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Abstract
Today, breeders perform genomic-assisted breeding to improve more than one trait. However, frequently there are several
traits under study at one time, and the implementation of current genomic multiple-trait and multiple-environment models is
challenging. Consequently, we propose a four-stage analysis for multiple-trait data in this paper. In the first stage, we
perform singular value decomposition (SVD) on the resulting matrix of trait responses; in the second stage, we perform
multiple trait analysis on transformed responses. In stages three and four, we collect and transform the traits back to their
original state and obtain the parameter estimates and the predictions on these scale variables prior to transformation. The
results of the proposed method are compared, in terms of parameter estimation and prediction accuracy, with the results of
the Bayesian multiple-trait and multiple-environment model (BMTME) previously described in the literature. We found that
the proposed method based on SVD produced similar results, in terms of parameter estimation and prediction accuracy, to
those obtained with the BMTME model. Moreover, the proposed multiple-trait method is atractive because it can be
implemented using current single-trait genomic prediction software, which yields a more efficient algorithm in terms of
computation.

Introduction

Breeders often want to improve more than one trait simul-
taneously in their breeding programs and thus conduct

various experiments. For example, Teixeira et al. (2016)
reported that a breeding program in Brazil measured 41 pig
traits obtained by crossing 345 F2 pig populations of Bra-
zilian Piau × commercial pigs. To analyze this type of
experiment, breeders implement one of the following two
approaches: (i) they perform a univariate analysis (one trait
at a time), therefore ignoring the correlation between traits
that does not allow to improve either parameter estimates or
prediction accuracy, or (ii) they perform a multiple-trait
analysis, which may not only take into account the corre-
lation between traits but may also significantly increase the
computing intensity.

Implementing first approach is valid when the correlation
between traits is low or close to zero, but it is less desirable
when the correlation between traits is moderate to strong.
However, implementing the second approach is sometimes
challenging—for example, when there are a large number of
traits, and under these circumstances, breeders opt for the
first approach. Furthermore, implementing the second
approach is also challenging because early breeding pro-
grams start with at least 1000 lines that are evaluated in
multiple environments, which complicates the analysis, as
including genotype × environment (G × E) increases the
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dimensionality of the data considerably (Chiquet et al.
2013).

As mentioned above, multiple-trait analysis improves
parameter estimates and prediction accuracy. With regard to
parameter estimates, Schulthess et al. (2017) found that
multiple-trait analysis improves parameter estimates, while
Calus and Veerkamp (2011) found modest improvement
using multiple-trait analysis compared to separate-trait
analysis for prediction accuracy; these authors also
showed that the performance of multiple-trait analysis
depends considerably on whether only some traits are
missing in only some individuals or in all individuals. Jia
and Jannink (2012) also showed evidence favoring
multiple-trait analysis compared to single-trait analysis,
finding that the genetic correlation between traits is the basis
for the benefit of multiple-trait analysis. Jiang et al. (2015)
later arrived at the same conclusion in favor of multiple-trait
analysis. Montesinos-López et al. (2016) also found modest
improvement in the prediction accuracy of multiple-trait
analysis when comparing correlated traits to the analysis
that assumes null correlation between traits. Along these
lines, He et al. (2016) concluded that modeling multiple
traits could improve the prediction accuracy for correlated
traits in comparison to univariate-trait analysis. Schulthess
et al. (2017) also found that multiple-trait analysis is better
in terms of prediction accuracy than separate-trait analysis,
pointing out that the multiple-trait model is better when the
degree of relatedness between genotypes is weaker.

There is evidence suggesting that even when traits are
correlated, genomic-enabled prediction accuracy is not
improved, as stated by Montesinos-López et al. (2017a) and
as shown by Märtens et al. (2016), who compared multiple-
trait analysis to single-trait analysis and found no difference
in terms of prediction accuracy. This issue was also docu-
mented by Oliveira and Teixeira-Pinto (2015) who proved
this result by stating that, in the multivariate linear regres-
sion case (when the covariates in each equation are the
same), even if the errors are strongly correlated, the multi-
variate model gives the same result (both point estimates
and standard errors) as fitting individual regressions with
ordinal least squares for each outcome, despite the level of
correlation between the errors.

As a breeding tool, genomic selection (GS) uses all
available molecular markers (Meuwissen et al. 2001) to
design genomic-assisted breeding programs and develop
new marker-based models for genetic evaluation. GS pro-
vides opportunities to obtain higher rates of genetic gain
than traditional phenotypic selection in less time and at a
reasonable cost. For example, in animal breeding, GS
allows animal scientists to select young animals early in life
that do not have records, greatly reducing evaluation costs
and generation intervals when compared to the traditional

progeny test schemes (Schaeffer 2006; Boichard et al.
2016). In general, for traits that have a long generation time
or are difficult to evaluate (i.e., insect resistance, bread-
making quality, and others), GS is cheaper and/or easier
than traditional phenotypic selection because more candi-
dates can be characterized for a given cost, thus enabling
increased selection intensity. Hence, GS has a number of
merits over traditional selection because it reduces selection
duration and increases selection accuracy, intensity, effi-
ciency, and gains per unit of time. In addition, it saves time
and financial investment, along with producing reliable
results (Rutkoski et al. 2011; Desta and Ortiz 2014). This
enables faster development of improved crop varieties to
cope with the challenges of climate change and the decrease
in arable land (Bhat et al. 2016).

Therefore, we propose an alternative method for analyz-
ing multiple-trait and multi-environment data—one that
takes into account the correlation between traits. This model
will be useful for analyzing multiple-trait and multi-
environment data because the linear predictor may include
the following interaction terms: environment × trait, geno-
type × trait, and three-way interaction (environment × geno-
type × trait), assuming an unstructured variance–covariance
matrix in the genetic and residual covariance matrices of
traits and an identity matrix for the correlation matrix
between environments.

The proposed method consists of four steps. In the first
step, we transform the original matrix of response variables
into a matrix of response variables of the same dimension
but between uncorrelated transformed traits using singular
value decomposition (SVD), which is equivalent to using
principal component analyses (PCA). This first step is
performed ignoring all the information of the design effect
and other covariates. In the second step, given that the traits
are not correlated, we apply a single-trait analysis where we
can take into account the design effect, along with the
effects of genotypes, environments, genotype × environ-
ment interaction, and other covariates, if they are available.
In the third step, we collect and put together all the para-
meter estimates of the single analysis, which are trans-
formed in the fourth step to obtain the parameter estimates
and/or predictions for the traits in the original scale of the
multiple-trait and multiple-environment data. Our approach
has the same goal as the canonical transformation method
proposed by Thompson (1977), which involves using spe-
cial matrices to transform the observations on several cor-
related traits into new variables that are uncorrelated to each
other, which means that these new variables can be ana-
lyzed as single-trait analysis, but the results (predictions) are
transformed back to the original scale of the observations
(Mrode 2014). However, our method is different to the
Thompson (1977) method since our approach directly
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decorrelates the matrix of response variables with the SVD,
while the Thompson (1977) method transforms the variance
of the response var(Y)= Σt+R, such that QRQT= I and
QΣtQ

T=W, where I is an identity matrix and W is a
diagonal matrix, of course assuming that Σt and R are
positive definite matrices and that there is a matrix Q. More
details of this method can be found in chapter 6 of the book
by Mrode (2014). A detailed example of the Thompson
(1977) method is available in Appendix E, section E.1, in
the book by Mrode (2014). The Thompson (1977) method
has the inconvenience that if the (co)variances R and Σt are
unknown, the transformations mentioned above need to be
applied at each iteration of the Henderson mixed model
equations. For this reason, it's implementation is not
straightforward using current univariate software.

The advantage of the proposed alternative method is that
the analysis can be performed directly using the current
software for univariate genomic selection and prediction.
However, it is important to point out that when the dis-
tribution of the traits has considerably departed from nor-
mality, the proposed method does not guarantee
independence between the transformed traits, a key
assumption for the successful implementation of the pro-
posed model, since for non-normal traits lack of correlation
does not imply independence. Also, the proposed method
can be implemented to perform the analysis even when
there are some missing traits per individual and some
individuals are missing in some environments, as long as
the level of unbalance is not strong.

