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Recent efforts to ensure the reliability of computational model-based predictions in

healthcare, such as the ASME V&V40 Standard, emphasize the importance of uncertainty

quantification (UQ) and sensitivity analysis (SA) when evaluating computational models.

UQ involves empirically determining the uncertainty in model inputs—typically resulting

from natural variability or measurement error—and then calculating the resultant

uncertainty in model outputs. SA involves calculating how uncertainty in model outputs

can be apportioned to input uncertainty. Rigorous comprehensive UQ/SA provides

confidence that model-based decisions are robust to underlying uncertainties. However,

comprehensive UQ/SA is not currently feasible for whole heart models, due to numerous

factors including model complexity and difficulty in measuring variability in the many

parameters. Here, we present a significant step to developing a framework to overcome

these limitations. We: (i) developed a novel action potential (AP) model of moderate

complexity (six currents, seven variables, 36 parameters); (ii) prescribed input variability

for all parameters (not empirically derived); (iii) used a single “hyper-parameter” to study

increasing levels of parameter uncertainty; (iv) performed UQ and SA for a range of

model-derived quantities with physiological relevance; and (v) present quantitative and

qualitative ways to analyze different behaviors that occur under parameter uncertainty,

including “model failure”. This is the first time uncertainty in every parameter (including

conductances, steady-state parameters, and time constant parameters) of every ionic

current in a cardiac model has been studied. This approach allowed us to demonstrate

that, for this model, the simulated AP is fully robust to low levels of parameter

uncertainty — to our knowledge the first time this has been shown of any cardiac

model. A range of dynamics was observed at larger parameter uncertainty (e.g.,

oscillatory dynamics); analysis revealed that five parameters were highly influential in

these dynamics. Overall, we demonstrate feasibility of performing comprehensive UQ/SA

for cardiac cell models and demonstrate how to assess robustness and overcomemodel
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failure when performing cardiac UQ analyses. The approach presented here represents

an important and significant step toward the development of model-based clinical tools

which are demonstrably robust to all underlying uncertainties and therefore more reliable

in safety-critical decision-making.

Keywords: simulation, electrophysiology, credibility, robustness, canine

1. INTRODUCTION

Computational modeling and simulation (M&S) is a
powerful tool for medical product design optimization,
safety evaluation, clinical trial reduction, and enabling precision
medicine (Viceconti et al., 2016; Faris and Shuren, 2017;
Morrison et al., 2018). Lately, several initiatives have aimed
to advance biomedical M&S by developing and promoting
best practices and methods for rigorously assessing the
credibility–that is, the trustworthiness–of computational models.
These include: the ASME V&V40 Standard (ASME V&V 40,
2018), a new consensus Standard developed by the medical
device community which outlines a framework for credibility
assessment for models with medical device applications;
reports advocating for formalized methods and education
into credibility assessment (National Research Council, 2012);
and research related to model credibility across a variety of
biomedical fields (Hariharan et al., 2015; Hicks et al., 2015; Collis
et al., 2017; Pathmanathan et al., 2017; Patterson and Whelan,
2017; Mulugeta et al., 2018). Demonstrating or evaluating
model credibility is challenging for models with biomedical
applications, but it can be especially difficult for physiological
models—models that simulate physiological function, as
opposed to traditional physics-based models such as solid
mechanics or fluid dynamics models. One important specialty
within physiological modeling is cardiac modeling. Cardiac
electrophysiology (EP) models have been an essential tool for
basic cardiac research for over half a century and recently have
transitioned into regulatory and clinical applications (Niederer
et al., 2018). In particular, the Comprehensive in vitro Pro-
arrhythmia Assay (CiPA) program proposes to replace the
long QT study based paradigm for assessing cardiotoxicity of
novel compounds with a series of in vitro and in silico tests,
one of which uses simulation of drug effects on the action
potential using a cardiac cellular model (Li et al., 2018; Strauss
et al., 2018). Another notable recent breakthrough is research
demonstrating the clinical predictive capability of personalized
whole-heart models in patient stratification (Arevalo et al., 2016)
and other clinical cardiology applications (Ashikaga et al., 2013).
Clinical trials are currently underway evaluating the ability of
personalized heart models to guide ablation therapy1. In parallel,
there has been growing interest and research into cardiac model
credibility (Niederer et al., 2011; Pathmanathan and Gray, 2013,
2018; Krishnamoorthi et al., 2014; Mirams et al., 2016).

One important aspect to model credibility assessment is the
study of uncertainty. Parameters in physiological models are

1https://clinicaltrials.gov/ct2/show/NCT03536052

often uncertain due to either measurement uncertainty and/or
natural physiological variability. Uncertainty quantification
(UQ) and sensitivity analysis (SA) are two related tasks
for studying uncertainty. UQ is the process of determining
the uncertainty in model inputs, and then estimating the
resultant uncertainty in model outputs. SA appears to have
different interpretations to different communities (discussed
in more detail below), but fundamentally is the study of
which inputs most affect a model output. Overall, UQ and
SA test the robustness of model predictions, for example
revealing if predictions are unacceptably wide-ranging when
input uncertainty is accounted for. UQ replaces a traditional
deterministic approach to modeling where inputs and outputs
take fixed values, with a probabilistic approach in which
uncertainty in inputs and outputs are known, thereby providing
a deeper understanding of system behavior. For example, UQ
in weather forecasting leads to probabilities of weather events
(e.g., probability of rain) being presented to the public, which is
much more useful that simple predictions (e.g., “will rain”/“will
not rain”). Therefore, the ASME V&V40 Standard asks the
analyst to consider whether UQ and SA was performed and
how comprehensive the analysis was (ASME V&V 40, 2018).
Similarly, there is an increased awareness of the need for UQ
by funding agencies, for example a recent call for physiological
models to support the development of the next generation of
neuromodulation devices2 states one goal as “build uncertainty
quantification into composite model outputs by propagating
uncertainties from all component model parameters” [emphasis
added]. However, there are numerous challenges to performing
UQ and SA for physiological models, and UQ in particular
is not yet well-established. In this paper, we will use a novel
cardiac cell model and study the impact of interacting uncertainty
in all model parameters, on the simulated action potential.
Before explicitly stating our aims, we introduce UQ and SA
in more detail, and provide a motivating discussion of what
‘comprehensive’ UQ for whole heart modeling would require.

1.1. Uncertainty Quantification and
Sensitivity Analysis
There are two stages to UQ, which we will refer to as
uncertainty characterization (UC) and uncertainty propagation
(UP). Uncertainty characterization is the quantification of the
uncertainty in model inputs. Here, “inputs” is a broad term for
any quantity in themodel whose value is based on real-world data.
This includes model parameters, boundary and initial conditions,
loading conditions, underlying geometry andmaterial properties.

2https://commonfund.nih.gov/sites/default/files/RM16-008SPARC4DRCOT3.pdf
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The most common reasons for uncertainty in a model input
are measurement uncertainty (e.g., the inability to measure a
quantity exactly) and natural variability (e.g., variability in a
physiological quantity across individuals in a population). The
aim of UC is to determine probability distributions describing
each of the inputs. This is generally a data-driven task that can
be especially difficult for complex models with large numbers
of parameters, where even estimating mean values can be
challenging. The second stage, uncertainty propagation, involves
propagating the input uncertainty through the model to derive
the resultant uncertainty in important model outputs. This
can be a computationally-challenging task, since it typically
requires large numbers of simulations to be run. For a detailed
introduction to UQ see Smith (2013).

There appear to be different interpretations of sensitivity
analysis by different communities, and unfortunately no
consistent terminology for distinguishing between them. In
one interpretation, SA uses the distributions for model inputs
(identified in the UC stage as discussed above), and involves
calculating how the uncertainty in the model output can be
apportioned to the uncertainties in inputs (Saltelli et al., 2008).
In this interpretation, SA and UP are complementary activities:
first UC is performed, then UP calculates the output uncertainty
and SA identifies which inputs are responsible for that output
uncertainty. This is global sensitivity analysis (GSA), since the
entire range of permissible parameter values is considered. Local
sensitivity analysis (LSA), on the other hand, focuses on how
model outputs are affected when parameters are perturbed from
a nominal set of values. GSA using empirically-derived input
distributions provides a fundamentally different measure of
sensitivity compared to LSA, since it uses information derived
from experiment that is not used in LSA3. For a detailed
introduction to SA see Saltelli et al. (2008).

