canonical pathway, and RelB as the effector of the non-

canonical pathway, based on its role as a RelB:p52 transcription factor in secondary 

lymphoid organogenesis. However, we show here that RelB is also an effector of the 

canonical pathway in DCs.

Specifically, we show that during DC differentiation RelB expression is increased, and that 

elevated steady-state non-canonical pathway activity results not only in the expected RelB-

p52 dimer, but in formation of the RelB-p50 dimer. Unlike RelB-p52, which is mostly 

nuclear in immature DCs, RelB-p50 is inhibited by the IκB proteins, IκBα and IκBε, which 

allows for rapid activation of RelB-p50 activity via the canonical pathway upon exposure to 

maturation stimuli. Conversely, with the recent discovery of IκBδ, 21, 22 chronic 

inflammatory conditions were found to render RelA an effector of the non-canonical 

signaling pathway. Thus, both RelA and RelB are potential effectors of the canonical and 

non-canonical signaling pathways; whether they are functionally relevant effectors is 

determined by the physiological steady state of the NF-κB signaling system.

Our observations imply that RelB-p50 and RelB-p52 present different molecular surfaces to 

IκB proteins, providing physiological relevance to previous studies of protein interaction 

specificities30, 31. Similarly, the DNA interaction characteristics of RelB-p50 and RelB-p52 

may be distinct32, 33. RelB-Arg125 within the RelB-p52 dimer makes an additional base 

contact with DNA that allows RelB-p52 to recognize a broader range of κB sites. This may 

account for the RelB-p52 specific function in regulating chemokines involved in secondary 

lymphoid organeogenesis, such as secondary lymphoid tissue chemokine (SLC), EBI1 

ligand chemokine (ELC), B lymphoblastoid cell chemokine (BLC), and stromal cell-derived 

factor 1α (SDF-1α)20, 29. In contrast, RelB-p50 interacts with DNA sequences similarly to 

RelA-p50 and a role for RelB in TNF production, GM-CSF and Bcl-xl expression has been 

reported34, 35. Together, these studies suggest that the dimerization partner of RelB 

determines not only the signaling pathway that RelB is responsive to, but also the RelB 

target gene program.

Why then, would DCs employ RelB as an effector of the canonical NF-κB signaling 

pathway along with RelA and c-Rel? One possibility is that RelB-p50 target genes are in 

fact distinct from those controlled by c-Rel or RelA. Our transcriptomic profiling suggests 
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overlap between c-Rel- and RelB-dependent gene programs, but c-Rel turned out to control 

RelB expression, thus other tools are required to address the question of RelB-p50 vs. cRel-

p50 specificity. A second possibility is that the stimulus-responsive dynamic control of RelB 

is distinct from RelA or c-Rel. Although RelB-p50 is inhibited by IκBα in resting cells, it 

may make for a poorer substrate for IκB feedback control than RelA, which is efficiently 

stripped off the DNA by IκBα 36. We speculate that the involvement of RelB-p50 in DC 

biology, ensures irreversible execution of a terminal maturation/activation program in 

response to transient PAMP exposure.

Mathematical modeling, which is used here to describe biochemical reactions in terms of 

kinetic rate equations, lends itself as a tool for studying the regulation of signaling networks. 

Iteratively refined mathematical models of the NF-κB–IκB system have addressed the 

dynamic and homeostatic control of the NF-κB RelA-p50 dimer by IκB proteins in 

fibroblasts21, 22, 37-41. Within this study, we have developed the first kinetic model that 

accounts for the generation and regulation of multiple NF-κB dimers, namely RelA- and 

RelB- containing dimers. Further, we contrasted the steady-state and dynamic control 

mechanisms in two cell types, MEFs and DCs, and found that the key biochemical 

differences are two kinetic rate constants (Relb mRNA synthesis and NIK halflife); a 3-fold 

increase was sufficient to shift the in silico model from MEF to DC-like regulation of the 

NF-κB signaling system. This prediction was confirmed experimentally by genetically 

engineering MEFs to produce DC-like RelB control. Importantly, there was no need to 

invoke cell-type-specific protein interaction specificities or any other cell-type-specific 

molecular mechanism. The results indicate that cell-type-specific quantitative control of the 

steady state of a signaling system may determine seemingly qualitative cell-type-specific 

properties, such as DC-specific RelB activation by TLRs. As such, kinetic modeling and a 

quantitative analysis of signaling systems may serve to generate hypotheses not only for 

mechanistic studies but also for the development of DC-mediated therapeutics.

