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Introduction
Metabolic diseases (MetDs), which include metabolic syndrome, 
pre-diabetes, and type 1 and 2 diabetes, are a series of pathologi-
cal conditions characterized by abnormal glucose use in the body. 
Multiple clinical studies have shown that metabolic syndrome and 
prediabetes both increase the risk of cardiovascular disease and all-
cause mortality [1–5], and that cardiac function and structure have 
changed in prediabetes patients [6–9]. In fact, obesity, insulin re-
sistance, and hyperglycemia are independent risk factors for the 
development of diabetic cardiomyopathy (DCM), which is the lead-
ing cause of death in MetDs [10, 11]. DCM, mainly manifested as 
cardiac systolic dysfunction, is an important factor in the develop-
ment of heart failure [12].

Cardiac energy metabolism disorder is considered to have a very 
important effect on the function and structure of the heart. Under 
normal physiological conditions, the use of fatty acids and glucose 
by myocardium is strictly regulated. However, under pathological 
conditions, the metabolism of fatty acids and glucose in cardiomy-
ocytes changes significantly. The increase of fatty acid metabolism 
caused mitochondrial damage, leading to serious heart damage 
[13]. Both clinical and animal studies have reported increased up-
take and utilization of lipids and accumulation of fat in heart in met-
abolic syndrome/diabetes [14–16]. The purpose of this review is 
to explain the role of lipids in cardiac energy metabolism and to 
elucidate a series of pathologic changes that occur in the heart 
when lipid overload occurs.

Review

Effects of Lipid Overload on Heart in Metabolic Diseases
  

Authors
An Yan1 * , Guinan Xie1 * , Xinya Ding1, Yi Wang1, Liping Guo2

Affiliations
1	 Tianjin University of Traditional Chinese Medicine, 

Tianjin, China
2	 Tianjin Academy of Traditional Chinese Medicine, Tianjin, 

China

Key words
lipid metabolism, cardiac energy metabolism, metabolic 
diseases, metabolic syndrome, type 2 diabetes, diabetic 
cardiomyopathy

received  16.08.2021 
accepted after revision  29.10.2021

Bibliography
Horm Metab Res 2021; 53: 771–778
DOI  10.1055/a-1693-8356
ISSN  0018-5043
© 2021. The Author(s).
This is an open access article published by Thieme under the terms of the 
Creative Commons Attribution-NonDerivative-NonCommercial-License, 
permitting copying and reproduction so long as the original work is given 
appropriate credit. Contents may not be used for commecial purposes, or 
adapted, remixed, transformed or built upon. (https://creativecommons.
org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG, Rüdigerstraße 14, 
70469 Stuttgart, Germany

Correspondence
Yi Wang
Institute of Traditional Chinese Medicine
Tianjin University of Traditional Chinese Medicine
300193 Tianjin
China 
Tel: +86-22-59596555 
wangyi@tjutcm.edu.cn

Liping Guo
Tianjin Academy of Traditional Chinese Medicine
300120 Tianjin 
China 
lpgtjn@163.com

Abstr act

Metabolic diseases are often associated with lipid and glucose 
metabolism abnormalities, which increase the risk of cardio-
vascular disease. Diabetic cardiomyopathy (DCM) is an impor-
tant development of metabolic diseases and a major cause of 
death. Lipids are the main fuel for energy metabolism in the 
heart. The increase of circulating lipids affects the uptake and 
utilization of fatty acids and glucose in the heart, and also af-
fects mitochondrial function. In this paper, the mechanism of 
lipid overload in metabolic diseases leading to cardiac energy 
metabolism disorder is discussed.
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Cardiac Energy Metabolism in the Healthy 
Heart
The heart converts chemical energy from fatty acids and glucose 
into mechanical energy for actin-myosin interactions. Due to the 
higher productivity fatty acids provide 70 % of the ATP needed by 
the heart. Fatty acids are the main energy fuel for the heart, fol-
lowed by glucose [17]. Interestingly, in the immature stage of car-
diomyocyte the main energy comes from glycolysis [18, 19]. As 
cardiomyocytes continue to differentiate and mature, they gradu-
ally begin to rely on oxidative phosphorylation for energy. When 
the heart is saturated with energy requirements, excess glucose is 
stored as glycogen. When the heart is low on energy, stored glyco-
gen can be disintegrated as fuel to produce ATP [20]. As the result 
of highly dependence on fatty acid explains why chronic changes 
in fatty acid metabolism can have profound effects on cardiac func-
tion. In conclusion, the selection, utilization, and storage of myo-
cardial fuel is a complex physiological process.