1.2. Hypothetical Example of Rigorous
Comprehensive UQ for a Whole Heart
Model
To consider what rigorous fully comprehensive UQ might entail
for a whole-heart EP model, first consider the components
of such models as illustrated in Figure 1. Whole-heart models
usually include a cellular action potential (AP) model (“cell
model”), which are typically sets of ordinary differential
equations (ODEs), and comprised of multiple sub-models of
e.g., ion channels and sub-cellular processes. Notable human
cell models proposed in recent years include the ten Tusscher
model [TP06] (ten Tusscher and Panfilov, 2006) (system of 19
ODEs), the O’Hara & Rudy model [OR11] (O’Hara et al., 2011)
(system of 41 ODEs) and the Grandi model (Grandi et al., 2010)
(38 ODEs). These cell models are coupled to partial differential
equations (PDEs) governing electrical wave propagation, usually

3For example, consider the simple model y(x1, x2) = x1 + 10 x2. LSA would
conclude that y is 10 times more sensitive to x2 than x1. GSA, however, requires
information on the distributions of the inputs. Suppose x1 ∼ N(0, 1) and x2 ∼

N(0, 0.01). Then uncertainty propagation would reveal that y ∼ N(0, 1.1), and
GSA would reveal that with 91% of y’s variance can be attributed to the uncertainty
in x1 and 9% to the uncertainty in x2.

either the monodomain or bidomain equations (Clayton et al.,
2011). These are solved over a computational mesh representing
the heart anatomy. To understand what a comprehensive UQ
analysis might entail for a whole-heart model, consider all the
inputs listed in Figure 1, using the broad definition of input as
any quantity whose value is derived from real world data. All of
these inputs are uncertain to some degree, and therefore a fully
comprehensive UQ analysis, loosely equivalent to analyses done
in other fields, would require characterization of uncertainty or
variability in all of these inputs. This includes all the physiological
parameters within the cell model (often numbering in the
hundreds, for example the OR11model has over 250 parameters),
the geometry of the heart (for which there may be significant
variability in shape and size across the human population),
and the fiber-sheet orientation (often highly uncertain due
to difficulty in measurement in vivo). Characterizing the
uncertainty in all of these quantities is an immense experimental
challenge. Moreover, a full uncertainty characterization also
requires correlations between these quantities to be identified
across the human population. For example, there is evidence for
correlation of maximal conductances of INa and IKr (Milstein
et al., 2012) and half-activation and half-inactivation voltages
INa (Clerx, 2017). The inability or experimental difficulty in
measuring such correlations is one of the biggest factors
prohibiting comprehensive UQ with cardiac models. Correctly
accounting for correlation may be key to successful UQ analysis,
because, as implied in Figure 1, neglecting correlations may
lead to overly wide ranging output distributions (through
oversampling of non-physiological regions of parameter space).

Even if the uncertainty in all the model inputs could
somehow be characterized, uncertainty propagation raises two
further challenges. This first is the computational expense
of running a massive number of whole heart simulations to
propagate the input uncertainty through the model. Whole heart
simulations are computationally expensive and generally require
high performance computing resources; running millions (or
more) of simulations to obtain estimates of model outputs is
likely to be prohibitively expensive. Second, as the inputs are
varied, it is very likely that some of the simulations will fail in
some way or display a variety of behaviors (e.g., repolarization
failure). Suppose this occurs during a formal UQ analysis for
which the aim is to demonstrate that a model-derived conclusion
(e.g., a clinical decision made using the model) is robust
to the underlying uncertainties. If model failure occurs, the
conclusion/decision is not robust to the input uncertainties. The
second challenge is that with such complexmodels and such large
parameter dimensions, it may be unclear how to resolve this issue
when it occurs.

1.3. Previous Work and Study Aims
It is debatable as to whether anything similar to the above
hypothetical example will ever be attained, but it is important
to recognize that it is loosely equivalent to the level of
UQ rigor used in other fields where modeling is used in
safety critical decision making (Oberkampf and Roy, 2010).
Currently, nothing that in any way resembles the above has
been performed. Previous UQ/GSA research on cardiac cell
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FIGURE 1 | Top: overview of the wide range of inputs (quantities derived from experimental data) in whole heart models, all of which are uncertain to some extent,

together with model equations and sample output. Bottom: comparison of traditional approach (no UQ), UQ neglecting potential correlations between model inputs,

and UQ accounting for correlation.

models has typically involved a relatively small number of
parameters in comparison with the total number of parameters
in the model. Examples of traditional UQ analyses (i.e.,
empirically-derived input distributions, propagated through a
model) include (Pathmanathan et al., 2015), in which UQ
was performed in two parameters determining steady state
INa inactivation, and a recent publication for the CiPA
project (Chang et al., 2017), in which UQ was used to determine
the impact of uncertainty in drug binding and drug ionic

current block on drug risk stratification. While this provided
important insight on the robustness of CiPA model predictions,
it only considered uncertainty in drug related parameters,
not uncertainty in the parameters of the cell model. Various
alternative modeling frameworks have been devised for handling
uncertainty, especially physiological variability. The population
of models approach (Britton et al., 2013; Muszkiewicz et al.,
2016; Passini et al., 2017) (essentially) derives distributions
for certain parameters by calibration to AP recordings using
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acceptance/rejection criteria, and then performs UP by running
simulations using the derived population. These papers have
generally accounted for variability in conductances, with vast
majority of the remaining parameters in the model held fixed.
Others that have focused on conductance uncertainty include
(Johnstone et al., 2016), who performed Bayesian calibration to
AP data to calibrate conductances with uncertainty representing
calibration error, and (Chang et al., 2015), who used a Gaussian
process emulator for efficient UP and GSA after prescribing
conductance uncertainty. A series of works (Sobie, 2009; Sarkar
and Sobie, 2011; Sarkar et al., 2012) study the effect of variability
by performing UP and GSA using multivariate regression, after
introducing variability in a large number of parameters, for
example up to 40 parameters including conductances, time
constant scaling factors and steady-state voltage offsets in Sobie
(2009), although even this was a minority of the total number
of parameters in the cell model used. Hu et al. (2018) use
the polynomial chaos method for efficient UP and GSA. They
integrated variability in all parameters of two ionic currents (IKto
and IKur) of a mouse cell model with 14 currents, but uncertainty
in parameters in the other 12 currents was not considered.
Numerous others have integrated uncertainty in cardiac models
and performed UC, UP and/or GSA, for example (Geneser
et al., 2006; Sadrieh et al., 2014; Krogh-Madsen et al., 2017;
Costabal et al., 2019); see also the review of Ni et al. (2018).
We believe that in all cases the number of parameters varied
was significantly less than the total number of parameters
in the model.

It is important to appreciate that the motivation behind
much of the previous work on cardiac model variability was to
understand cardiac (patho-)physiology and potentially develop
new therapeutic targets or methods. Our ultimate motivation is
different: we wish to understand the feasibility of comprehensive
UQ for cardiac-model-based tools. There are two types of
model input in such tools: fixed inputs (quantities that take the
same value every time the tool is used), and variable inputs
(quantities that take different values when the tool is used,
i.e., the inputs into the tool itself). For example, for the CiPA
computational tool, which predicts pro-arrhythmic risk of a
drug, all parameters within the cell model are fixed inputs,
whereas drug binding parameters and drug ionic current block
are variable inputs. For a hypothetical clinical tool that uses
patient imaging data to generate a patient-specific heart model
and provide diagnostic/therapeutic guidance to the clinician,
the fixed inputs include all parameters in the underlying cell
model. The imaging data are variable inputs (Recall that we are
using ‘input’ as a generic term for any quantity derived from
real-world data). The relatively low number of variable inputs
in cardiac-model-based tools suggest UQ limited to just the
variable inputs will often be feasible (see for example Chang
et al., 2017). We wish to understand if it is possible to
demonstrate that clinical decisions made using cardiac-model-
based tools are robust to all underlying uncertainties—both in
the variable and the fixed inputs—the highest possible level
of rigor.