Materials and methods

Statistical models

Multiple-trait multiple-environment model

Since genotype × environment interaction is of paramount
importance in plant breeding, the following univariate linear
mixed model is usually used for each trait:

yij ¼ Ei þ gj þ gEij þ eij ð1Þ
where yij represents the normal response from the jth line in
the ith environment (i= 1, 2, …, I, j= 1, 2, …, J). Ei

represents the effect of the ith environment and is assumed as
a fixed effect, gj represents the random effect of the genomic
effect of the jth line, with g= (gj, …, gJ)

T ~N 0; σ21Gg

� �
, σ21

denotes the genomic variance and Gg is of order J × J and
represents the genomic relationship matrix (GRM) and is
calculated using the Van Raden (2008) method as Gg= ZZT

p ,
where p denotes the number of markers and Z the matrix of
markers of order J × p. The Gg covariance matrix is
constructed using the observed similarity at the genomic

level between lines, rather than the expected similarity based
on pedigree. gEij is the random interaction term between the
genomic effect of the jth line and the ith environment where
gE= (gE11, …, gEIJ)

T ~N 0; σ22 II � G
� �

, σ22 denotes the
variance of the interaction term of genotype by environment,
and eij is a random error term associated with the jth line in
the ith environment distributed as N(0, σ2), with σ2 denoting
the residual variance. This model is usually used for each of
the l= 1, …, L traits, where L denotes the number of traits
under study. Next we will present the multivariate version of
model (1); for this reason, first we provide the notation for the
matrix variate normal distribution, which is a generalization of
the multivariate normal distribution. In particular, let the (n ×
p) random matrix, M, be distributed as matrix variate normal
distribution denoted as M ~NMn×p(Η, Ω, Σ), if and only if,
the (np × 1) random vector vec(M) is distributed as multi-
variate normal denoted as Nnp(vec(Η), Σ⊗Ω); therefore,
NMn×p denotes the (n × p) dimensional matrix variate normal
distribution, Η is a (n × p) location matrix, Σ is a (p × p) first
covariance matrix, and Ω is a (n × n) second covariance
matrix (Srivastava and Khatri 1979). vec(.) and ⊗ are the
standard vector operator and Kronecker product, respectively.

To account for the correlation between traits, all of the L
traits given in Eq. (1) are jointly modeled in a whole mul-
tiple-trait, multiple-environment mixed model as follows:

Y ¼ Xβ þ Z1b1 þ Z2b2 þ e ð2Þ
where Y is of order n × L, X is of order n × I, β is of order
I × L, Z1 is of order n × J, b1 is of order J × L and contains
the first interaction term genotype × trait, Z2 is of order n ×
IJ, b2 is of order IJ × L and contains the second interaction
term genotype × environment × trait, and e is of order n × L,
with b1 distributed under matrix variate normal distribution
as NMJ×L (0, Gg, Σt), where Σt is the unstructured genetic
(co)variance matrix of traits of order L × L, b2 ~ NMJI×L(0,
ΣE⊗Gg, Σt), where ΣE is an unstructured (co)variance
matrix of order I × I, and e ~ NMn×L(0, In, Re), where Re is
the unstructured residual (co)variance matrix of traits of
order L × L, and Gg is the GRM described above. The
Bayesian multiple-trait and multiple-environment
(BMTME) model resulting from Eq. (2) was implemented
by Montesinos-López et al. (2016).

First, we provided a modified version of the original
BMTME model proposed by Montesinos-López et al.
(2016), and in the next section, we will provide
the modified Gibbs sampler for this modified BMTME
model.

Gibbs sampler for the BMTME model

Outlined below is the Gibbs sampler for estimating the
parameter of interest in the BMTME model. While the order
is somewhat arbitrary, we suggest the following:
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Step 1. Simulate β according to the normal distribution
given in Supplementary material (A.1).

Step 2. Simulate b1 according to the normal distribution
given in Supplementary material (A.2).

Step 3. Simulate b2 according to the normal distribution
given in Supplementary material (A.3).

Step 4. Simulate Σt according to the inverse Wishart
(IW) distribution given in Supplementary material (A.4).

Step 5. Simulate ΣE according to the IW distribution
given in Supplementary material A (A.5).

Step 6. Simulate Re according to the IW distribution
given in Supplementary material A (A.6).

Step 7. Return to step 1 or terminate when chain length is
adequate to meet convergence diagnostics.

The main differences between this Gibbs sampler and
that given by Montesinos-López et al. (2016) are: (i) that
this modified Gibbs sampler assumes an unstructured
variance–covariance matrix for environments, while
the original BMTME model assumes a diagonal
variance–covariance matrix for environments, and (ii) that
the original BMTME model used non-informative priors
based on the Half-t distribution of each standard deviation
term and uniform priors on each correlation of the covar-
iance matrices of traits (genetic and residual). The modified
BMTME model presented here assumes weak informative
priors not based on the Half-t distribution of each standard
deviation (details of the hyperparameters of the BMTME
model are given in Supplementary material). The hyper-
parameters for the BMTME model were set similar to those
used in the BGLR software (Pérez-Rodríguez and de los
Campos 2014). The modified full conditional of this mod-
ified BMTME model, which supports the Gibbs sampler
given above, is provided in Supplementary material. Next,
we will describe the parameterization of the model given in
Eq. (2) to develop the proposed alternative method that is
based on SVD.

BMTME_Thompson version

Following Thompson (1977) and Ducrocq and Chapuis
(1993), we define Q as a matrix of order L × L such that
QΣtQ

T=Dt, where Dt is a diagonal matrix also of order L ×
L and QReQ

T= It. The Q matrix always exists and can be
calculated as Q= LTP, where P ¼ UeB�0:5

e UT
e , where Ue

and Be are obtained by applying the SVD to Re ¼ UeBeUT
e ,

while LT is obtained also by applying the SVD to PΣtP
T=

LDtL
T. Then, by applying a linear transformation to Eq. (2),

we obtain:

YQT ¼ XβQT þ Z1b1QT þ Z2b2QT þ eQT

Y& ¼ Xβ& þ Z1b
&
1 þ Z2b

&
2 þ Qe&

ð3Þ

Then note that:

Var vec b&1
� �� �¼ Q� IJð ÞVar vec b1ð Þð Þ QT � IJ

� �
¼ QΣtQT �Gg ¼ Dt �Gg

Var vec b&2
� �� �¼ Q� IJIð ÞVar vec b2ð Þð Þ QT � IJI

� �
¼ QΣtQT � ΣE �Gg ¼
¼ Dt � ΣE �Gg

Var vec e&ð Þð Þ ¼ Q� Inð ÞVar vec eð Þð Þ QT � In
� �

¼ QReQT � In ¼ It � In

Since Dt and It are diagonal matrices of order t × t, the full
conditional distributions for the transformed random effects
b&1 and b&2 of the BMTME model are:

Full conditional for vec b&1
� �

P vec b&1
� �jELSE� � / N vec ~b&1

� �
; eΣb&1

� �
ð4Þ

where eΣb&1
= ðD�1

t � G�1
g þ IL � ZT

1Z1Þ�1 and vecðeb&1 Þ =eΣb&1
IL � ZT

1

� �
vec Y&

� �� vec Xβ&
� �� vecðZ2b

&
2 Þ

� �
.

Full conditional for vec b&2
� �

P vec b&2
� �jELSE� � / N vec eb&2

� �
; eΣb&2

� �
ð5Þ

where eΣb&2
= ðD�1

t � Σ�1
E � G�1

g þ IL � ZT
2Z2Þ�1 and

vec eb&2
� �

=

eΣb&2
IL � ZT

2

� �
vec Y&

� �� vec Xβ&
� �� vec Z1b

&
1

� �� 	
.