Cardiac energy metabolism mainly includes three parts: sub-
strate utilization, oxidative phosphorylation, and high-energy phos-
phate metabolism [21]. If the energy produced does not meet the 
heart’s needs, it can gradually lead to a decline in heart function 
and even heart failure [21]. Mitochondrial ATP supply to myocardi-
um requires the support of two important processes: metabolic 
fuel uptake and mitochondrial structural and functional integrity. 
A defect in either link can quickly lead to a decline in cardiac func-
tion. Under the stimulation of insulin and myocardial mechanical 
contraction, fatty acid translocase FAT/CD36 and GLUT4 are trans-
ported from endoplasmic reticulum to the cell membrane to up-
take most of the fatty acids and glucose into the cardiomyocytes 
[22]. Fatty acid acyl-coenzyme A (Fa-CoA) is synthesized by fatty 
acids under the action of Fa-CoA synthetase but cannot enter the 
mitochondria directly. Fa-CoA is first transferred to carnitine by car-
nitine palmitoyltransferase-1 (CPT-1), and then acylcarnitine enter 
the mitochondria directly, where it is converted back to Fa-CoA by 
carnitine palmitoyltransferase-2 (CPT-2) in the inner membrane of 
mitochondria. After entering the mitochondria, Fa-CoA is oxidized 
to acetyl-CoA through β-oxidation [23]. Glucose produces pyru-
vate, which then enters the mitochondria and enters the tricar
boxylic acid (TCA) cycle. Acetyl CoA is the confluence of fatty acid 
and glucose metabolism and can enter the TCA cycle freely to pro-
duce reducing agents NADH and FADH2, and transfer electrons to 
the mitochondrial respiratory chain for oxidative phosphorylation 
[24]. Because enzymes involved in fatty acids and glucose metab-
olism inhibit the oxidation of the other fuel, neither fuel disinte-
grates at the same time [25].

On the other hand, mitochondria consume oxygen and ADP to 
synthesize ATP through oxidative phosphorylation of complexes I, 
II, III, and IV located in the mitochondrial intima, and at the same 
time use energy released by electron transport process to estab-
lish proton gradient across the intima [26, 27]. NADH and succinic 
acid formed in the TCA cycle are oxidized by complexes I and II, 
transferring electrons to ubiquinone. Under the action of complex 
III, ubiquinone transfers electrons to cytochrome C, and finally elec-
trons transfer to complex IV to reduce oxygen to water [27, 28]. 
During electron transport, protons are pumped out of the mito-
chondrial matrix and create an electrochemical gradient on the 

mitochondrial lining. F0F1-ATP synthase uses the proton gradient 
to generate free energy to power the synthesis of ATP from ADP 
[28] (▶Fig. 1).

Lipid Overload Resulted in Increased FAT/
CD36 Translocation to the Cell Membrane 
and Decreased GLUT4
Although the mechanism is unclear, it is widely believed that lipid 
overload causes insulin increase. Since CD36 is more sensitive to 
insulin than GLUT4, it induces CD36 transfer from endoplasmic re-
ticulum to sarcomembrane when insulin is increased in circulation. 
In addition, a new study showed that excess lipids also induced 
CD36 translocation through upregulation of PKCζ activity and 
TBC1D1 phosphorylation [29]. This change results in the persis-
tence of CD36 in the sarcomembrane, which in turn promoted the 
myocardial fatty acid uptake rate [30]. Although there was an in-
crease in CD36 expression in the sarcomere, there was no change 
in total expression. This was due to the transfer of CD36 from the 
endoplasmic reticulum to the sarcomere rather than increased pro-
tein expression [31, 32]. An increase in fatty acid transport was ob-
served under a high-fat diet induced model, apparently prior to in-
sulin resistance. Before insulin resistance, CD36 translocation in-
creased under the action of lipids and insulin, while GLUT4 
translocation is not affected [33]. Increased fatty acid oxidation 
and rapid intracellular lipid accumulation lead to increased protein 
acetylation levels and lipid intermediates, which inhibit insulin sig-
naling at multiple levels [34–36]. When insulin resistance occurs, 
Akt2-mediated GLUT4 translocation is inhibited, leading to a de-
crease in glucose transport rate and a further increase in fatty acid 
uptake [33].