For this goal, the current state of the art for cardiac
cell model UQ/GSA is far from an ideal situation in which

empirically-derived uncertainty in all cell model parameters is
known and can be propagated through the model. Here we take
a concrete step toward this goal by developing a novel canine
cardiac cell model containing just 36 parameters to describe six
major ionic currents using Hodgkin-Huxley formulations. This
cell model was developed with UQ in mind, using carefully
chosen simplifications to keep the number of state variables and
parameters low; the approach was motivated by the philosophy
that a simple(r) model with UQ may be more useful than
a complex model without UQ (National Research Council,
2012). We then perform cell model UP and GSA accounting
for uncertainty in all cell model parameters (excluding three
environmental parameters). For this paper input distributions
will be prescribed rather than empirically-derived, a common
approach in cardiac modeling (Chang et al., 2015; Hu et al.,
2018) (also see Table 1 of Ni et al., 2018 for a review), here
taken as an initial step. In a future paper, we plan to perform
full UQ with this cell model using empirically-derived input
distributions—see section Discussion. As far as we are aware,
the present paper represents the first time UP and GSA has
been performed accounting for variation in all conductance and
gating kinetics parameters in a cell model. We demonstrate the
general feasibility of, and elucidate some of the challenges to,
the computational side to comprehensive cell model UQ. We
will demonstrate that our model is robust to (sufficiently small)
interacting uncertainty in all parameters—the first time this has
been shown for any cardiac cell model of moderate complexity,
we believe. We further study model robustness by increasing
parameter uncertainty, and explore when and how new model
behaviors (such as repolarization failure or loss of spike-and-
dome morphology) occur, and use Monte Carlo filtering to
identify which parameters are responsible. We conclude with a
discussion of the implications of these results for comprehensive
UQ of whole heart models, in the context of the challenges laid
out above.

2. METHODS

2.1. Cell Model Development: Model
Structure
A novel canine cell model was developed. Transmembrane
voltage was modeled using an ODE with six ionic currents

Cm
dV

dt
+ INa + IK1 + Ito + ICaL + IKr + IKs = Istim (1)

where V is transmembrane voltage, Cm = 1µF cm−2 is the
specific membrane capacitance per unit area, and INa, IK1,
Ito, ICaL, IKr, and IKs are ionic currents (respectively: rapid
sodium, inward rectifier, transient outward, L-type calcium,
rapidly and slowly activating delayed rectifier). Istim is a square
wave pulse used to initialize activity. Employing a Hodgkin-
Huxley formulation for each current, each current is the product
of a maximal conductance, voltage-dependent gating variable
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and a driving force. These were modeled as:

INa = gNam
3 h2 (V − ENa) (2)

IK1 = gK1 z (V − EK) (3)

Ito = gto r s (V − EK) (4)

ICaL = gCaL d f (V − ECa) (5)

IKr = gKr xr y (V − EK) (6)

IKs = gKs xs (V − EK) (7)

where the gX are ion channel maximal conductances,m, h, z, r, s,
d, f , xr , y, and xs are gating variables (activation gates:m, r, d, xr ,
xs; inactivation gates: h, z, s, f , y), and ENa,EK,ECa are the Nernst
potentials for sodium, potassium and calcium, respectively. Each
gating variable, Y say, has dynamics governed by the ODE

τY (V)
dY

dt
= Y∞(V)− Y

where Y∞(V) is the steady state activation/inactivation function
and τY (V) is the voltage-dependent time constant. For
steady state activation/inactivation functions, we chose sigmoid
functions (ten Tusscher et al., 2004):

Y∞(V) =

(

1+ exp

(

∓(V − EY )

kY

))−1

(− sign for activation gating variables, + sign for inactivation
gating variables), where EY is the half-activation/inactivation
voltage for that gating variable and kY > 0 controls the slope
of the sigmoid. We did not model the full voltage dependence
of all time constants that are typically included in other models.
Instead, we chose

τY (V) =











2τh0 exp(δh(V−Eh)/kh)
1+exp((V−Eh)/kh)

, for Y = h

τ ∗Y , for Y = m, s, f , xr , xs
0, for Y = z, r, d, y

where τh0, δh, τ ∗m, τ ∗s , τ ∗
f
, τ ∗xr , τ ∗xs are positive constants.

This means that gating variables z, r, d, y are assumed to
instantaneously reach their steady state values. Therefore, we can
replace (2) to (7) with

INa = gNam
3 h2 (V − ENa) (8)

IK1 = gK1 z∞ (V − EK) (9)

Ito = gto r∞ s (V − EK) (10)

ICaL = gCaL d∞ f (V − ECa) (11)

IKr = gKr xr y∞ (V − EK) (12)

IKs = gKs xs (V − EK) (13)

Moreover, the gating variables which instantaneously reach
steady state are not state variables for the system of ODEs,
limiting the total number of state variables. Overall, the model
has seven state variables, V , m, h, s, f , xr , xs, and is therefore a
system of seven ODEs, and has 36 parameters—both significantly
less than other cell models. The parameters are listed in Table 1.

2.2. Cell Model Development: Nominal
Parameter Values
‘Nominal’ parameter values were derived from either literature
data or new fits to data from voltage clamp experiments on
isolated canine cardiacmyocytes.Table 1 provides an overview of
the provenance of the parameter values. Except for three INa and
four IKr parameters, all parameters were derived from canine data
taken from adult canine epicardial myocytes under physiological
conditions (i.e., temperature of 36-37 C, physiological extra- and
intracellular ion concentrations).

Seventeen parameter values were taken directly from the
literature. One (gCaL) was derived by fitting to digitized data.
Eleven parameters (Em, km; IK1 and Ito parameters) were fit
to raw canine voltage clamp data. Four parameters, gNa, gKr,
τ ∗xr and gKs, were not derived from data on their respective
currents. Instead, gNa was determined by simulating propagation
in tissue (see below) to compute 1D conduction velocity, and
chosen so that 1D conduction velocity was equal to 60 cm/s, to
match longitudinal conduction velocity measurements in canine
epicardial tissue (Kadish et al., 1986). Note that gNa was calibrated
in this way before the values of gKr, τ ∗xr and gKs were finalized, but
conduction velocity was found to be essentially independent of
those values.

Finally, gKr, τ ∗xr , and gKs were simultaneously determined
by fitting simulated APD95 restitution data to data taken
from Volders et al. (2003) (data digitized from Figures 5A,B,
average of two sets of control experiments), while constraining
the ratio of peak IKr to peak IKs under 1Hz pacing matched
experimental measurements (0.46 µA/cm2 and 0.11 µA/cm2;
obtained by digitizing Figure 3 of Jost et al., 2013). It was
determined that these three parameters are identifiable (at least
locally) given this protocol. The parameters were not identifiable
from restitution data if this constraint was not included, or if τ ∗xs
was also included in the fit.

The values of the initial conditions were derived from the
parameter values. Initial V was set to be EK , and initial values of
the gating variables were set to be the steady state value of those
gating variables at initial V .

2.3. Tissue Simulations and Numerical
Solver Methods
Single cell and tissue simulations were run using Chaste,
a general purpose package for computationally demanding
physiological simulations. Chaste has been extensively tested
and demonstrated to solve the governing equations of cardiac
electrophysiology highly accurately (Niederer et al., 2011;
Pathmanathan et al., 2012; Pathmanathan and Gray, 2014). For
single cell simulations, the ODEs were solved in Chaste using
an adaptive ODE solver. Simulation of electrical propagation
through tissue was modeled using the monodomain formulation:

χ

(

Cm
∂V

∂t
+ INa + IK1 + Ito + IKr + IKs + ICaL

)

= ∇ · (σ∇V)

coupled to Equations (8)–(13), where χ = 1, 400cm−1 is
the surface-area-to-volume ratio, and σ = 1.4 mS/cm is the
bulk conductivity. Tissue simulations were performed using the
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TABLE 1 | Parameters in cell model, with nominal values and derivation of value.