It is important to point out that the full conditionals of b&1
and b&2 are diagonals for traits; for this reason, these full
conditionals can be sampled independently for each trait, as:

Full conditional for b&ðlÞ
1 for l= 1, 2, …, L

P b&ðlÞ
1 jELSE

� �
/ N eb&ðlÞ

1 ; eΣb&ðlÞ
1

� �
ð6Þ

where eΣ
b&ðlÞ
1

= d�1
l � G�1

g þ ZT
1Z1

� ��1
and

eb&ðlÞ
1 ¼ eΣb&1

ðZT
1 Þ½Y&ðlÞ � Xβ&ðlÞ � Z2b

&ðlÞ
2 �.

Full conditional for b&ðlÞ
2 for l= 1, 2, …, L

P b&ðlÞ
2 jELSE

� �
/ N eb&ðlÞ

2 ; eΣb&ðlÞ
2

� �
ð7Þ

where eΣ
b&ðlÞ
2

= ðd�1
l � Σ�1

E � G�1
g þ ZT

2Z2Þ�1 and eb&ðlÞ
2 =

eΣb&ðlÞ
2

ZT
2

� �
Y&ðlÞ � Xβ&ðlÞ � Z1b

&ðlÞ
1

n o
.

Therefore, the Gibbs sampler for the BMTME Thomp-
son version should be:

Step 1. Simulate β according to the normal distribution
given in Supplementary material (A.1).
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Step 2. Simulate b&ðlÞ
1 for l= 1, 2, …, L according to the

normal distribution given in Eq. (6).
Step 3. Simulate b&ðlÞ

2 for l= 1, 2, …, L according to the
normal distribution given in Eq. (7).

Step 4. Then transform back Y= Y&Q(−1)T,
β ¼ β&Qð�1ÞT , b1 ¼ b&1 Q

ð�1ÞT and b2 ¼ b&2 Q
ð�1ÞT .

Step 5. Simulate Σt according to the IW distribution
given in Supplementary material (A.4).

Step 6. Simulate ΣE according to the IW distribution
given in Supplementary material (A.5).

Step 7. Simulate Re according to the IW distribution
given in Supplementary material (A.6).

Step 8. Return to step 1 or terminate when chain length is
adequate to meet convergence diagnostics.

The Gibbs sampler for the BMTME Thompson version
is similar to the original modified Gibbs sampler except that
steps 2 and 3 were replaced for univariate sampling for the
transformed random effects (b1 and b2), which are back
transformed in Step 4. The advantage of the BMTME
Thompson version is that it allows sampling the random
effects of b1 and b2 independently for each trait, which
allows improving the speed of the Gibbs sampler because it
can be parallelized. However, the remaining parameters (β,
Σt, ΣE, and Re) are sampled exactly as the original Gibbs
sampler.

BMTME_Approx model with SVD

An alternative but only approximate method is to transform
the matrix of response variables with SVD as Y=UDVT,
where U and V are orthogonal matrices called the left and
right singular vectors, respectively, of dimensions n × n and
L × L, while D is a rectangular diagonal matrix of the sin-
gular values of order n × L (where only the first L values of
D are positive while the rest are zeros). Therefore, the
reparametrized model given in Eq. (2) can be rewritten as:

UDVT ¼ Xβ þ Z1b1 þ Z2b2 þ e

Y� ¼ Xβ� þ Z1b
�
1 þ Z2b

�
2 þ e�

ð8Þ

where Y*=UD= YV, β*= βV, b�1=b1V, b
�
2 ¼ b2V , e

*=
eV. Y* is of order n × L, β* is of order I × L, b�1 is of order
J × L, b�2 is of order IJ × L, and e* is of order n × L. Note that
the parametrized model does not have the same conceptual
definition as the original model (2), first, because β* is a
random matrix and not an unknown constant matrix as the
matrix of fixed effects, β, and second, because b�1, b

�
2, and e*

are no longer independent. However, if we fix V as part of
the subjacent data structure, and we suppose that Σt=
VDt1V

T and Re= VDteV
T (they have a restricted parameter

space, Lin and Smith (1990)), b�1 is distributed as a matrix
variate normal distribution as NMJ×L (0, Gg, Dt1), b�2 ~
NMJI�L 0;ΣE � Gg;Dt1

� �
, and e* ~ NMn×L(0, In, Dte), where

Dt1 and Dte are diagonal variance–covariance matrices of
dimension L × L. It is important to point out that, under this
approximate model, the (co)variance matrix for environ-
ment is assumed an identity matrix, ΣE= II.

To use the existing software, we replaced the distribution
of transformed random effects b�2 with b�2 ~ NMJI×L(0, II⊗
Gg, Dt2), where Dt2 is another diagonal variance–covariance
matrix of traits of dimension L × L. With this, the resulting
model (8) can be estimated with the R package BGLR,
which is appropriate for univariate analysis. From Eq. (8), it
is clear that the parameter estimates and predicted values of
the original model (Eq. (2)) without transformation can be
approximated as:

bβ ¼ bβ�VT ð9Þ
bb1 ¼ bb�1VT ð10Þ

bb2 ¼ bb�2VT ð11Þ

bY� ¼ bY�VT ; with bY� ¼ Xbβ� þ Z1
bb�1 þ Z2

bb�2 ð12Þ

bΣt1 ¼ VbDt1VT ð13Þ

bΣt2 ¼ VbDt2VT ð14Þ

bΣte ¼ VbDteVT ð15Þ

Steps for implementing the proposed
BMTME_Approx model

Step 1: De-correlate the original traits with the SVD as Y=
UDVT and use it as response variable Y*=UD= YV.

Step 2: Implement model (1) but using one column at a
time of the uncorrelated matrix Y* as the response variable.
This means that a total of L single analyses are done with
the model in Eq. (1).

Step 3: With the output of Step 2, the predicted values
can be calculated in terms of the transformed values withbY� ¼ Xbβ� þ Z1

bb�1 þ Z2
bb�2. With this new output, we con-

struct the diagonal matrices bDt1, bDt2, and bDte.
Step 4: Finally, with Eq. (12), we obtain the predicted

values in terms of the original traits. Furthermore, with Eqs.
(9–11, 13–15), we obtain the parameter estimates of the
beta coefficients, β, random effects b1 and b2, as well as the
variance–covariance matrices of traits corresponding to
traits in the first interaction term, Σt1, for traits in the second
interaction term, Σt2, and the residual variance–covariance
matrix of traits, Re. The R code for implementing this
proposed BMTME_Approx model in BGLR is given in
Supplementary material.
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For implementing the proposed BMTME_Approx model
with random cross-validation, we will follow the four-step
procedure exactly as described above, except for the first
step, which is modified. Now, in Step 1, we will de-
correlate the traits in the training data set (Yt) with the SVD
as Y t ¼ UtDtVT

t , where the subscript t denotes that these
matrices were estimated with the training data set. Then we
transform the response variable into Y*=UtDt= YtUt, and
expand Y* with the number of rows that are the same size as
the testing data set; the expanded rows should all be
replaced with NA, to represent the missing values. The
positions of the expanded rows with missing values will
correspond to the testing data set. Once this is done, the
remaining steps must be followed exactly as in the above
procedure that is described for the full data set. Note that the
dimension of the response variable matrix with the training
data set has fewer rows than the full data set of response
variables.

It is important to point out that the BMTME model
was built to estimate only one variance–covariance
matrix of traits, Σt, involved in the two interaction terms,
genotype × trait and genotype × environment × trait. How-
ever, the BMTME_Approx model allows estimating a
variance–covariance matrix of traits for each interaction
term in which the traits are involved. The BMTME model is
also able to estimate an unstructured variance–covariance
matrix for the environments, ΣE; this is not reported for the
BMTME_Approx model because an identity matrix is
assumed.