However, inhibition of fatty acid transport does not improve 
heart function. A study has shown that the specific ablation of CD36 
on cardiomyocytes severely obstructs the utilization of fatty acids, 
leading to the over-dependence of the heart on glucose for ener-
gy and further accelerating the development of heart failure [37]. 
Therefore, the heart can only function properly when the use of 
fatty acids and glucose is in balance. Otherwise, too much fatty 
acids or glucose can cause heart damage. Re-balancing substrate 
uptake is an effective therapy to correct cardiometabolic disorder 
[38]. It has also been shown that supplementing or promoting 
non-lipid myocardial metabolic substrates can improve the state 
of high-fat induced cardiac energy metabolism imbalance. In vitro 
and in vivo studies have demonstrated that specific amino acid sup-
plementation (lysine, leucine, arginine) reinternalized CD36 to the 
endosomes by regulating the mTORC1-v-ATPase axis, reduces my-
ocardial lipid uptake and reverses/prevents lipid accumulation [39].

Excessive Fatty Acid Utilization Affects 
Myocardial Energy Efficiency
Clinical data show that a significant decrease in myocardial glucose 
uptake in T2DM patients is associated with predominant lipid utili-
zation [40]. In db/db mouse heart, oxidation of fatty acids relative 
to glucose was reported to have increased by 64 % [41], providing 
more than 90 % of the heart’s ATP [42]. The flow of glycolysis and gly-
cogen decomposition decreased by a factor of two and three [41].
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The effects of fatty acid oxidation on the heart have been eluci-
dated in several reviews [24, 43, 44], which will not be repeated in 
this review. Circulating lipid overload promotes CD36-mediated 
myocardial fatty acid uptake and reduces GLUT4 translocation. This 
leads to increased uptake of fatty acids and reduced glucose in the 
myocardium. On the other hand, the expression of PPARα and en-
zymes involved in β-oxidation were upregulated by fatty acid stim-
ulation, which further promoted the increase of myocardial fatty 
acid oxidation flux [45–47]. Due to the increased dependence of 
cardiomyocytes on fatty acids, the ratio of cardiac fatty acid oxida-
tion to glucose oxidation increases, which foiled the development 
of DCM. Glutaredoxin 3 (Grx3) is generally thought to protect car-
diomyocytes from oxidative stress-induced damage by regulating 
REDOX states in mammals [48, 49]. But a new study found that 
Grx3 is also an important part of regulating cardiac metabolism. 
Grx3 regulates the balance of cardiac energy metabolism by 
up-regulating the expression of proteins related to fatty acid up-
take, transport and oxidation and down-regulating the expression 
of proteins related to glucose uptake and utilization [50].

Fatty acids are more productive than glucose, producing more 
ATP per carbon molecule, but they also require more oxygen [23]. 
In diabetes, increased oxidation of fatty acids causes the heart mus-
cle to consume scarce oxygen more quickly. When the situation 
develops further – hypoxia becomes more serious – fatty acid ox-
idation gradually decreases, and excessive dependence on fatty 
acids for energy leads to myocardial systolic dysfunction and my-
ocardial hypertrophy, which is the energy metabolism process in 
the development of DCM. Prostaglandin E receptor (EP4) is one of 
the receptors of prostaglandin E2, which is widely expressed in car-
diomyocytes. Recent studies have shown that EP4 changes CD36 
expression in HFD-induced DCM by regulating FOXO1/CD36 sign-
aling axis and improves cardiac fatty acid metabolism and ATP pro-
duction [51].