Current Parameter Nominal value Derivation

INa gNa 12 mS/µF Chosen so conduction velocity in 1D monodomain simulations was 60 cm/s (Kadish et al., 1986) – see text

Em −52.244 mV m3
∞(V ) fit to voltage clamp data (Cordeiro et al., 2008, Figure 5D) (canine epicardial data, averaged over cells)

km 6.5472 mV

τ∗m 0.12 ms Taken from Gray and Pathmanathan (2016) (based on rabbit INa activation data under physiological conditions,

due to lack of canine INa activation data under physiological conditions). Together with δh, τh0 and some IKr
parameters, these are the only parameters based on non-canine data.

Eh
kh

−78.7 mV

5.93 mV

Taken from Pathmanathan et al. (2015) (Table 1), which is derived from fits to canine epicardial data published

in Cordeiro et al. (2008).

δh 0.799163 Taken from Gray and Pathmanathan (2016). Together with τ∗m and some IKr parameters these are the

τh0 6.80738 mV only parameters based on non-canine data.

IK1 gK1 0.73893 mS/µF All derived by simultaneously fitting the IK1 model to canine epicardial voltage clamp recordings (unpublished).

Ez −91.9655 mV Experimental EK was also fit as a free parameter, and Ez was shifted to correspond to EK = −85mV

kz 12.4997 mV

Ito gto
Er

kr

0.1688 mS/µF

14.3116 mV

11.462 mV

Derived by fitting the Ito model with s = 1 to Ito activation voltage clamp recordings [raw data behind Figure 2

of Cordeiro et al. (2012)].

Es −47.9286 mV Derived by fitting s∞(V ) to Ito inactivation voltage clamp recordings

ks 4.9314 mV [raw data behind Figure 3 of Cordeiro et al. (2012)].

τ∗s 9.90669 ms Average of τs(V ) for voltages in range 10-50 mV using raw data behind Figure 2 of Cordeiro et al. (2012).

ICaL gCaL 0.11503 mS/µF Derived by fitting the ICaL model to data digitized from Iyer et al. (2012) (Figure 3, epi) using values of Ed , kd , Ef , kf
below

Ed 0.7 mV Taken from Table 2 in Iyer et al. (2012)

kd 4.3 mV

Ef −15.7 mV

kf 4.6 mV

τ∗
f

30 ms Taken from Xiao et al. (2006) (Figure 8)

IKr gKr 0.056 mS/µF gKr, gKs and τ∗xr were jointly calibrated so simulated APD restitution matched experiment – see text

Exr −26.6 mV Taken from Berecki et al. (2005) (Table 1), based on HEK cell data.

kxr 6.5 mV

τ∗xr 334 ms gKr, gKs and τ∗xr were jointly calibrated so simulated APD restitution matched experiment – see text

Ey -49.6 mV Taken from Berecki et al. (2005) (Table 1), based on HEK cell data.

ky 23.5 mV

IKs gKs 0.0080 mS/µF gKr, gKs and τ∗xr were jointly calibrated so simulated APD restitution matched experiment – see text

Exs 24.6 mV Taken from Liu and Antzelevitch (1995) (text).

kxs 12.1 mV

τ∗xs 628 ms

Other ENa 65 mV Taken from Gray and Pathmanathan (2016).

EK −85 mV Based on resting membrane potential recordings in Di Diego et al. (1996)

ECa 50 mV Based on data digitized from Iyer et al. (2012) (Figure 3, epi)

cardiac solver in Chaste, which uses the finite element method to
solve the PDE (Pathmanathan et al., 2010).

2.4. Uncertainty Characterization
UC involves determining probability distributions for each
parameter, ideally based on experimental data and/or subject-
matter expertise. The distributions should cover the parameters’
uncertainty range, given the sources of uncertainty being
accounted for (population variability, measurement uncertainty,
etc). Determining empirally-derived probability distributions
each of the parameters in Table 1 is an arguably feasible but

difficult task. As discussed in section 1, here we prescribe input
distributions. Specifically, we assumed that all parameters are
independent and either normally-distributed (for parameters
without physiological constraints) or log-normally distributed
(parameters physiologically constrained to be positive). A ‘hyper-
parameter’, σ̂ , was introduced, that controls the uncertainty
across all parameters. By varying σ̂ , we can control the total
amount of parameter uncertainty, and evaluate robustness of the
model as uncertainty increases.

For parameters that are half-activation or half-inactivation
voltages (Em, Eh, Ez , Er , Ed, Ef , Exr , Ey, Exs), we chose all
parameters to be normally distributed with mean equal to the
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nominal value (Table 1), and standard deviation proportional to
(with proportionality constant σ̂ ) a reference range of 100 mV:

p ∼ N(pnom, (σ̂R)
2), (14)

where pnom is the nominal value and reference R = 100 mV. For
conductances (g values), half-(in/)activation slopes (k values),
time constants (τ values), and scaling factor δh, all of which are
necessarily positive, we set:

p ∼ lognormal

(

log(pnom)−
σ̂ 2

2
, σ̂ 2

)

(15)

Given the properties of the log normal distribution, p then has
mean value pnom and variance σ̂ 2p2nom +O(σ̂ 4), that is, standard
deviation proportional to the nominal value, with proportionality
constant, σ̂ .

As an illustration of the parameter ranges for a given σ̂ ,
consider parameters gNa, Em, gCaL, and Ed, which are the
maximal conductances and half-activation voltages of INa and
ICaL. These have nominal values of 12 mS/µF, -52mV, 0.115
mS/µF, -0.7 mV respectively (Table 1). When σ̂ = 5%, the
parameters become uncertain with the following 95% confidence
intervals: gNa: [10.9,13.2] mS/µF, Em: [-61.8,-42.2] mV, gCaL:
[0.104,0.127] mS/µF, Er : [-10.5,9.1] mV. Note that if we had
chosen variances to be proportional to the absolute mean value
for all parameters, as done elsewhere, Er would be 95% certain to
lie within [-0.77,-0.63] mV –muchmore tightly constrained than
activation voltages not near zero. The use of a reference range
R ensures inactivation/activation voltages have similar variability
(for a given σ̂ ).

Parameters EK, ENa, ECa were fixed as we consider them
environmental parameters that can be controlled by simulating
different extracellular ionic concentrations. Cm, χ and σ

(monodomain conductivity) were also held fixed, for simplicity.
With these constructed distributions, we can study how the

model behaves as we transition from σ̂ = 0 (nominal model, no
parameter uncertainty) to σ̂ = 1% (small amount of uncertainty
in all parameters (except equilibrium potentials), covering a small
parameter-dependent range) to σ̂ = 5% (larger uncertainty in all
parameters, covering a larger parameter-dependent range). We
re-iterate though that these distributions are prescribed rather
than empircally-derived. Still, assessing the impact of uncertainty
using prescribed distributions is common practice (Chang et al.,
2015; Hu et al., 2018) and provides important insight about
the behavior of computational model. Future work will focus
on more accurate parameter uncertainty estimates derived from
experimental data. In the discussion, section 4, we will describe
how results in this paper provide information on allocating
resources wisely when performing experiments for improved
UC estimates.

2.5. Quantities of Interest
Various AP characteristics or quantities of interest (QOIs) were
analyzed. For the upstroke, these included: Threshold, the
minimum stimulus current needed to induce depolarization
(current applied for 0.5 ms); MaxUpstrokeVelocity, the

maximum rate of change of voltage during depolarization;
TimeOfMaxUpstrokeVelocity, the time of this maximum; and
action potential amplitude (APA), defined as the difference
between maximum voltage during upstroke and resting
membrane potential. Plateau and repolarization QOIs analyzed
included: NotchMin, the voltage attained at the local minimum
during the action potential notch (see Figure 2) (if a notch is
observed),NotchMax, the voltage attained at the local maximum
at the end of the action potential notch (if a notch is observed),
and action potential duration (APD), the time from activation
for transmembrane potential to go below -70 mV. We measured
APD using a fixed threshold (-70 mV) rather than APD90 (the
time for 90% repolarization from maximum voltage), because
APD90 is defined using APA and APDmight then be determined
to be sensitive to whichever parameters strongly influence APA.

For 1D simulations using a 1 cm long strand of tissue, QOIs
included the above AP characteristics at the point 0.75 cm away
from the stimulus site, as well as conduction velocity (CV).