Methods

Reagents

GM-CSF and IL-4 were from Peprotech. 0.1 μM CpG (Invivogen), 500 ng/ml Pam3CSK4 

(Invivogen), 100 ng/ml LPS (Sigma, B5:055) and 0.5 μg/ml LTβR agonist (Biogen, Inc.) 

were used to stimulate cells. Cycloheximide and IKK2 inhibitor (PS-1145) were from 

Sigma. Antibodies to RelA (sc-372), RelB (sc-226), c-Rel (sc-70), IκBα (sc-371), IκBβ 

(sc-945), IκBε (sc-7155), IKK1 (sc-7606), TRAF3 (sc-6933), USF-2 (sc-861), α-tubulin 

(sc-5286), β-actin (sc-1615) and CD16/CD32 (sc-18867) were from Santa Cruz 

Biotechnology. p105/p50, p100/p52 and antibody to p100 C-terminus were from National 

Cancer Institute, Biological Resources Branch, Frederick, MD. NIK antibody (4994) was 

from Cell Signaling. Immunoprecipitation beads and HRP-conjugated anti-rabbit secondary 

antibody were from eBioscience.

Animals and Cell Culture

Wild-type and gene-deficient C57BL/6 mice were maintained in accordance with the 

Animal Care Program at UCSD. Nfkbia−/−Tnf−/− Rel−/− and Nfkbia−/−Tnf−/− Rel−/−Relb−/− 
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mice were generated by cross-breeding Nfkbia−/−Tnf−/− with Rel−/− and Relb−/− mice. 

Nfkbib−/− Nfkbie−/−Nfkb2−/− mice were generated by cross-breeding Nfkbib−/−, Nfkbie−/−, 

and Nfkb2−/− mice. Rel−/−Relb−/− mice were generated by cross-breeding Rel−/− and Relb−/− 

mice. Primary MEFs were generated from E12.5-14.5 embryos. Bone marrow-derived 

macrophages (BMDMs) and bone marrow-derived dendritic cells (BMDCs) were made 

from bone marrow suspensions prepared from mouse femurs. 2 × 106 BM cells seeded on 10 

cm plate were cultured for one week with L929-conditioned DMEM medium to derive 

BMDMs or cultured for 6–11 days with 20 ng/ml GM-CSF and 10 ng/ml IL-4 to derive 

BMDCs. BMDC medium was replaced on day 3, 6, 8 and floating cells were collected and 

subjected to experimental analyses as previously described42. Typically, day 6-7 BMDCs 

were used to investigate TLR-induced DC maturation and day 9-11 BMDCs for spontaneous 

DC maturation studies.

Splenic DC purification

Spleens were cut into small fragments and digested with collagenase D (2 mg/ml, Roche) for 

30 min at 37°C followed by incubation with 10 mM EDTA pH 8.0 for 5 min. Single-cell 

suspension of splenocytes were enriched for CD11c+ cells by immunomagnetic cell sorting 

using MACS CD11c microbeads (Miltenyi Biotec) according to manufacturer’s protocol.

Antibody Staining and Flow Cytometry

Single-cell suspension were collected and blocked with anti-mouse CD16/CD32 in PBS 

containing 5% FCS for 10 min. Cells were stained with 7-AAD to exclude dead cells and 

indicated antibodies for DC maturation analyses. All antibodies were purchased from BD 

Pharmingen: anti-CD11 (HL3), anti-CD40 (3/23), anti-CD80 (16-10A1), anti-CD86 (GL-1), 

and anti-IAb (AF6-120.1). Stained cells were acquired in either a FACSCalibur (BD 

Biosciences) or an Accuri C6 and data analysis was performed with FlowJo software.