Effect of Lipid Overload on Mitochondrial 
Function
Mitochondria, as biological energy metabolic centers in eukaryot-
ic organisms, provide the site for a variety of biochemical process-
es, including oxidative phosphorylation (OXPHOS), the tricarbox-
ylic acid cycle, fatty acid β-oxidation, calcium treatment, and heme 
biosynthesis [52]. Mitochondrial structural integrity is critical to its 
function and vitality, but mitochondrial damage has been observed 
in a variety of metabolic diseases. Mild diastolic/systolic dysfunc-
tion occurs in prediabetic heart, accompanied by impaired mito-
chondrial function, including impaired mitochondrial respiration 
and ATP production, and decreased mitochondria, etc. [53, 54]. 
When myocardial insulin resistance or diabetes occurs, by increas-
ing mitochondrial division and reducing mitochondrial fusion, re-
ducing mitochondrial oxidative capacity, increasing ROS produc-
tion and mitochondrial decoupling, mitochondrial function is im-
paired, leading to mitochondrial damage, myocardial cell death, 
and cardiac dysfunction [55–58].

Chronic elevated blood glucose provides an environment for 
myocardial ischemia and hypoxia, resulting in impaired mitochon-
drial function of cardiomyocytes [59]. As myocardial contraction 
and membrane potential ion pump require energy from mitochon-
dria, cardiomyocytes are particularly sensitive to hypoxic injury 
[60, 61]. Therefore, previous studies have suggested that the main 
cause of mitochondrial function impairment in metabolic diseases 
is oxidative stress injury caused by ischemia and hypoxia, but the 
damage of lipid overload to mitochondria cannot be ignored. Under 
normal conditions, mitochondrial structural integrity maintains a 
steady state of synthesis and degradation under the control of a 
variety of mitochondrial fusion and fission proteins. Mitofusin 1 
(MFN1), Mitofusin 2 (MFN2), and protein Optic Atrophy 1(OPA1) 
are the key GTPases of mitochondrial fusion, among which the first 
two are responsible for mitochondrial outer membrane fusion 
[62, 63], and OPA1 regulates mitochondrial inner membrane fusion 
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▶Fig. 1	 Uptake and utilization of fatty acids and glucose in the healthy heart.
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[64]. Excessive fatty acid uptake in cardiomyocytes can reduce the 
expression of mitochondrial fusion genes MFN1, MFN2, and OPA1, 
resulting in mitochondrial structure remodeling, and inhibit the 
activity of respiratory chain complex Ⅱ and oxidative phosphoryl-
ation [65]. Dynamin-related protein 1 (Drp1) is a large GTP enzyme 
that mediates mitochondrial division. Drp1 acts on the outer mem-
brane of mitochondria through receptor proteins and activates 
downstream signaling pathways through multiple phosphorylation 
sites to promote mitochondrial fission [52]. Recent studies have 
found that excess lipids activate Drp1 through acetylation and in-
crease mitochondrial translocation, leading to myocardial cell dys-
function and death [66]. In vitro experiments also confirmed that 
the increase of FA in myocardium significantly reshaped the mito-
chondrial network, resulting in the accumulation of slender mito-
chondria with reduced diameter in myocardium cells, and induced 
mitochondrial dynamic changes mediated by the post-translation-
al modifications of mitochondrial protein, DRP1 and OPA1, leading 
to mitochondrial dysfunction [67].

Cardiolipotoxicity
Excessive lipid accumulation in the non-adipose cells of the cardi-
ovascular system leads to cell dysfunction and cell death, a process 
known as lipotoxicity. When excess lipids are deposited in the heart, 
they can lead to myocardial cell apoptosis and cardiac systolic dys-
function [68]. Excessive fatty acids can selectively absorb and store 
fatty acids by upregulating GSK-3α and phosphorylating PPARα at 
Ser280 of its ligand binding domain, promoting fat accumulation, 
which is the basis for the development of the metabolic disease li-
potoxic cardiomyopathy [69].

As a storage form of fat, triacylglycerol (TAG) itself has no direct 
lipid toxicity to myocardium. However, the lipid intermediates pro-
duced in the process of TAG synthesis and decomposition are be-
lieved to be responsible for the lipid toxicity, as well as post-trans-
lational modification of proteins.