2.6. Global Sensitivity Analysis
Variance-based global sensitivity analysis (GSA) was performed
by computing main and total Sobol sensitivity indices (Sobol’,
1990). Sobol sensitivity indices provide fractional measures
of the effect of the each parameter’s uncertainty on the
resultant variance of the model output. GSA approaches are
far more computationally expensive than commonly-used local
SA approaches, such as computing partial derivatives of the
output with respect to each input, or one-at-a-time variation
of each parameter. However, local SA approaches only provide
information on sensitivity about the base point, resulting in
incomplete or misleading information for highly nonlinear
systems. GSA on the other hand explores the entire parameter
space, using the distributions specified for the model inputs
(section 2.4), and provides a more complete understanding of
output sensitivity to inputs, including input interactions. Below
is a brief introduction to this method; for a more complete
introduction we refer the reader to Saltelli et al. (2008).

For a quantity of interest q = q(p), where pi is the i-th
parameter distributed as described in section 2.4, the expectation
and variance of q are given by E(q) =

∫

q(p) dp and V(q) =
∫

q2(p) dp− (E(q))2. The i-th first-order Sobol sensitivity index is
defined as

Si = Vi(q)/V(q)

where Vi(q) = V(E(q|pi)) (inner expectation over all parameters
except pi; outer variance over pi only). The i-th first order
Sobol index can be interpreted as the fraction of the output
variance that can be attributed to the variance of parameter pi,
not accounting for interaction with other parameters. Similarly,
second-order indices measuring the fraction of the output
variance that can be attributed to interaction of parameters pi and
pj (only) are defined as Sij = V(E(q|pi, pj))−Si−Sj, and so on for
higher-order indices. The total sensitivity index is given by STi =
Si + 6jSij + 6j,kSijk + . . .. The total sensitivity index measures
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FIGURE 2 | Behavior of model with nominal parameter values. Top left: Action potential in first beat and after pacing. Top right: Ionic current transients in paced

action potential. Bottom: dynamic restitution properties, compared to experimental data used for model calibration (BCL = basic cycle length).

the total contribution of the parameter pi to the variance of q,
including through interactions with other parameters.

First-order and total Sobol indices were calculated using the
python library SALib (Herman and Usher, 2017). The number
of points sampled per dimension was chosen so that error
estimates of the sensitivity indices, as provided by SALib, was
small (see later figures).

For QOIs that are not computationally cheap to calculate
(such as conduction velocity), computation of Sobol indices
can be expensive since the total number of simulations, equal
to the total number of points sampled, can be hundreds or
thousands multiplied by the number of parameters. For such
QOIs, the method of elementary effects, also referred to asMorris
Screening (Morris, 1991), was used to identify parameters that
were not influential (that is, the output has very low sensitivity to
that parameter); those parameters were then excluded from the
Sobol indices calculation. Morris Screening is a computationally
cheap method (requiring only a few hundred simulations) that
generally has a low false-positive rate when used to screen out
non-influential parameters (Saltelli et al., 2008).

2.7. Uncertainty Propagation
Simple Monte Carlo sampling was performed using the
parameter distributions [Equations (14), (15)]; histograms and
statistics were computed from the resultant model outputs.
Monte Carlo approaches are straightforward to implement but
can be very slow to converge. In all cases the number of samples,
N, was chosen such that the output mean (standard deviation)

were converged to three (two) significant figures, when estimated
using either N or N/2 samples.

2.8. Model Behavioral Analysis Using
Monte Carlo Filtering
For some regions in parameter space, the model may transition
from normal behavior to a different type of dynamics. For
example, the action potential may fail to repolarize. If this
occurs, probability distributions and sensitivity indices are not
computable for derived quantities such as APD. There are several
possibilities to consider when the model displays different classes
of behavior:

1. Are the observed behaviors representative of what occurs in
reality? One approach to addressing this question is to identify
the mechanism underlying the behavior in the model, and
confirming if that mechanism is physiologically reasonable.
An alternative approach is direct statistical validation. For
example, suppose a cell model fails to repolarize with
small probability p, when parameter uncertainty representing
population variability is included. It can then be asked if a
random sample of isolated cardiomyocytes would also exhibit
repolarization failure under identical stimuli with the same
probability p.

If it is not believed that the observed behaviors are
representative of reality, then one or both of the following
should be considered:
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2. Error in model form (structure of equations): one of the
assumptions underlying the chosen governing equations may
be being violated, at least in some regions of parameter space

3. Error in uncertainty characterization, for example some of
the distributions used for input parameters may be too wide
ranging and not represent reality, or there may be some
correlation in reality (e.g., between INa half activation and
inactivation Clerx, 2017) that was not properly accounted for.

Determining which path to take is difficult, and ideally requires
empirically-determined input distributions, and therefore not
in scope for the present paper. However, whichever of the
above apply, it is very useful to identify which parameters
are responsible for observed behavior. ‘Regionalized sensitivity
analyses’ (Saltelli et al., 2008) are a group of methods that
can be used to analyze model results exhibiting different
types of behavior. They have been used in other fields
but, as far as we are aware, has never been applied to
cardiac models before. Here we use the Monte-Carlo filtering
method (Saltelli et al., 2008), as follows: M points in parameter
space, p1, . . . , pM , are randomly sampled, and the model solved
using each. The sampled points are then split into two sets,
those for which the behavior was observed, and those for
which it did not. Each parameter pi is then considered in
turn. If pi plays a role in determining whether the behavior
occurs, the marginal cumulative distributions functions (CDFs)
of (pi|Behavior occurred) and (pi|Behavior did not occur) will
differ. The Kolmogorov-Smirnov test was be used to test whether
the two CDFs were statistically different or not (α = 0.01). The
Smirnov test statistic, Dstat (maximum difference between the
two CDFs) was used to measure how influential a parameter was.
Influential parameters were categorized as highly influential if the
test statistic Dstat > 0.2.

3. RESULTS

Figure 2 displays the behavior of the model using the nominal

parameter values. Plotted is the action potential (both in the
first beat following stimulation, as well as after 1 Hz pacing
for 10 beats), together with the corresponding ionic current
traces for the paced AP. Also plotted is APD restitution under
a dynamic restitution protocol, together with the experimental
data used for calibration. We do not perform validation of the
cell model in this paper, since we are focused on the ability to
perform UQ, which is a process that should precede validation.
However, we can observe that the model reproduces canine
action potential shape including spike-and-dome-morphology,
and current traces take physiologically realistic shapes and
magnitudes. These are emergent properties that cannot be
predicted a priori frommodel equations or parameter values, that
is, they are “reproduced phenomena,” using the categorization of
credibility evidence discussed in Pathmanathan and Gray (2018).

To begin to assess the impact of uncertainty or variability
in model parameters, we first set σ̂ = 1%, which represents
a small amount of uncertainty/variability in all parameters in
the cell model. Figure 3 plots upstroke and action potential
traces using 1,000 parameter sets randomly sampled using the

parameter distributions Equations (14), (15) with σ̂ = 1%.
The action potential was computed by providing a square wave
stimulus with duration 0.5 ms and magnitude 1.1 times the
parameter-dependent threshold stimulus. Initial conditions were
those stated in section 2.2. No pacing was applied, so that these
results can be fairly compared to results for greater σ̂ at which
pacing is not possible (see later). Also plotted in Figure 3 are
converged histograms for various QOIs. The histogram x axes are
all scaled to be approximately ±40% of the center value, which
allows the width of the histograms to be fairly compared with
one another.

We reiterate that these results are based on simultaneous
variation of all parameters in the cell model (excluding Nernst
potentials, but including all kinetic parameters). This is, as far
as we are aware, the first time such results have been presented
for a physiological cardiac cell model. Under this level of
parameter uncertainty, all action potential have similar shapes
compared to the nominal behavior, and no model failure or
other behaviors was observed. This was not necessarily expected
a priori: cardiac models are notoriously sensitive to small changes
in parameters and it would not have been surprising if some
combination of parameters, within the specified distributions,
had led to anomalous behavior. Little skew is observed
in the output distributions, but a range of magnitudes of
variability are observed. Threshold and maximum dV

dt have wider
uncertainties than APA and APD, for example. Coefficients
of variation are: Threshold: 5.0%, MaxUpstrokeVelocity: 8.4%,
TimeOfMaxUpstrokeVelocity: 3.4%, APA 2.7%, APD: 1.8%.