Hyperparameters

First we provide the hyperparameters for the BMTME
model: β ~MNI×L (β0, II, Sβt), b1|Σt ~MNJ×L (0, Gg, Σt), b2|
Σt, ΣE ~MNIJ×L (0, ΣE⊗Gg, Σt), ΣE ~ IW(νE= 5, SE= SE),
Σt ~ IW(νt= 5, St= St), and Re ~ IW(νe= 5, Se= Se); β0
was obtained as the least square of each trait. The remaining
hyperparameters Sβt, St, SE, and Se are given in Supple-
mentary material. The hyperparameters for the
BMTME_Approx were exactly the same to those of the
BMTME, but for the univariate analysis, it were as those
used in the BGLR software (Pérez-Rodríguez and de los
Campos 2014). The proposed Gibbs sampler was imple-
mented in the R-software (R Core Team 2018). A total of
60,000 iterations were performed with a burn-in of 20,000,
so that 40,000 samples were used for inference. To eliminate
potential problems due to the autocorrelation function
(ACF), we considered a thinning of 5. The convergence of
the MCMC chains was monitored using trace plots, ACF
and Gelman-Rubin diagnostics. We provide weakly infor-
mative priors to implement the proposed models. It is
important to point out that the proposed BMTME_Approx
model only works for normally distributed traits. However,

when there is considerable departure from normality, we
suggest using independent component analysis (ICA)
instead of SVD for transforming the matrix of response
variables (Y) (see Supplementary material for its
implementation).

Simulated data set 1 and data set 2

To test the proposed models and methods, we simulated
multiple-trait and multiple-environment data using the
model in Eq. (2). For this first data set, we used the fol-
lowing parameters: 3 environments, 3 traits, 200 genotypes,
and 1 replication of the environment–trait–genotype com-
bination. We assumed that βT= [13, 10, 5, 12, 8, 7, 11, 9,
6], where the first three beta coefficients belong to traits 1,
2, and 3 in environment 1, the second three values belong to
the three traits in environment 2, and the last three belong to
environment 3. We assumed that the GRM is known and
equal to Gg= 0.3I200+ 0.7J200, where I200 is an identity
matrix of order 200 and J200 is a matrix of order 200 × 200
of ones. The parameters used for building the GRM were
chosen to provide a high-level relationship between lines
(Montesinos-López et al. 2016).

Therefore, the total number of observations is 3 × 200 ×
3 × 1= 1800, that is, 600 for each trait. Since a covariance
matrix can be expressed in terms of a correlation matrix (Rr)
and a standard deviation matrix D1=2

r

� �
as: Σr ¼ D1=2

r RrD1=2
r ,

with r= t, E, e, where r= t represents the genetic covariance
between traits, r= E represents the genetic covariance matrix
between environments, and r= e represents the residual
covariance matrix between traits. For the three covariance
matrices (r= t, E, e), we used Rr= 0.75I3+ 0.25J3, where J3
is a matrix of order 3 × 3 of ones, and D1=2

t = diag(0.9, 0.8,
0.9), D1=2

E = diag(0.5, 0.65, 0.75) and D1=2
e = diag(0.6, 0.42,

0.33). For the second data set, the parameters used in the
simulation were: βT= [13, 12.5, 12, 11.5, 11, 10.5, 10, 12,
11.5, 11, 10.5, 10.5, 10,10,11,11.5,12, 12, 11, 10,10.5], where
the first seven beta coefficients belong to traits 1–7 in envir-
onment 1, the second seven values to the 7 traits in envir-
onment 2, and the last seven belong to environment 3.

The matrix of the relationship between lines was gener-
ated as Gg= 0.3I200+ 0.7J200 and was equal to the first
simulation data set. Here the total number of observations is
3 × 200 × 7 × 1= 4200, that is, 600 for each trait. For two of
the three covariance matrices (f= t, e), we used

Rf ¼

1:000 0:970 0:944 0:917 0:890 0:862 0:833

� 1:000 0:925 0:899 0:872 0:844 0:816

� � 1:000 0:875 0:849 0:822 0:794

� � � 1:000 0:825 0:798 0:772

� � � � 1:000 0:775 0:748

� � � � � 1:000 0:725

� � � � � � 1:000

2
666666666664

3
777777777775
and
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D1=2
f = diag(1, 1.0003, 1.0003, 1, 0.9996, 1, 1.0003),

while RE ¼ D1=2
E = diag(1, 1, 1), that is, we assumed

independence between the environments. It is important to
point out that this second data set has a high genetic and
environmental correlation between traits.

Experimental data sets

Maize data set

The first real data set used for implementing the proposed
model is composed of 309 double-haploid maize lines.
Traits available in this data set include grain yield (GY),
anthesis-silking interval (ASI), and plant height (PH); each
of these traits was evaluated in three optimum rain-fed
environments (EBU, KAT, and KTI). After editing, infor-
mation from 158,281 markers was used. This data set was
also used by Montesinos-López et al. (2016) and includes
best linear unbiased estimates (BLUEs) obtained based on a
mixed model analysis of individual trials of a first analysis.

Wheat data set

Here we present information on the second real data set
used for implementing the proposed model. This real data
set is composed of 250 wheat lines that were extracted from
a large set of 39 yield trials grown during the 2013–2014
crop season in Ciudad Obregon, Sonora, Mexico (Rutkoski
et al. 2016). The traits under study were days to heading
(DH), GY, PH, and the green normalized difference vege-
tation index (NDVI). Each of these traits was evaluated in
three environments (Bed2IR, Bed5IR, and Drip). The
marker information used after editing was from 12,083
markers, this data set also used by Montesinos-López et al.
(2016); those interested in obtaining more details about this
data set can consult this publication. The phenotypes of
each trait are BLUEs obtained after a first analysis where
they were adjusted by the experimental field design.

High-throughput (HTP) data set

This data set belongs to an experiment that used HTP wheat
plant phenotyping conducted at Ciudad Obregon, Sonora,
México. The data set is comprised of 976 wheat lines that
were extracted from a large set of 1170 lines from the
CIMMYT Global Wheat Program. The following traits
were under study: GY, DH, red normalized difference
vegetation index (RNDVI), green normalized difference
vegetation index (GNDVI), simple ratio (SRa), ratio ana-
lysis of reflectance spectra chlorophyll a (RARSa), ratio
analysis of reflectance spectra chlorophyll b (RARSb), ratio
analysis of reflectance spectra chlorophyll c (RARSc),
normalized pheophytinization index (NPQI), and

photochemical reflectance index (PR). Each of these traits
was evaluated in three environments (drought, irrigated, and
reduced irrigation). After marker editing, information from
1448 markers was used. This data set was also used by
Montesinos-López et al. (2017b, c). The phenotypes of each
trait are BLUEs obtained after a first analysis where they
were adjusted by the experimental field design.

Large EYT set

This data set belongs to CIMMYT’s three elite yield trial
(EYT) nurseries, consisting of 2505 lines of wheat, geno-
typed by genotyping-by-sequencing (GBS). These were
evaluated for GY, DH, and PH in five environments
(BED_5IR, FLAT_5IR, BED_2IR, FLAT_DRIP, and LHT)
evaluated in Ciudad Obregon, Mexico, under bed and flat
planting systems. The EYT nurseries were sown in 39 trials,
each containing 28 lines and two checks that were arranged
in an alpha lattice design with three replications and six
blocks. The nurseries were evaluated for the three traits
under study on a plot basis during 2014 (EYT 13–14), 2015
(EYT 14–15), and 2016 (EYT 15–16). We used BLUEs as
observed values of the breeding lines resulting from
adjusting for the corresponding experimental design. All the
2505 lines were genotyped using GBS (Elshire et al. 2011;
Poland et al. 2012) at Kansas State University, with an
Illumina HiSeq2500 for obtaining genome-wide markers.
Markers with missing data >60% (minor allele frequency
<5% and percentage of heterozygosity >10%) were
removed, and we obtained 2038 markers, which were used
for the analysis. Also, the traits used are BLUEs obtained
after a first analysis where they were adjusted by the
experimental field design in each trial.

Random cross-validation scheme

For testing the prediction ability of the proposed models, the
BMTME_Approx model and the BMTME model, we
implemented a type of cross-validation where all the traits
are missing in some individuals and the information of
some individuals is missing in some environments (that is,
their lines and traits are missing), but in at least one
environment there is information available on those indi-
viduals. We implemented a 20 random cross-validation
scheme for all the data sets under study, with the exception
of the HTP and the large EYT data sets, in which we
implemented 10 random cross-validations. For the 20 ran-
dom cross-validation scheme, in each partition we assigned
20% of the data to the testing set and the remaining 80% of
the data to the training set, while for the 10 random cross-
validation scheme, we assigned 30% of the data to the
testing set and 70% to the training set. The models were
fitted with the information in the training data sets, and
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the prediction accuracy was evaluated with the testing data
sets.