Diacylglycerol (DAG)
Lipid intermediates are a class of signaling molecules produced dur-
ing the intracellular accumulation of fatty acid, which regulate the 
energy supply and survival of cardiomyocytes. DAG is an important 
lipid intermediate in TAG synthesis and decomposition. It is widely 
believed that the activation of DAG- protein kinase C (PKC) induc-
es insulin resistance (details will be described in the next section). 
Inhibiting the amount of DAG in myocardium may be an effective 
treatment. DAG acyltransferase (DGAT) is a key enzyme in the syn-
thesis of DAG from 3-phosphoglyceride and acyl-CoA. A study has 
shown that partial inhibition of DGAT activity increases cardiac fatty 
acid oxidation but does not affect PPARα signal transduction or car-
diac systolic function. Complete inhibition of DGAT activity can 
eliminate cardiac lipid accumulation induced by high fat diet with-
out adverse effects on basic cardiac function [70].

Ceramide
Ceramides are the most widely studied sphingolipids involved in 
cardiac lipotoxicity. Studies have shown that ceramide levels in 

circulation and myocardium are positively associated with the risk 
of cardiovascular events and mortality [71, 72]. When triglyceride 
stores are also saturated, acyl-CoA enters the ceramide biosynthe-
sis pathway. Excessive ceramide can induce insulin resistance 
[35, 73], regulate the translocation of CD36 to the muscle mem-
brane, inhibit the uptake of glucose and amino acids, reduce mito-
chondrial efficiency and slow lipolysis by blocking activation of hor-
monesensitive lipase (HSL) in cardiomyocytes [74].

Long-chain acyl-CoA
Upon entry into cardiomyocytes, long-chain fatty acids bind with 
CoA molecules to form long-chain acyl-CoA (LCACoA). The direct 
lipid toxicity of LCACoA to cardiomyocytes has yet to be deter-
mined, and current reports indicate that LCACoA has a dual role in 
myocardial mitochondria. Palmitoyl CoA (PCoA) can induce the loss 
of ΔΨ m outside the mitochondria and thus affect mitochondrial 
function [75]. PCoA can also limit the shuttle of ADP and ATP on 
the mitochondrial membrane by inhibiting the activity of ADP/ATP 
carriers on the mitochondrial membrane [76, 77]. However, dur-
ing ischemia, ATP can be prevented from entering mitochondria 
for hydrolysis, which is a protective mechanism during ischemia 
[78]. However, in diabetes, the protective membrane potential of 
PCoA is inhibited, leading to increased ATP hydrolysis rate in dia-
betic heart during ischemia [78].

Post-translational modifications(PTMs) of 
proteins
PTMs of proteins refers to a covalent process that a protein under-
goes during or after translation, which can be regarded as a switch 
on which proteins function. Palmitoylation of proteins is the revers-
ible linking of palmitate molecules to cysteine residues under the 
action of enzymes. Depending on the hydrophobicity of palmitate, 
the modified protein can be localized to specific submembrane. 
However, lipid overload can lead to aberrant/excessive palmitoy
lation of proteins, which negatively affects insulin signaling [79]. 
For example, hyperpalmitylation of PKCε leads to downregulation 
of insulin receptor expression and decreased insulin sensitivity [80]. 
CD36 hyperpalmitylation promotes fatty acid uptake by increasing 
the number of CD36 on the cell membrane [81].

Acetylation of proteins is also a reversible modification. Since 
lysine acetyltransferase that mediates protein acetylation is pro-
duced by acetyl CoA, increased fatty acid metabolism leads to an 
increase in protein acetylation levels [34]. In the insulin signaling 
pathway, acetylation of Akt and its upstream regulator, phospho-
inositol-dependent kinase 1 (PDK1), blocks insulin signaling and 
inhibits translocation of GLUT4 [82, 83].