Antigen Presentation in DC:T cell co-cultures

GM-CSF derived bone marrow DCs were pulsed with 200 μg whole ovalbumin (Sigma, 5 

μM OVA 323-339 (OT-II) peptide (Anaspec, Inc.), or media alone for 2 h at 37 °C. Naive 

CD4+T cells (5 × 104 cells/well) were obtained by negative enrichment (>90% purity; Stem 

Cell Technologies) from spleens of B6.Cg-Tg (TcraTcrb)425 Cbn/J mice transgenic for 

ovalbumin 323-339 specific αβTCR (Jackson Laboratory) and labeled with CFSE (Sigma). 

DCs were washed and cultured with CFSE-labeled CD4+T cells (5 × 104 T cells/well) at the 

indicated DC:T cell ratios as described43. 72 h later, T cells were re-stimulated with 5 μM 

OT-II peptide for 5 h in the presence of brefeldin A and examined for CFSE dilution and 

production of TNF, and IL-2 by flow cytometry (BD LSRII). Data were analyzed using 

FlowJo software (Treestar, Inc.).

Biochemical Analyses

Whole cell extracts were prepared in RIPA buffer and normalized for total protein or cell 

numbers before immunoblot analysis. Cytoplasmic and nuclear extracts from BMDMs and 

BMDCs were prepared by high salt extraction buffer (Buffer A: 10 mM HEPES pH 7.9, 10 

mM KCl, 0.1 mM EGDA, 0.1 mM EDTA; Buffer C: 20 mM HEPES pH 7.9, 420 mM NaCl, 
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1.5 mM MgCl2, 0.2 mM EDTA, 25% glycerol). Immunoprecipitation-immunoblotting 

analysis, electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation 

(ChIP) were performed as previously described21, 44. In EMSA focusing on RelB-DNA 

binding activity, nuclear extracts were ablated of RelA and c-Rel-containing DNA binding 

activities by pre-incubating them with RelA and c-Rel antibodies (Fig. 3b and 

Supplementary Fig. 3b). Similarly, nuclear extracts were pre-incubated with RelB and c-Rel 

antibodies when RelA DNA binding activity was the focus (Fig. 3b). Antibody-shift ablation 

analysis (for RelB, p50 and p52) was performed as previously described22 and the 

specificities of antibodies were confirmed (Supplementary Fig. 2e). RNA extraction was 

performed with RNAeasy Mini Kit (Qiagen) and purified RNA was used for first strand 

cDNA synthesis with oligo dT and SuperScript RT II (Invitrogen). Quantitative RT-PCR 

was performed with SYBR Green PCR Master Mix reagent (Stratagene) and Eppendorf 

Mastercycler realplex system using the Δ(ΔCt) method with β-actin as normalization control 

and relative to signals in MEFs or respective basal levels to derive fold induction. qRT-PCR 

and ChIP data shown are representative of three independent experiments (mean ± SD). 

Quantitation of mRNA and protein abundance are representative of four independent 

experiments.

Retrovirus-Mediated Gene Transduction

RelB- or RelB-GFP expressing pBabe-puro constructs were generated by standard methods, 

and co-transfected with pCL.Eco into 293T cells with Lipofectamine™ 2000 transfection 

reagent (Invitrogen) for 48 h. Supernatant was filtered and used to infect MEFs. Transduced 

cells were selected with puromycin hydrochloride (Sigma). Images were acquired with a 

Zeiss Axio Z1 microscope.

Microarray Analysis

RNA was collected from one set of timecourse experiments (1, 8, 24 h) using WT, Relb−/−, 

and Rel−/−Relb−/− BMDC stimulated with 0.1 μM CpG (Invivogen) or 500 ng/ml 

Pam3CSK4. Labeling and hybridization to the Illumina v.2 gene expression chip was 

performed by UCSD Biogem core facility. The raw data was preprocessed and normalized 

by mloess method45. Genes differentially regulated between WT and Rel−/− Relb−/− BMDCs 

during TLR stimulation time courses were analyzed by two-class paired SAM (Significant 