The metrics used for reporting the prediction accuracy
were the Pearson’s correlation (Cor) and the mean square
error of prediction (MSEP) obtained by averaging the
information of the 20 (or 10) random partitions resulting
from the testing data sets. The models were implemented in
the R package (R Core Team 2018) and the proposed
BMTME_Approx model can be implemented in the BGLR
package of de los Campos and Pérez-Rodríguez (2014). On
the other hand, the BMTME model was implemented in R
with the model proposed by Montesinos-López et al.
(2016).

Data repository

The phenotypic and genotypic information of the experi-
mental wheat and maize data sets included in this study can
be downloaded from the link http://hdl.handle.net/11529/
10646 (Montesinos-López et al. 2016). This link includes
phenotypic data on maize (Data.maize) and wheat (Data.
trigo), as well as genomic data on maize (G.maize) and
wheat (G.trigo).

The HTP data and materials used in this study can be
downloaded from the link given in Montesinos-Lopez et al.
(2017c): http://hdl.handle.net/11529/10693 that contains a
file corresponding to the phenotypic and band data for each
environment, Drought.Phe and Bands.RData, EarlyHeat.
Phe, and Bands.RData, Irrigated.Phe and Bands, RData,
Irrigated.Phe and Bands.RData. The large EYT data (Data.
EYT.2018) can be downloaded from the link http://hdl.ha
ndle.net/11529/10547920.

Results

The results are described in two main sections: The first
section presents the results of the simulated data sets, while
the second presents the results of the real data sets. It is
important to point out that we do not present results for the
BMTME Thompson version because it is only a different
reparametrization of the original BMTME model.

Simulated data sets

Data set 1

First, we present the parameter estimates of the BMTME
and the BMTME_Approx models. Table 1 shows that the
beta coefficients of both models are similar. In general, the
beta coefficients of the BMTME model are larger than those
of the BMTME_Approx model, the smallest difference is

3% observed in environment 1 and trait 1, and the largest
difference is 15.7% observed in environment 3 and trait 3.
The variance–covariance matrix of traits (Σt) of the
BMTME model is quite similar to the variance–covariance
matrices of the BMTME_Approx model (Σt1, Σt2). The
variance–covariance components of the residual of both
models are quite similar, with the smallest difference (1.6%)
observed in trait 2 and trait 1 and the largest difference
(33.7%) observed in trait 3 and trait 2. It is worth pointing
out again that the BMTME and BMTME_Approx models
are different; consequently, we cannot expect the exact
same parameter estimates. Finally, when comparing the
observed versus the predicted values for each trait
using Pearson’s correlation and MSEP, we observed
that the BMTME_Approx model produced predicted
values that are very similar to those of the BMTME model
(see Table 1).

With regard to prediction accuracy, Table 2 shows that
the BMTME model was the best: In six out of the nine
trait–environment combinations, it was superior to the
BMTME_Approx model in terms of Pearson’s correlation
and MSEP. On average, the BMTME model was superior to
the BMTME_Approx model by 0.94% and 0.88% in terms
of Pearson’s correlation and MSEP, respectively. From the
results of these simulated data, it is evident that the
BMTME_Approx model is very similar to the BMTME
model in terms of prediction accuracy (Table 2).

Data set 2

First, we present the parameter estimates of the BMTME
and BMTME_Approx models. Table 3 shows that the beta
coefficients of both models are similar, and in general, the
beta coefficients of the BMTME model are larger than those
of the BMTME_Approx model. The smallest difference is
5.15%, which is observed in environment 3 and trait 6,
while the largest difference is 12.37%, observed in envir-
onment 1 and trait 5. The variance–covariance matrix of
traits (Σt) in the BMTME model is very similar to the
variance–covariance matrices of the BMTME_Approx
model (Σt1, Σt2). The variance–covariance components of
the residual of both models are quite similar, with the
smallest difference (0.48%) observed in trait 7 and trait 1
and the largest difference (27.38%) observed in the variance
of trait 5. It is worth reiterating that, with the BMTME and
BMTME_Approx, we should not expect exactly the same
parameter estimates, as the models are different. Finally,
when comparing the observed versus the predicted values
for each trait using Pearson’s correlation and MSEP, the
BMTME_Approx model produced predicted values that
were slightly better than those of the BMTME model (see
Table 3). In terms of Pearson’s correlation, the smallest
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Table 2 Average Pearson’s
correlation (Cor) and average
mean square error of prediction
(MSEP) for each
trait–environment combination
for simulated data set 1 resulting
from the testing set of the 20
random partitions

Trait_Env BMTE BMTME_Approx

Cor SE MSEP SE Cor SE MSEP SE

y1_Env1 0.326 0.032 0.714 0.026 0.338 0.036 0.705 0.026

y2_Env1 0.515 0.029 0.554 0.021 0.508 0.031 0.561 0.022

y3_Env1 0.472 0.026 0.597 0.027 0.461 0.025 0.606 0.027

y1_Env2 0.344 0.019 1.062 0.057 0.351 0.019 1.061 0.057

y2_Env2 0.546 0.028 0.579 0.027 0.527 0.029 0.608 0.028

y3_Env2 0.418 0.032 0.733 0.041 0.408 0.033 0.734 0.043

y1_Env3 0.411 0.026 0.978 0.041 0.418 0.023 0.976 0.040

y2_Env3 0.529 0.023 0.700 0.029 0.523 0.023 0.714 0.028

y3_Env3 0.456 0.019 0.556 0.025 0.444 0.019 0.564 0.026

Average 0.446 0.026 0.719 0.033 0.442 0.026 0.726 0.033

The best predictions for each trait–environment combination are in bold

Table 1 Parameter estimates
(posterior means) of the
BMTME model and the
BMTME_Approx model for
simulated data set 1

True values BMTME BMTME_Approx

β bβ bβ
Trait1 Trait2 Trait3 Trait1 Trait2 Trait3 Trait1 Trait2 Trait3

Env1 13 12 11 14.173 11.516 11.331 13.747 10.982 10.387

Env2 10 8 9 9.514 7.993 9.767 9.173 7.438 8.915

Env3 5 7 6 4.180 6.286 6.540 3.906 5.915 5.512

Σt
bΣt

bΣt1

Trait1 Trait2 Trait3 Trait1 Trait2 Trait3 Trait1 Trait2 Trait3

Trait1 0.900 0.212 0.225 0.979 0.297 0.382 0.911 0.266 0.331

Trait2 0.212 0.800 0.212 0.297 1.096 0.288 0.266 0.970 0.128

Trait3 0.225 0.212 0.900 0.382 0.288 0.803 0.331 0.128 0.934

ΣE
bΣE

bΣt2

Env1 Env2 Env3 Env1 Env2 Env3 Trait1 Trait2 Trait3

Env1 0.500 0.143 0.153 0.374 0.184 0.052 0.571 0.197 0.193

Env2 0.143 0.650 0.175 0.184 0.521 0.201 0.197 0.438 0.216

Env3 0.153 0.175 0.750 0.052 0.201 0.412 0.193 0.216 0.487

Re
bRe

bRe

Trait1 Trait2 Trait3 Trait1 Trait2 Trait3 Trait1 Trait2 Trait3

Trait1 0.600 0.125 0.111 0.775 0.180 0.202 0.603 0.177 0.171

Trait2 0.125 0.420 0.093 0.180 0.436 0.150 0.177 0.475 0.201

Trait3 0.111 0.093 0.330 0.202 0.150 0.474 0.171 0.201 0.522

Prediction accuracy Prediction accuracy

Trait1 Trait2 Trait3 Trait1 Trait2 Trait3

Cor — — — 0.986 0.978 0.966 0.989 0.978 0.972

MSEP — — — 0.479 0.247 0.307 0.479 0.247 0.307

Cor and MSEP denote Pearson’s correlation and mean square error of prediction, respectively, between the
observed and predicted values. True values denotes the true parameter values used for simulating the data

β denotes the beta coefficients, Σt denotes the genetic (co)variance matrix of traits, ΣE denotes the genetic
(co)variance matrix of environments, Re denotes the residual (co)variance matrix of traits, and the symbol hat
(^) denotes estimates of the corresponding parameters
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difference in favor of the BMTME_Approx model was
6.73% observed in trait 6, while the largest difference, also
in favor of the BMTME_Approx model, was 14.16%
observed in trait 3. In terms of MSEP, the smallest differ-
ence was 13.81% in trait 1 and the largest difference was
19.34% in trait 5, both in favor of the BMTME_Approx
model.