Insulin Resistance and Cardiac Energy 
Metabolism
Cardiomyocyte is a typical insulin-targeting cell. Chronic high fat 
intake promotes the development of insulin resistance in cardio-
myocytes, leads to cardiometabolic dysfunction, and accelerates 
the development of left ventricular dysfunction and cardiac remod-
eling [84–86]. In diabetes, increased oxidation and storage of fatty 
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acids in the heart can lead to diastolic dysfunction, which is also as-
sociated with insulin resistance [23]. In the case of insulin resist-
ance, reduced IRS-1 tyrosine phosphorylation reduces the activa-
tion of PI3K-Akt signaling pathway and inhibits downstream insu-
lin-mediated metabolic regulation [86]. The decrease of Akt 
phosphorylation directly leads to the decrease of GLUT4 translo-
cation, which reduces the uptake of glucose in myocardium 
[86, 87]. Reduced insulin signaling also inhibits glucose utilization 
by regulating the role of enzymes in the glycolysis pathway, such 
as hexokinase and phosphofructokinase 2 [88, 89]. Declines in my-
ocardial glucose uptake and utilization have also been observed in 
patients with diabetes [90].

There are many studies that suggest that excess lipid induces 
insulin resistance through DAG and ceramide [35, 74, 91, 92], which 
greatly affects energy metabolism. DAG has been shown to be more 
associated with myocardial insulin resistance than ceramides [36]. 
DAG-mediated PKC activation is currently recognized as the main 
cause of DAG-induced insulin resistance. PKC activation reduces 
tyrosine phosphorylation of IRS-1 resulting in reduced insu-
lin-PI3K-Akt signaling [91]. Ceramide inhibits Akt activity, affects 
GLUT4 translocation and glucose uptake by activating PKCζ and 
protein phosphatase 2 (PP2A) [93, 94].

All in all, the insulin cascade forms a vicious circle, aggravating 
the heart’s excessive dependence on fatty acids for energy and the 
acceleration of oxygen consumption. It has also been reported that, 
in addition to lipids, branched amino acids, iron overload can also 
lead to heart insulin resistance [95–97].

In addition to insulin, AMP-activated protein kinase (AMPK) also 
plays an important role in regulating substrate utilization. And in-
sulin signal transduction are two relatively independent signaling 
pathways, but they also affect each other. The study showed that 
increased insulin sensitivity and increased glucose uptake and uti-
lization were observed in mice with AMPK deletion [98]. Activated 
AMPK inhibits glycogen, fatty acid, and protein synthesis, and en-
hances glucose/fat uptake, mitochondrial metabolism, and auto-
phagy by phosphorylating GLUT4/CD36, PGC-1α/SIRT, and ACC2, 
respectively [99]. The interference of long-term excessive fatty acid 
level in the heart not only causes the change of PI3K-Akt-mediat-
ed insulin signaling, but also changes the AMPK-eNOS signaling. 
Although no studies have confirmed this, it can be inferred that FA 
can lead to cardiac energy metabolism disorders through AMPK 
even in the absence of insulin resistance.

Concluding Remarks
The heart needs a balanced ratio of fatty acids to glucose metab-
olism. When that balance is disrupted, it triggers a cascade of but-
terfly effects that imbalance the energy metabolism of the heart, 
resulting in impaired cardiac function and structure. The distur-
bance of myocardial energy metabolism and lipid toxicity caused 
by lipid overload seriously affects cardiac function. Chronic lipid 
overload can lead to heart failure. First, excess lipid promotes FAT/
CD36 uptake of fatty acids by increasing circulating free fatty acids 
through the action of insulin. Meanwhile, excessive intake of fatty 
acids up-regulated the expression of β-oxidation-related genes and 
enzymes and promoted the utilization of fatty acids. During this 
process, insulin resistance is induced by accumulating lipid toxicity, 

which inhibits glut4-mediated glucose uptake and utilization. The 
increase of fatty acid/glucose oxidation ratio resulted in myocardi-
al over-dependence on fatty acid for energy and increased oxygen 
consumption. In addition to affecting energy metabolism, lipid tox-
icity and hypoxia cause mitochondrial damage and reduce mito-
chondrial efficiency.

By elucidating the pathological changes of the heart caused by 
lipid overload at the cellular and molecular levels, it is helpful to 
identify potential therapeutic targets. In addition to explaining the 
mechanisms of lipid overdose-induced cardiac injury, this review 
also mentions some factors leading to lipid toxicity, among which 
the role of PTMs of proteins has attracted increasing attention in 
recent years. These new descriptions may provide new ideas for 
cardiometabolic intervention.
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