Analysis of Microarray)46 implemented in the MeV program (Multiple expression 

Viewer)47. Class pairing was defined by corresponding time points between WT and 

Rel−/−Relb−/− BMDCs. Differentially expressed genes identified at the false discovery rate 

below 5% were deemed significant. Genes with at least two-fold induction during TLR-

elicited DCs maturation are listed in Supplementary Table 1. In heatmaps, expression values 

of each gene were normalized to its maximum fold induction and clustered by hierarchical 

clustering with Euclidian distance (Fig. 5e). For phenotyping analyses (Fig. 5f and 

Supplementary Table 2), the average-fold induction26 in log2 scale across either timecourse 

(CpG and Pam3CSK4) was calculated for different genotypes, e.g. FIWT, FIRel−/−, and 

FIRel−/−Relb−/−. The RelB phenotype was defined as FIWT-FIRel−/−, the c-Rel-RelB 

phenotype was defined as FIWT- FIRel−/−Relb−/−.
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Computational modeling

The RelA–RelB mathematical model (Version 5.0) involving mass action kinetic equations 

was developed based on a previously published model (Version 3.1)22 and experimental 

data20 that allowed for constraints-based parameterization. Refinement of the model 

(Version 5.1) and MEF- and DC-specific parameterization were based on experimental data 

presented in this paper. Computational simulations were performed in Matlab using the 

ode15s solver. Detailed descriptions are included in Supplemental Notes and biochemical 

reactions are listed in Supplementary Tables 3, 4.

Statistics

Statistical significance was calculated by two-tailed Student’s t test with Prism software 

(GraphPad). Error bars were shown as either s.d. or s.e.m. as indicated.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A MEF-based kinetic model does not account for RelB regulation in DCs
(a) Schematic of the distinct canonical and non-canonical NF-κB pathways identified in 

MEFs12. Inflammatory signals lead to activation of the NEMO-containing kinase complex 

that triggers IκBα, -β, -ε degradation and the release of RelA-p50 into the nucleus. 

Developmental signals activate NIK–IKK1 kinase complex that results in p100 processing 

which allows for RelB-p52 nuclear translocation. (The IκBδ pathway is not shown for sake 

of clarity21 ).

(b) Computational simulations using the MEF-based kinetic model version 5.0-MEF (see 

Supplementary Notes for details). The timecourse for nuclear RelA or RelB activity induced 

by LPS or LTβ stimulation are shown.

(c) Quantitation of Rela, Relb and Nf-b2 transcript (left, by qRT-PCR) and of RelA, RelB, 

p100 and p52 protein (right, by immunoblot) numbers per cell in resting MEFs, BMDMs 

and BMDCs, graphed relative to the respective value in MEFs.

(d) IKK1 and p52 abundance increase during DC differentiation. Whole cell extracts 

prepared from BMDC cell culture during a differentiation time course were subjected to 

IKK1 and p100/p52 immunoblotting.

(e) in silico simulation of RelB cellular distribution using the mathematical model version 

5.0-MEF describing NF-κB activation in MEFs as in Figure 1b or in model version 5.0-DC 

incorporating DC specific parameters derived from Figure 1c and 1d (see Supplementary 

Notes for details).

(f) Bar graph showing quantitation of RelB molecules per WT BMDC distributed in 

cytoplasmic (CE) and nuclear (NE) fraction. Quantitation methods are described in 

Supplementary Fig. 1.

(g) RelB, RelA and p100 immunoblots of cytoplasmic extracts prepared from the indicated 

cell types.

Data shown are representative of at least three independent experiments (error bars, s.d.).
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Figure 2. IκBα binding RelB-p50 limits spontaneous DC maturation
(a) RelB interacts with canonical IκBα and IκBε. RelB immunoprecipitates from whole DC 

extracts were probed for indicated interaction partners by immunoblotting. Fraction of 

proteins bound to RelB (IP) was compared to whole cell lysates (IN) and flow-through (FT). 

IgG immunoprecipitates served as an antibody specificity control.

(b) IκBα and IκBε interact with RelB. IκB proteins were probed for their interaction with 

RelB using co-immunoprecipitation. Immunoblotting with other IκB family members served 

as negative controls.