Table 4 shows that the proposed approximate model,
BMTME_Approx, was better than the BMTME model in
terms of Pearson’s correlation, as shown in 14 out of the 21
trait–environment combinations. However, in terms of
MSEP, the BMTME model was superior to the the
BMTME_Approx model, as exemplified by 12 out of the 21
trait–environment combinations. On average, in terms of
Pearson’s correlation, the BMTME_Approx model was
better than the BMTME model by 7.24%, while in terms of
MSEP, both models were, on average, almost identical.

Experimental data sets

Maize data set

First, we compared the parameter estimates of the two
models (BMTME and BMTME_Approx). Table 5 shows
that the beta coefficients of the proposed BMTME_Approx
model are all similar to those of the BMTME model. The
variance–covariance matrix of traits (Σt) in the BMTME
model is quite similar to the variance–covariance matrices
of the BMTME_Approx model (Σt1,Σt2). When comparing
the variance–covariance components of the residual of both
models, we observe that 6 out of the 9 terms are not sig-
nificantly different; however, the remaining 3 terms are
quite different, as they belong to the covariance of trait PH
with the other traits. Finally, when comparing the observed
versus the predicted values for each trait using Pearson’s
correlation and MSEP, we see that the BMTME_Approx
model is slightly better, since in Pearson’s correlation, it
outperformed the BMTME model in 2 out of the 3 traits
and, on average, the BMTME_Approx model was 2.1% (for
trait GY) and 1.4% (for trait ASI) better than the BMTME
model. In terms of MSEP, the BMTME_Approx model was
better than the BMTME model in 2 out of the 3 traits, and,
on average, the BMTME_Approx model was 7% better (for
trait GY) and 4.11% better (for trait ASI) than the BMTME
model (see Table 5). In general, the parameter estimates and
predictions are relatively similar in this data set.

Next, in Table 6, we see that the proposed approximate
model, BMTME_Approx, was better than the BMTME
model in terms of Pearson’s correlation, as shown in 5 out
of the 9 trait–environment combinations. However, in terms
of MSEP, the BMTME model was superior to the
BMTME_Approx model in 7 out of the 9 trait–environment
combinations. On average, the BMTME_Approx modelTa
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was better than the BMTME model by 11.72% in terms of
Pearson’s correlation, while conversely, the BMTME model
was better than the BMTME_Approx by 37.94% (Table 6)
in terms of MSEP.

Wheat data set

First, we compared the parameter estimates of the two
models (BMTME and BMTME_Approx) and then their
prediction accuracy. Table 7 shows that the beta coefficients
of the proposed BMTME_Approx model are similar to
those of the BMTME in 9 out of the 12 parameters; how-
ever, there are substantial differences in three of the beta
coefficients corresponding to trait NDVI. The
variance–covariance matrix of traits (Σt) in the BMTME
model is significantly different from the
variance–covariance matrices of the BMTME_Approx
model (Σt1, Σt2).

When comparing the variance–covariance components
of the residual of both models, it is evident that 9 out of the
16 terms are not notably different, while the remaining 7
terms are. These very different terms belong to the

covariance of trait NDVI with the other traits. Finally, when
we compared the models in terms of the observed versus the
predicted values for each trait using Pearson’s correlation
and MSEP, we saw that the BMTME_Approx model was
marginally better, and it was superior to the BMTME model
for Pearson’s correlation in 3 out of the 4 traits and, on
average, 0.99% better for trait DH, 22.04% better for trait
GY, and 17.16% better for trait PH. Furthermore, for
MSEP, the BMTME_Approx model was better than the
BMTME model in 3 out of the 4 traits and, on average,
18.88% better for trait DH, 48.85% better for trait GY, and
57.5% better for trait PH (see Table 7).

When comparing both models in terms of prediction
accuracy with only the testing set of the 20 random parti-
tions implemented, Table 8 shows that the proposed alter-
native model, BMTME_Approx, was better than the
BMTME model in 8 out of the 12 trait–environment com-
binations in terms of Pearson’s correlation and in 7 out of
the 12 trait–environment combinations in terms of MSEP.
On average, the BMTME_Approx model was also better
than the BMTME model by 2.1% in terms of Pearson’s
correlation and by 6.87% in terms of MSEP (Table 8).

Table 4 Average Pearson’s
correlation (Cor) and average
mean square error of prediction
(MSEP) for each
trait–environment combination
for simulated data set 2 resulting
from the testing set of the 20
random partitions

Trait_Env BMTME BMTME_Approx

Cor SE MSEP SE Cor Se MSEP SE

y1_1 0.279 0.035 1.461 0.049 0.323 0.036 1.469 0.047

y2_1 0.251 0.035 1.473 0.047 0.287 0.036 1.477 0.043

y3_1 0.278 0.032 1.486 0.066 0.324 0.029 1.472 0.060

y4_1 0.251 0.032 1.408 0.051 0.288 0.031 1.410 0.050

y5_1 0.272 0.038 1.721 0.074 0.298 0.040 1.720 0.072

y6_1 0.269 0.038 1.311 0.065 0.275 0.037 1.313 0.063

y7_1 0.227 0.034 1.419 0.061 0.261 0.033 1.411 0.059

y1_2 0.221 0.024 1.666 0.095 0.265 0.024 1.648 0.091

y2_2 0.203 0.026 1.608 0.089 0.258 0.024 1.584 0.085

y3_2 0.156 0.027 1.637 0.095 0.158 0.028 1.628 0.093

y4_2 0.237 0.024 1.515 0.069 0.255 0.023 1.513 0.066

y5_2 0.226 0.031 1.681 0.084 0.221 0.034 1.680 0.079

y6_2 0.166 0.032 1.904 0.069 0.188 0.034 1.882 0.065

y7_2 0.314 0.029 1.572 0.100 0.306 0.025 1.606 0.101

y1_3 0.076 0.036 1.753 0.077 0.068 0.034 1.763 0.077

y2_3 0.057 0.035 1.818 0.074 0.051 0.033 1.824 0.075

y3_3 0.080 0.031 1.661 0.077 0.067 0.031 1.677 0.077

y4_3 0.107 0.043 1.636 0.066 0.100 0.042 1.648 0.064

y5_3 0.103 0.032 1.780 0.068 0.109 0.035 1.784 0.067

y6_3 0.065 0.041 1.761 0.091 0.070 0.036 1.762 0.090

y7_3 0.119 0.034 1.680 0.050 0.096 0.032 1.700 0.052

Average 0.189 0.033 1.617 0.072 0.203 0.032 1.618 0.070

The best predictions for each trait–environment combination are in bold
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Table 5 Parameter estimates
(posterior means) of the
BMTME model and the
BMTME_Approx model for the
experimental maize data set