Figure 4 plots the first and total Sobol sensitivity indices
for MaxUpstrokeVelocity, TimeOfMaxUpstrokeVelocity and
APD. As above, we believe this is the first time sensitivities
to all conductance and kinetic parameters (simultaneously) in
a physiological cardiac cell model have been presented. Just
one parameter, Eh, plays a dominant role in determining
MaxUpstrokeVelocity. TimeOfMaxUpstrokeVelocity is
controlled by three parameters Em, km and Ez , from two
currents, INa and IK1. For APD, a variety of parameters from
different currents play a role. Figure 5 displays the total Sobol
indices for various QOIs, including peak currents and AP
characteristics for 1D simulations of propagation. It can be seen
that the sensitivity indices are very similar for APD in single cell
simulations (0D) and during propagation (1D). It is important
to appreciate, however, that these results are dependent on the
input distributions that were prescribed in section 2.4, which
were not based on experimental data, so care should be taken
before drawing generalized conclusions. However, they are
useful for guiding experiments and iterative model development;
see discussion in section 4.

To determine if sensitivity indices or output uncertainties
changed dynamically during pacing, we repeated the simulations
behind Figures 3, 4with 10 beats of 1 Hz pacing and analyzed the
next AP. As expected, the mean values of the QOIs changed after
pacing. However, essentially the same sensitivity indices were
observed, and no appreciable changes in output uncertainty was
observed (results not presented).

Next, we increased the uncertainty in the parameters. Figure 6
plots 1,000 randomly sampled action potentials with σ̂ =
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FIGURE 3 | Results for σ̂ = 1%, which represents a small amount of uncertainty in all cell model parameters. Top: Upstrokes and full action potentials for 1,000

randomly sampled parameters. Below: converged histograms for various quantities of interest.

1, 3, and 5% (Figures 6A–C). It can be seen that for σ̂ =

3%, different behaviors occur; some action potentials repolarize
quickly, others show early afterdepolarizations (EADs) or fail
to repolarize. For σ̂ = 5%, a wide range of action potentials
are observed. To analyze these results, we performed Monte
Carlo filtering as outlined in section 2.8 to reveal which
parameters are responsible for the different behaviors. To do so,
we grouped the action potentials into 4 categories, as plotted
in Figures 6D,E:

• Behavior 1: Loss of spike in spike-and-dome morphology
(orange traces in Figure 6D). Defined as APs with a local
maximum > 10 ms, no local minimal. Voltage continues to
increase after upstroke.

• Behavior 2: Loss of dome in spike-and-dome morphology
(blue traces in Figure 6D). Defined as APs with a local

maximum < 10 ms, no local minimal. Voltage decreases
monotonically after maximum upstroke voltage.

• Behavior 3: Oscillatory dynamics (red traces in Figure 6D).
Defined as APs with more than one local minimum in action
potential. These APs display oscillatory behavior such as EADs
or repolarization failure. Also included in this category are any
traces for which the voltage continued to rise after upstroke
(as in Behavior 2) but then had two local maxima and one
local minimum. These APs technically have the same number
of local minima and maxima as the physiological APs but are
clearly different.

• Behavior 4: “Normal” (green traces in Figure 6E). Defined as
any AP not satisfying criteria for behaviors 1-3.

Using this categorization, the probability of different dynamics to
‘normal’ AP was: 3.2% for σ̂ = 3% and 23.5% for σ̂ = 5%.
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FIGURE 4 | Sobol sensivitivity indices (S1: first-order; ST : total) for selected QOIs (MaxUpstrokeVelocity, TimeOfMaxUpstrokeVelocity, APD), with σ̂ = 1%, which

represents a small amount of uncertainty in all cell model parameters. Solid lines are error estimates in the index.

Monte Carlo filtering was performed for all behaviors
separately (that is, comparing Behavior 1 APs vs. all
others, etc). Number of points used was M = 10, 000.
Figure 7 plots the Monte Carlo filtering CDFs for
Behavior 1, for a selection of parameters pi. Each panel
plots the CDF of (pi|Behavior 1 occured) vs. the CDF of
(pi|Behavior 1 did not occur). If the CDFs are statistically
different, this indicates that pi plays a role in causing Behavior
1. The two CDFs are clearly different for Eh, δh Er , and Ed,
indicating that these parameters strongly affect whether this type
of behavior occurs or not. Results of the Kolmogorov-Smirnov
test are provided in Table 2. The same four parameters were
found to be highly influential for Behaviors 1 and 2: Eh, δh Er , and
Ed. Just two parameters were highly influential in determining
if oscillatory behavior occurs, Ed and Ef . To confirm that this
analysis had accurately identified influential parameters, the
σ̂ = 5% simulations were repeated with Eh, δh Er , Ed and Ef
all fixed at their nominal values, but all other parameters still
variable with σ̂ = 5%. The results are plotted in Figure 6F; it is
observed that 998 out of 1,000 action potentials are now Behavior
4 (nominally normal). (The remaining small probability of other
behaviors can be attributed to the “Other influential parameters”
in Table 2). Note that we are not advocating such results be
resolved by fixing influential parameters to their nominal values

(instead see discussion in section 4). Simulations in Figure 6F

were performed only to confirm that the Monte Carlo filtering
had correctly identified influential parameters.

As discussed in section 2.8, one should consider if the different
behaviors observed are representative of reality or not. We
cannot do the statistical validation outlined in section 2.8 since
the input uncertainty was prescribed rather than empirically-
derived, but we can consider if the behaviors observed and the
influential parameters behind them are consistent with known
physiological understanding. Behaviors 1 and 2, loss of spike
or loss of dome from spike-and-dome morphology, would be
expected to be related to changes in Ito and ICaL, and indeed
Er (Ito half-activation voltage) and Ed (ICaL half-activation
voltage) are highly influential in these behaviors. Also highly
influential are INa inactivation parameters Eh and δh; it is not
clear why this occurs and suggests that further investigation is
warranted into these aspects of the model equations and/or on
the magnitude of prescribed uncertainty in these parameters.
Behavior 3, oscillatory dynamics, is expected to be caused by ICaL
window currents, and therefore by Ed and Ef , the half-activation
and half-inactivation voltages for ICaL. This is consistent with
the highly influential parameters identified for this set of action
potentials. We can identify three distinct classes of sub-behavior
in the oscillatory results (see Figure 6D):
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FIGURE 5 | Total Sobol sensitivity indices for a range of QOIs, with σ̂ = 1%, which represents a small amount of uncertainty in all cell model parameters. APA is

action potential amplitude. APD is action potential duration. CV is conduction velocity.

• Behavior 3A: APs with early afterdepolarizations (V at resting
potential at t = 1, 000 ms);

• Behavior 3B: APs exhibiting repolarization failure (V > −25
mV at t = 1, 000 ms); and

• Behavior 3C: APs exhibiting low voltage oscillations (−75 mV
< V < −25mV at t = 1, 000 ms).

Behavior 3C appears unphysiological and may be genuine model
failure. To analyze these results further, we repeated the Monte

Carlo filtering analysis for each of the three sub-classes; results
are presented in Table 3. The low voltage oscillatory APs are
seen to be caused by Em, Eh, and Ez . Further analysis is
required to determine if this is due to a problem with the model
equations or due to the prescribed uncertainty in Em, Eh, Ez being
unrealistically large.