(c) NF-κB RelB DNA binding activities revealed by EMSA with nuclear extracts collected 

from Rel−/−Tnf−/−, Nfkbia−/−Tnf−/− Rel−/−, and Nfkbia−/−Tnf−/− Rel−/− Relb−/− BMDCs.

(d) Quantitation of total RelB activity, RelB-p50 and RelB-p52 in immature BMDCs from 

indicated genotypes as revealed by EMSA. Band intensities of the antibody-ablation 

analysis (bottom) were summed and normalized to the total (panel c) and graphed relative to 

total RelB activity in WT BMDCs.

(e) Constitutive expression of maturation markers is controlled by RelB. Fractions of 

CD11c+ BMDCs determined by FACS to be MHCIIhiCD86hi and MHCIIloCD86lo in 

indicated genotypes. Dot plots indicate the frequency of MHCIIhiCD86hi dendritic cells 

derived from GM-CSF-cultured Rel−/−Tnf−/− (n=5), Nfkbia−/−Tnf−/− Rel−/− (n=6), and 

Nfkbia−/−Tnf−/− Rel−/− Relb−/− (n=3) bone marrow cells in individual experiments. P*<0.01

(f-h) T-cell proliferation in DC:T cell co-cultures using Tnf−/−, Nfkbia−/−Tnf−/−, and 

Nfkbia−/− Tnf−/−Relb−/− BMDCs exposed to medium (f), OVA peptide (g) or OVA protein 

(h). Top, raw FACS data of CFSE-labeled T-cells stained for IL-2, showing proliferation-

associated dye-dilution and IL-2 production. Middle, fraction of divided cells and, bottom, 
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fraction of T-cells positive for the indicated activation-associated cytokine, graphed as a 

function of the DC:T cell ratio.

Data shown in (a) (b) (c) (e) are representative of at least three independent experiments. 

Data in (f-h) are the average of duplicate leukocyte reactions produced for each of two 

independent BMDC cultures.
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Figure 3. RelB-p50 is rapidly activated during TLR-mediated DC maturation
(a) Computational simulations of LPS-induced RelA and RelB activity during a 3 hour time 

course using the refined mathematical model version 5.1-DC.

(b) NF-κB RelA (left) and NF-κB RelB (right) DNA binding activities monitored by 

EMSA. Nuclear extracts from WT BMDCs or WT MEFs activated by indicated stimuli 

were collected and subjected to EMSA. Equal amounts of nuclear proteins from BMDCs or 

MEFs were loaded and exposure of images was adjusted to reveal similar RelA peak activity 

in BMDCs and MEFs.

(c) Computational simulations of RelB-p50 and RelB-p52 activities upon LPS stimulation 

that sum up to total nuclear RelB activity shown in panel A (top). Quantitation of RelB-p50 

and RelB-p52 activities prior and after CpG stimulation were graphed relative to their 

respective basal activity (bottom).

(d) IκB protein expression profiles induced by CpG. Whole cell extracts prepared from WT 

BMDCs were subjected to immunoblotting against antibodies as indicated.

(e) Association of IκBα to RelB was monitored during a CpG time course by examining 

RelB immunoprecipitates from CpG-stimulated WT BMDCs. Immunoprecipitation with 

Relb−/− extracts (C) serves as a control, indicating specificity of RelB antibody.

(f) Computational simulations of CpG-induced RelB activation in mathematical models, 

based on version 5.1-DC that were deficient in the indicated proteins.

(g) CpG-induced NF-κB RelB DNA binding activities in indicated gene-deficient BMDCs 

were monitored by EMSA (top). Signals were quantitated and graphed relative to respective 

resting cells (bottom).

Data shown in (b) (d) (e) (g) are representative of at least three independent experiments. 

Data shown in (c) is representative of two independent experiments (error bars: s.d.)
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Figure 4. Determinants of RelB’s responsiveness to canonical signals
(a) Heatmap depicting how LPS-inducibility of RelB is a function RelB synthesis and NIK 

halflife. The results derived from in silico simulations of peak nuclear RelB-p50 DNA 

abundance (nM) during an LPS time course when modulating the halflife of NIK (y-axis) 

and the mRNA synthesis rate of RelB (x-axis).