BMTME BMTME_Approx

bβ bβ
Evu GY ASI PH GY ASI PH

EBU 6.554 2.051 2.444 6.419 1.903 2.342

KAK 5.107 1.288 2.136 4.942 1.203 2.053

KTI 6.213 2.487 2.415 6.068 2.337 2.317

bΣt
bΣt1

Tr-
aita

GY ASI PH GY ASI PH

GY 0.801 −0.167 0.044 1.205 −0.203 0.365

ASI −0.167 0.843 −0.031 −0.203 1.890 0.078

PH 0.044 −0.031 0.022 0.365 0.078 0.248

bΣE
bΣt2

Env EBU KAK KTI GY ASI PH

EBU 1.424 0.518 0.604 0.814 −0.041 0.236

KAK 0.518 2.079 1.812 −0.041 0.962 0.056

KTI 0.604 1.812 2.687 0.236 0.056 0.217

bRe
bRe

Tr-
ait

GY ASI PH GY ASI PH

GY 0.540 −0.080 0.022 0.403 −0.041 0.119

ASI −0.080 0.526 −0.011 −0.041 0.546 0.027

PH 0.022 −0.011 0.012 0.119 0.027 0.098

Prediction accuracy Prediction accuracy

GY ASI PH GY ASI PH

Cor 0.803 0.790 0.880 0.820 0.802 0.877

MSEP 0.435 0.419 0.009 0.405 0.402 0.010

aTraits: grain yield (GY), anthesis silking interval (ASI), and plant height (PH)

Cor and MSEP denote Pearson’s correlation and mean square error of prediction, respectively, between the
observed and predicted values. β denotes the beta coefficients, Σt denotes the genetic (co)variance matrix of
traits, ΣE denotes the genetic (co)variance matrix of environments, Re denotes the residual (co)variance
matrix of traits, and the symbol hat (^) denotes estimates of the corresponding parameters

Table 6 Average Pearson’s
correlation (Cor) and average
mean square error of prediction
(MSEP) for each
trait–environment combination
for the experimental maize data
set resulting from the testing set
of the 20 random partitions

BMTME BMTME_Approx

Env-Traita Cor SE MSEP SE Cor SE MSEP SE

EBU_GY 0.327 0.019 0.787 0.019 0.338 0.036 0.705 0.026

EBU_ASI 0.508 0.016 0.392 0.012 0.508 0.031 0.561 0.022

EBU_PH 0.311 0.023 0.014 0.003 0.461 0.025 0.606 0.027

KAK_GY 0.406 0.024 0.442 0.021 0.351 0.019 1.061 0.057

KAK_ASI 0.397 0.015 0.937 0.044 0.527 0.029 0.608 0.028

KAK_PH 0.476 0.027 0.011 0.001 0.408 0.033 0.734 0.043

KTI_GY 0.292 0.019 0.841 0.023 0.418 0.023 0.976 0.040

KTI_ASI 0.295 0.017 0.610 0.018 0.523 0.023 0.714 0.028

KTI_PH 0.502 0.018 0.018 0.001 0.444 0.019 0.564 0.026

Average 0.390 0.020 0.450 0.016 0.442 0.026 0.726 0.033

The best predictions for each trait–environment combination are in bold
aTraits: grain yield (GY), anthesis silking interval (ASI), and plant height (PH)
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HTP data set

In Table 9 we provide the parameter estimates of the HTP
data set, which has 10 traits evaluated in 3 environments,
with 976 lines evaluated in each environment. The estimates
of the beta coefficients are reasonable since they are con-
sistent with the sample average for each trait in each
environment, which is equivalent to the least square
estimates.

Rather than reporting the variance–covariance of traits,
we report the correlation between traits, which can be more
useful, as it gives a better idea of the level of correlation
between traits in the whole data set. Our proposed
BMTME_Approx model estimates two variance–covariance
matrices for the genetic part of the traits and one for the
residual part of the traits; in this vein, we report two corre-
lation matrices for the genetic part of the traits and one for
the residual correlation of the traits. In the section “genetic

Table 7 Parameter estimates
(posterior means) of the
BMTME model and the
BMTME_Approx model for the
experimental wheat data set

BMTME BMTME_Approx

Env bβ bβ
DH NDVI GY PH DH NDVI GY PH

Bed2IR −3.164 0.060 −0.075 −4.496 −3.202 −0.004 −0.138 −4.647

Bed5IR −4.026 0.053 −0.284 −7.535 −4.023 −0.011 −0.340 −7.436

Drip −0.272 0.070 −0.342 −0.511 −0.314 0.006 −0.409 −0.692

bΣt
bΣt1

Traita DH NDVI GY PH DH NDVI GY PH

DH 3.440 0.005 −0.098 −1.125 24.552 0.042 −0.566 −11.455

NDVI 0.005 0.000 0.000 −0.002 0.042 0.000 −0.001 −0.019

GY −0.098 0.000 0.011 0.047 −0.566 −0.001 0.059 0.377

PH −1.125 −0.002 0.047 1.872 −11.455 −0.019 0.377 8.532

bΣE
bΣt2

Env Bed2IR Bed5IR Drip DH NDVI GY PH

Bed2IR 7.426 7.265 6.505 — 4.247 0.007 0.059 2.376

Bed5IR 7.265 7.619 6.361 — 0.007 0.000 0.000 0.004

Drip 6.505 6.361 6.388 — 0.059 0.000 0.048 0.256

— — — — 2.376 0.004 0.256 7.556

bRe
bRe

Trait DH NDVI GY PH DH NDVI GY PH

DH 4.762 0.002 0.131 1.778 6.304 0.011 0.042 2.257

NDVI 0.002 0.000 0.000 0.002 0.011 0.000 0.000 0.004

GY 0.131 0.000 0.109 0.531 0.042 0.000 0.083 0.323

PH 1.778 0.002 0.531 18.064 2.257 0.004 0.323 9.443

Prediction accuracy Prediction accuracy

DH NDVI GY PH DH NDVI GY PH

Cor 0.9604 0.9953 0.7467 0.7945 0.9699 0.9748 0.9112 0.9308

MSEP 2.7257 0.0000 0.0866 14.1430 2.2085 0.0000 0.0442 6.0107

Cor and MSEP denote Pearson’s correlation and mean square error of prediction, respectively, between the
observed and predicted values. β denotes the beta coefficients, Σt denotes the genetic (co)variance matrix of
traits, ΣE denotes the genetic (co)variance matrix of environments, Re denotes the residual (co)variance
matrix of traits, and the symbol hat (^) denotes estimates of the corresponding parameters
aTraits: days to heading (DH), grain yield (GY), plant height (PH), and the green normalized difference
vegetation index (NDVI). Each of these traits was evaluated in three environments (Bed2IR, Bed5IR, and
Drip)
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correlation between traits” in Table 9, the upper diagonal
part gives the correlations between traits corresponding to
the term genotype × trait, where we can observe that 33
(73.33%) of the 45 possible correlations were, in absolute
values, >0.5. On the other hand, in the lower diagonal part of
the genetic correlation section are given the genetic corre-
lations that correspond to the three-way interaction term
environment × genotype × trait. Here we can observe that
only 16 (35.56%) of the 45 possible correlations are >0.5.

In general, there is evidence of a reasonably high genetic
correlation between traits in this HTP data set. In Table 9,
the section on the residual correlation between traits shows
that only 15 (33.33%) out of the 45 possible residual cor-
relations are >0.5. This information indicates that the phe-
notypic correlation between the ten traits is more influenced
by the genetic part than by the residual part. Finally, the
“prediction accuracy” section of Table 9 shows the Pear-
son’s correlation and MSEP obtained for the whole data set
between the observed and predicted values for each trait. In
general, all the observed Pearson’s correlations are >0.86,
with the exception of the RNDVI, GNDVI, and SRa traits,
which had a Pearson’s correlation <0.8.

The prediction accuracies for the HTP data set are given
in Table 10. The predictions reported were the average of
the ten random partitions of the testing data set. Here we
only report the prediction accuracy for the BMTME_Ap-
prox model since it is extremely difficult in terms of
implementation time to run the BMTME_model due to the
large data set. Table 10 shows that the best predictions in

terms of Pearson’s correlation were observed for trait DH,
while the predictions for the rest of the traits in general were
low. Also, in terms of Pearson’s correlation, the best pre-
dictions were observed in the irrigated environment. On the
other hand, in terms of MSEP for traits GY and DH, the
best predictions were observed in the drought environment;
however, there were no significant differences in terms of
prediction accuracy between the remaining traits, since in
all traits, the MSE was almost zero.