Finally, we investigated whether potential correlations
between parameters could be responsible for some of the
observed behaviors. Figure 8 plots the sampled points in
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FIGURE 6 | (A–C) 1,000 randomly sampled action potentials with: (A) σ̂ = 1% (small amount of uncertainty in all cell model parameters); (B) 3% (medium

uncertainty); (C) 5% (larger uncertainty in all cell model parameters). (D) Action potentials for σ̂ = 5%, for three classes of behavior, colored by class (blue: spike but

no dome; orange: dome but no spike; red: oscillatory). (E) All other action potentials for σ̂ = 5%. (F) 1,000 randomly sampled action potentials with σ̂ = 5% for all

parameters except Eh, δh, Ez , Ed , Ef held fixed.

parameter space, colored by behavior class. The plot is limited to
the five-dimensional space of (Eh, log(δh), Er , Ed, Er), which were
the parameters identified to be highly influential in determining
whether any of the four main behaviors occurs or not (Table 2).
Figure 8A plots all points including those corresponding to
normal APs (green), Figure 8B plots the points corresponding
to Behaviors 1–3 only. Visual inspection suggests a possible
negative correlation between Eh and log(δh), since the (Eh,
log(δh)) subplot in Figure 8A shows few normal AP points where
Eh and log(δh) are both small. Visual inspection of Figure 8A
also suggests a possible positive correlation of Ed and Ef for
points corresponding to normal APs. Moreover, the (Ed,Ef )
figure in Figure 8B suggests that oscillatory behavior (red points)
is associated with Ef − Ed taking relatively large values, and

no-dome behavior (blue points) is associated with Ef − Ed
taking relatively small values. To quantify the analysis, we
computed correlation coefficients for all pairs of (Eh, log(δh), Er ,
Ed, Er), for the points in parameter space which corresponded
to normal APs. They were: -0.12 for (Eh, log(δh)), 0.13 for
(Er ,Ed), 0.15 for (Ef ,Ed); all other correlation coefficients were
<0.05. These results could provide direction in future voltage
clamp experiments which simultaneously estimate multiple
physiological properties in the same cell.

4. DISCUSSION

This paper was motivated by the fact that UQ and SA are
understood to be important for biomedical computational
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FIGURE 7 | Cumulative distribution functions (CDFs) for selection of nine cell

model parameters. Solid black lines are the CDFs of (pi |AP exhibits spike) and

dashed orange lines are the CDFs of (pi |AP does not exhibit spike). The

underlying action potentials are shown in Figures 6D,E. Non-overlapping

CDFs (see e.g., Eh, δh, Er , Ed ) indicates the value of the parameter statistically

impacts where AP exhibits spike or not.

models—as demonstrated by their inclusion in the ASME
V&V40 Standard (ASME V&V 40, 2018)—yet a fully
comprehensive UQ/SA analysis for whole heart models is
impossible with current technology (as discussed in section 1).
We have presented a novel cardiac cell model which has relatively
few (36) parameters, which enabled us to perform UQ and GSA
accounting for uncertainty in all conductance and kinetic
parameters, albeit with prescribed input distributions. Future
work will focus on empirically-derived input distributions. We
also analyzed the robustness of the model by increasing the
underlying uncertainty to study the different behaviors that arise,
and determined which parameters were responsible for those
behaviors. Since our overarching motivation is to explore the
feasibility of cardiac model UQ, we structure the first part of
the discussion around the four main challenges to performing
cardiac UQ that were described in section 1.2. We then discuss
the implications of this work for clinically-relevant applications
of cardiac models.

4.1. Challenge 1: Large Number of Inputs
(Including Model Parameters) in Cardiac
Models
We described in section 1.2 how the sheer number of quantities
in cardiac models that are derived from physiological data
is one of the greatest difficulties for cardiac UQ. Especially
problematic are the number of parameters inmodern cell models,
for example, the OR11 model (O’Hara et al., 2011) has more
than 250 numeric quantities in its governing equations that
were derived from data in some way. Therefore, we developed
a novel 36 parameter model, where each parameter has a clear
physiological interpretation, for which it is arguably feasible
to introduce empirically-derived uncertainty in all parameters.
The model has various simplifications such as instantaneous

gating and no intracellular ionic concentrations, which means
it is not suitable for applications involving the mechanisms
of excitation-contraction coupling, ischemia or reproducing
the exact details of ionic current traces during voltage clamp
experiments. However, it is suitable for investigating the impact
of simultaneously variation in all parameters, and could serve as
a starting point for development of incrementally more complex
models, for example for developing a ‘minimally-complex’ model
for a chosen application, for which comprehensive UQ remains
possible. In general, there is a trade-off between less complex
models which will likely exhibit less physiologically accurate
behavior vs. more complex models which are less transparent
and have greater numbers of uncertain inputs (Huberts et al.,
2018). For cardiac models the crucial question is: can simpler
models be as predictive as complex models for clinically-relevant
applications? If so, simpler models have the advantage that fully
testing robustness to parameter uncertainty is possible. This
question has not been explored in any great depth but deserves
greater attention—most recent research has been focused on
whether the currently-available complex models are predictive
for clinical applications.

Even with simple(r) models, characterizing the true
uncertainty (whether population variability or measurement
uncertainty) in all the parameters is a difficult experimental
task (even ignoring the correlation question, discussed below).
Sensitivity analysis and regionalized sensitivity analysis following
UC with prescribed input distributions, as performed here,
can provide guidance for allocating resources wisely. For
example, the results in Table 2 and Figure 5 suggest it may be
an inefficient use of resources to run experiments to estimate
the population variability in gNa, τ ∗m, gK1, gto, kr , Es, ks, kd,
kf , kxr , τ ∗xr , gKs, kxs, or τ ∗xr , since none of these parameters
appear in Table 2 or influence any of the QOIs in Figure 5.
However, once improved uncertainty estimates have been
obtained for the other parameters, the sensitivity analysis should
be repeated, using crude but wide-ranging uncertainty in the
above parameters, to confirm that they are still uninfluential.
Also, and very importantly, when testing a model for a specific
model application, the sensitivity analysis should be performed
for the QOI to be used in decision-making, not just generic QOIs.
Accordingly, the above results on parameter sensitivity may not
extrapolate to spiral wave dynamics.

There are several methods that can be used to characterize
the uncertainty due to population variability in cell model
parameters, and the choice depends on the various factors,
including the type of parameter, method used to derive the
nominal parameter value (Table 1) and the availability of data
from individual cells. For parameters for which voltage clamp
data is available from individual cells, probability distributions
can be derived by fitting parameters to individualized data,
and then fitting probability distributions to the resultant
parameters, similar to what has already been done for Eh and
kh in Pathmanathan et al. (2015). This is not possible for
parameters for which only averaged data is available; for those a
reasonable first approximation may be to use similar magnitude
uncertainty as for corresponding parameters in other currents.
Parameters that are calibrated using the full AP model, as

Frontiers in Physiology | www.frontiersin.org 15 June 2019 | Volume 10 | Article 721

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Pathmanathan et al. Comprehensive Cardiac Model Uncertainty Quantification

TABLE 2 | Influential parameters for each of the three new behaviors observed in σ̂ = 5% results.

Behavior Type of AP Highly influential parameters (Dstat > 0.2) Other influential parameters (Dstat < 0.2, p < 0.01)

1 (Orange) Dome, no spike Eh, δh, Er , Ed τh0, Ef

2 (Blue) Spike, no dome Eh, δh, Er , Ed kh, τh0, gto, τ∗s , gCaL

3 (Red) Oscillatory Ed , Ef Em, Eh, Ez , kz , gCaL, kf , gKr, Ey

Colors correspond to Figure 6D.

TABLE 3 | Influential parameters for each of the three sub-behaviors observed in σ̂ = 5% oscillatory action potentials.

Behavior Type of AP Highly influential parameters (Dstat > 0.2) Other influential parameters (Dstat < 0.2, p < 0.01)

3A Early afterdepolarizations Ed , Ef Ez , kz

3B Repolarization failure Ed , Ef kz , kf , τ∗
f
, gKr, Ey , ky

3C Low voltage oscillations Em, Eh, Ez kz

FIGURE 8 | Scatter plots of parameter values, colored by behavioral class, for σ̂ = 5% results, representing relatively large uncertainty in all parameters. Five

important parameters are plotted, Eh, δh, Er , Ed , Ef . These were identified using behavioral analysis (see text). Blue points: points in parameter space for which APs

display spike but no dome; orange points: APs display dome but no spike; red points: APs are oscillatory; green points: APs are normal. (A) All points. (B) Points

corresponding to non-normal APs only. The underlying APs are shown in Figures 6D,E.

opposed to derived from voltage clamp data or the literature
(four parameters—see Table 1) may need to be re-calibrated with
uncertainty, perhaps using Bayesian methods Johnstone et al.,
2016). When suitable data is not available, a common approach
is uncertainty elicitation using subject matter expertise (Morris
et al., 2014). Obtaining/estimating uncertainty in time constant
parameters will likely pose the greatest challenge, for two reasons.
First, experimentally measuring time constants is more difficult
than steady-state behavior. Second, time constants have known
voltage-dependence, but in our model we approximated them
as being independent of voltage (except for τh). This raises the
question of what exactly is meant by population variability in this
quantity. One solution is to define the parameter more precisely,
for example as the average time constant over a pre-specified

voltage range. This is a then well-defined quantity for which it
is meaningful to ask what the population variability is.