(b) Immunoblots with indicated antibodies of whole cell extracts collected from control or 

Traf3−/− MEFs reconstituted with empty vector (EV) or RelB transgene (RelB-TG). The top 

band in the RelB blot represents exogenous protein whereas the bottom band represents 

endogenous RelB protein.

(c) NF-κB RelB (top) and RelA (bottom) DNA binding activities induced by LPS were 

monitored with nuclear extracts collected from control or Traf3−/− MEFs transduced with 

empty vector (EV) or a RelB transgene (RelB-TG).

(d) Quantitation of RelB-p50 and RelB-p52 activities in LPS-stimulated Traf3−/−(RelB-Tg) 

MEFs; signals were graphed relative to respective RelB-containing dimers basal activity.

(e) Single cell data at indicated time points7 of the nuclear localization of a retrovirally 

expressed RelB-GFP fusion protein in response to TNF stimulation of control or Traf3−/− 

MEFs.

(f) Schematic depicting the regulation of RelB by non-canonical or canonical stimuli. RelB 

may either dimerize with p52 in response to stimulus-induced non-canonical stimuli, or 

dimerize with p50 and become responsive to canonical stimuli. Cell-type-specific steady-

state control of RelB expression and non-canonical pathway activity determines which 

stimuli activate RelB: at low steady-state levels, RelB is responsive to non-canonical stimuli 

as reported in MEFs; at high steady-state levels RelB will dimerize not only p52 but also 

p50, and becomes responsive to canonical stimuli via IκBα and IκBε control.

Data shown here are representative of two independent experiments (error bars: s.d.).
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Figure 5. RelB regulates DC activation markers and inflammatory mediators
(a) Analysis of cell surface maker expression in WT and Relb−/− BMDCs in response to 

CpG. Cells untreated (grey) or treated with CpG (blue) or Pam3CSK4 (red) for 24 hours 

were subjected to FACS analysis.

(b) Gene expression analyses of WT and Relb−/− BMDCs stimulated with CpG or 

Pam3CSK4 for the indicated time course by qRT-PCR. Signals were graphed relative to 

respective resting cells.

(c) EMSA with nuclear extracts harvested from CpG-stimulated WT BMDCs using DNA 

probes containing the κB-site containing promoter sequence from Tnf or Il23a gene.

(d) Chromatin immunoprecipitation analyses with RelB or IgG control antibodies using cell 

extracts from WT BMDCs collected prior or 75 minutes after stimulation with CpG. 

Quantitation of DNA precipitated was performed by qPCR with primers corresponding to 

the promoter region of indicated genes and graphed relative to input signals.

(e) Microarray mRNA expression analysis from WT and Rel−/−Relb−/− BMDCs stimulated 

with CpG and Pam3CSK4 for indicated time points. Heatmap showing the expression 

pattern from one experiment in a (log2) fold induction scale of 157 significant down-

regulated genes in Rel−/−Relb−/− BMDCs identified by Significant Analysis of Microarray 

(SAM). Color scale “1.0” denotes normalized highest expression value of the given gene 

across time courses.

(f) RelB and c-Rel regulate overlapping sets of genes. The expression phenotype caused by 

RelB-deficiency was determined for the 50 genes with the most severe expression defect in 

Rel−/−Relb−/− BMDCs. The list of genes was sorted expression difference between WT and 

Relb−/− BMDCs.
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Data shown in (a) (b) (c) (d) are representative of at least three independent experiments 

(error bars: s.e.m.). *P<0.05, **P<0.01.
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Figure 6. RelB may mediate cRel functions in DCs
(a) Immunoblot for RelA, RelB and cRel of whole cell extracts prepared from indicated 

gene-deficient BMDCs. α-tubulin serves as loading control.

(b) Amount of Relb transcripts was compared by qRT-PCR with mRNA collected from wild 

type and Rel−/− BMDCs and graphed relative to WT cells.

(c) NF-κB DNA binding activities of RelB, c-Rel and RelA induced by LPS in indicated 

gene-deficient BMDCs were monitored by EMSA.

Data shown are representative of three independent experiments (error bars: s.e.m.). 

*P<0.01.
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