4.2. Challenge 2: Difficulty in Measuring
Correlation Between Model Inputs
Many of the parameters in cardiac cell models might be
correlated across the species population. For example, Clerx
describes how half-activation and half-inactivation voltages for
INa appear to be correlated in human (Milstein et al., 2012;
Clerx, 2017) shows potential correlation between gNa and gK1.
The second major challenge mentioned in section 1 is the
fact that identifying such correlations is experimentally very
difficult, if not impossible. Again, model results can be used
to guide experiments. First, correlations involving uninfluential
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parameters (see previous subsection) do not need to be
considered. For influential parameters, distributions of model
outputs assuming different input correlation structures could
be computed, to determine parameters for which introducing
correlation makes a difference. Alternatively, parameters which
give rise to different types of model behavior could be assessed
(as was presented in Figure 8), which may provide insight into
which parameters to investigate experimentally. For example, we
could hypothesize from the results in Figure 8 that the half-
activation (Ed) and half-inactivation (Ef ) voltages for ICaL are
positively correlated in reality (for canine), since larger values of
|Ed−Ef |were associated with different types of non-physiological
action potentials. This hypothesis is based on assumptions about
the accuracy of the model form, and therefore needs to be
verified experimentally.

4.3. Challenge 3: Computational Cost of
Running Large Numbers of Whole Heart
Simulations
We did not run any 2D or 3D simulations for this paper,
nor was computational cost a focus of this paper. In fact,
two of the methods used, Sobol sensitivity analysis and simple
Monte Carlo sampling, are fairly computationally demanding
even for single-cell analyses (although initial Morris Screening
(section 2.6) reduces the computational cost for computing the
sensitivity indices). Therefore, our results provide limited insight
into the challenge of running large numbers of whole heart
simulations to perform UQ for whole-heart simulation-based
outputs. We expect that emulators of whole-heart models will
need to be developed to overcome this challenge; see ongoing
research (Chang et al., 2015; Ghosh et al., 2018; Lawson et al.,
2018). Note that sensitivity indices were very similar for QOIs in
0D and 1D (Figure 5), as were output distributions (results not
presented), suggesting that uninfluential parameters in single-
cell simulations may be uninfluential in tissue simulations. It is
not clear that this conclusion will hold for simulations involving
arrhythmias however.

4.4. Challenge 4: Unclear Path Forward If
Model Failure Occurs
Even if comprehensive UC and UP could be performed with
cardiac models, it is likely that a range of behaviors will
be observed, and many common model outputs will not be
computable for many of the sampled points in parameter space,
for example APD when repolarization failure occurs. If this
occurs, scientific conclusions or clinical decisions based on that
model output are not robust to the input uncertainty. The final
challenge described in section 1 was the fact that in situations
such as this, it may not be clear how to proceed. In this paper we
have observed how a range of AP dynamics occur as uncertainty
in parameters is increased, and demonstrated how Monte Carlo
filtering can be used to identify exactly which parameters are
influential for each behavior (see section 3). This provides a
pathway to investigate the root cause for the observed behaviors.
In section 2.8 we discussed how one possibility is that themodel is
accurately reproducing different dynamics that occurs in reality.

If this is not the case, the conclusion should be that the model
failure occurred, in which case there are two options. Either
(i) the model is an inaccurate representation of reality, at least
in some regions of parameter space; and/or (ii) the uncertainty
representations of some of the parameters are inappropriate
in some way (e.g., do not represent true variability or do not
account for correlations that occur in reality). For example,
the results from section 3 suggest experimentally investigating
whether ICaL half-activation and half-inactivation voltages are
correlated, because larger values of |Ef − Ed| were associated
with both oscillatory APs and with loss of dome. Section 3
also showed how uncertainty in INa half-activation and half-
inactivation voltages Em and Eh, and in IK1 half-inactivation
voltages Ez , was responsible for non-physiological low voltage
oscillatory behavior, suggesting focused investigation into those
aspects of the model equations or refinement of uncertainty
ranges for those parameters.

4.5. Significance
We end with a discussion of implications of our work for clinical
applications of cardiac models. We focus on cardiac models as
predictive tools, such as the in silico model used in the CiPA
program for assessing drug cardiotoxicity (Li et al., 2018; Strauss
et al., 2018). As discussed in section 1.3, for such tools, inputs
can be categorized as either fixed (taking the same value every
time the tool is used) or variable (the converse). For example, for
the CiPA computational tool, all parameters within the cell model
are fixed inputs, whereas drug binding parameters and drug ionic
current block are variable inputs. It is undeniably important to
perform UQ in variable inputs. Typically, uncertainty in those
values with be due to measurement uncertainty, and if the tool
output is not robust to this measurement uncertainty then the
tool is not reliable. The importance of performing UQ in the
fixed inputs is more debatable. For fixed inputs, the greatest
source of uncertainty will often be due to population variability.
Here, UQ in the fixed inputs can provide confidence that clinical
decisions derived from the tool are robust to that underlying
variability, especially as clinical trial results are extrapolated to a
broader patient population. As an illustrative example, consider
a hypothetical tool that has two inputs, patient-specific height
(variable input) and average patient weight (fixed input). The
clinical decision made using the tool certainly needs to be robust
to any measurement error in patient height. Since any given
patient may not be average weight, UQ to demonstrate that
the clinical decision is robust to the uncertainty in weight,
for the intended patient population, would provide additional
confidence in the tool, and potentially reduce the need for a
clinical trial cohort to fully cover the range of weights in the
intended patient population. This is a simplistic example but the
same ideas apply for variable and fixed inputs in patient-specific
clinical tools based on personalized cardiac models (Gray and
Pathmanathan, 2018).

The results in this paper represent a step toward cardiac
model-based tools that are demonstrably robust to underlying
uncertainties, for both fixed and variable inputs, but there remain
many challenges to be overcome. For one, we used prescribed
input uncertainty in this paper, the next step is to investigate
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AP variability with empirically-derived input distributions. If
(when) overly large AP variability is observed, this will need to
be addressed by one or more of: (i) refining the model governing
equations; (ii) refining parameter uncertainty estimates; (iii)
determining which parameters are correlated; and/or (iv)
identifying parameters that should potentially be personalized in
clinical applications because their uncertainty due to population
variability leads to too much output uncertainty. This will
likely result in several iterations of the following: model form
refinement; parameter uncertainty characterization; robustness
analysis as performed here; and analysis of different behaviors
observed (section 2.8). This will need to be performed initially
for simple pacing protocols (as performed here) and then
arrhythmia-inducing protocols. Our model is canine, but the
same approach can used to develop a human model, although
parameterization will be more challenging. There are various
open questions about how best to integrate uncertainty into tissue
simulations (Ni et al., 2018). Finally, simplified models will be
need to be shown to be predictive for clinical applications, and
incrementally improved if there are not. This could be performed
iteratively withUQ in each step as additional complexity is added.
An incremental bottom-up approach may also allow formal
methods for accounting for model form uncertainty (structural
uncertainty) to be used (Mirams et al., 2016). Overall, although
there is a long way to go, we believe this approach—development
and iterative refinement of simplified models for which UQ in
all parameters is possible—represents a complementary pathway
for developing models for clinical cardiac applications, in

comparison to the traditional approach where established high
complexity models are used in clinical applications and UQ in
all parameters is not possible. We expect that such research will
reveal more information about the consequences of physiological
variability in cardiac models, and on the general credibility of
cardiac (and other physiological) models.
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