Large EYT data set

In Table 11, we provide the parameter estimates of the EYT
data set that has 3 traits evaluated in 5 environments, with
2505 lines evaluated in each environment. We found that
the estimates of the beta coefficients are reasonable since
they are consistent with the least square estimates.

Here we also report the correlation between traits to have
a better idea of the level of correlation between traits in the
whole data set. Furthermore, we report two matrices of
correlation for the genetic part of traits and one for the
residual correlation of traits. In the section “genetic corre-
lation between traits” in Table 11, the upper diagonal part
gives the correlations between traits corresponding to the
term genotype × trait, where we can observe that the cor-
relation between PH and DH was the only one >0.5. On the
other hand, in the lower diagonal part of the genetic cor-
relation section, between traits are given the genetic corre-
lations that correspond to the three-way interaction term

Table 8 Average Pearson’s
correlation (Cor) and average
mean square error of prediction
(MSEP) for each
trait–environment combination
for the experimental wheat data
set resulting from the testing set
of the 20 random partitions

BMTME BMTME_Approx

Trait-Enva Cor SE MSEP SE Cor SE MSEP SE

DH_Bed2IR 0.889 0.009 7.450 0.717 0.875 0.011 8.877 0.822

NDVI_Bed2IR 0.843 0.008 0.000 0.000 0.849 0.006 0.000 0.000

GY_Bed2IR 0.640 0.013 0.056 0.002 0.677 0.013 0.051 0.002

PH_Bed2IR 0.641 0.013 23.252 0.804 0.693 0.014 20.911 0.814

DH_Bed5IR 0.874 0.006 12.446 0.598 0.853 0.008 13.762 0.664

NDVI_Bed5IR 0.800 0.010 0.000 0.000 0.779 0.009 0.000 0.000

GY_Bed5IR 0.178 0.021 0.253 0.008 0.200 0.022 0.238 0.007

PH_Bed5IR 0.086 0.015 24.200 0.599 0.170 0.015 18.721 0.539

DH_Drip 0.925 0.005 4.575 0.286 0.905 0.005 4.532 0.188

NDVI_Drip 0.710 0.012 0.000 0.000 0.711 0.014 0.000 0.000

GY_Drip 0.649 0.012 0.127 0.005 0.678 0.014 0.119 0.004

PH_Drip 0.655 0.018 21.457 0.543 0.669 0.019 20.157 0.570

Average 0.657 0.012 7.818 0.297 0.672 0.012 7.281 0.301

aTraits: days to heading (DH), grain yield (GY), plant height (PH), and the green normalized difference
vegetation index (NDVI). Each of these traits was evaluated in three environments (Bed2IR, Bed5IR, and
Drip)

The best predictions for each trait–environment combination are in bold
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Table 9 Parameter estimates
(posterior means of beta
coefficients, genetic and residual
correlation) of the
BMTME_Approx model for the
experimental HTP data set

bβ
Env GY DH RNDVI GNDVI SRa RARSa RARSb RARSc NPQI PR

Drought 2.172 77.408 −0.071 −0.085 −0.092 −0.163 −0.184 −0.200 −0.140 −0.198

Irrigated 6.522 85.728 −0.093 −0.085 −0.083 −0.106 −0.125 −0.132 −0.106 −0.170

Red_Irrig 3.735 81.946 −0.084 −0.088 −0.092 −0.136 −0.163 −0.186 −0.127 −0.195

Genetic correlation between traits (upper diagonal corresponds to bΣt1, while lower diagonal
to bΣt2)

Traita GY DH RNDVI GNDVI SRa RARSa RARSb RARSc NPQI PR

GY 1.000 0.781 −0.612 −0.421 −0.340 −0.251 −0.275 −0.265 −0.302 −0.437

DH 0.154 1.000 −0.708 −0.576 −0.495 −0.467 −0.489 −0.483 −0.499 −0.658

RNDVI −0.271 −0.248 1.000 0.860 0.827 0.776 0.767 0.707 0.811 0.799

GNDVI 0.123 −0.260 0.276 1.000 0.972 0.934 0.929 0.886 0.949 0.914

SRa 0.256 −0.263 0.429 0.463 1.000 0.944 0.944 0.898 0.970 0.899

RARSa 0.605 −0.231 −0.170 0.493 0.441 1.000 0.992 0.971 0.983 0.949

RARSb 0.667 −0.284 −0.040 0.350 0.547 0.817 1.000 0.985 0.988 0.967

RARSc 0.648 −0.262 −0.050 0.260 0.417 0.681 0.846 1.000 0.957 0.970

NPQI 0.512 −0.274 0.196 0.260 0.659 0.578 0.825 0.658 1.000 0.949

PR 0.485 −0.402 0.070 0.352 0.411 0.595 0.786 0.830 0.629 1.000

Residual correlation between traits

Trait GY DH RNDVI GNDVI SRa RARSa RARSb RARSc NPQI PR

GY 1.000 0.164 −0.210 0.086 0.187 0.508 0.548 0.539 0.402 0.382

DH — 1.000 −0.199 −0.201 −0.207 −0.206 −0.248 −0.231 −0.229 −0.339

RNDVI — — 1.000 0.281 0.361 −0.051 0.026 0.023 0.184 0.108

GNDVI — — — 1.000 0.406 0.430 0.315 0.264 0.226 0.348

SRa — — — — 1.000 0.425 0.500 0.391 0.572 0.354

RARSa
Env

— — — — — 1.000 0.765 0.642 0.548 0.546

RARSb — — — — — — 1.000 0.777 0.765 0.707

RARSc — — — — — — — 1.000 0.581 0.749

NPQI — — — — — — — — 1.000 0.541

PR — — — — — — — — — 1.000

Prediction accuracy

GY DH RNDVI GNDVI SRa RARSa RARSb RARSc NPQI PR

Cor 0.970 0.958 0.797 0.612 0.709 0.928 0.958 0.961 0.867 0.872

MSEP 0.206 2.108 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

aTraits are: grain yield (GY), days to heading (DH), red normalized difference vegetation index (RNDVI),
green normalized difference vegetation index (GNDVI), simple ratio (SRa), ratio analysis of reflectance
spectra chlorophyll a (RARSa), ratio analysis of reflectance spectra chlorophyll b (RARSb), ratio analysis of
reflectance spectra chlorophyll c (RARSc), normalized pheophytinization index (NPQI), and photochemical
reflectance index (PR)

Cor and MSEP denote Pearson’s correlation and mean square error of prediction, respectively, between the
observed and predicted values. Environments are drought, irrigated, and reduced irrigation (Red_Irrig). In
bold are the correlations >0.5. β denotes the beta coefficients, Σt denotes the genetic (co)variance matrix of
traits, ΣE denotes the genetic (co)variance matrix of environments, Re denotes the residual (co)variance
matrix of traits, and the symbol hat (^) denotes estimates of the corresponding parameters
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environment × genotype × trait. Here we can observe that
only the correlation between GY and PH was >0.5 (Table
11).

In Table 11, in the section on the residual correlation
between traits, we can observe that only the correlation
between GY and PH was >0.5. Finally, in the “prediction
accuracy” section of Table 11, we can observe the Pearson’s
correlation and MSEP obtained for the whole data set
between the observed and predicted values for each trait. In
general, all the observed Pearson’s correlations are >0.89.

The prediction accuracies for this large wheat data set are
given in Table 12. The predictions reported are the average
of the ten random partitions of the testing data set. Here we
only report the prediction accuracy for the BMTME_Ap-
prox model; owing to the size of the data set, it almost
impossible to run the BMTME_model. Table 12 shows that

the best predictions in terms of Pearson’s correlation were
for trait GY, while the worst were for trait DH. At the same
time, the best predictions for GY, DH, and PH in terms of
Pearson’s correlation were observed in environments
BED_5IR, FLAT_5IR, and BED_2IR, respectively. On the
other hand, in terms of MSEP for traits GY, DH, and PH,
the best predictions were observed in BED_2IR, LHT, and
FLAT_5IR, respectively (Table 12).

Discussion

The amounts of data that the breeding programs around the
world are generating continue to increase; consequently,
there is a growing need to extract more knowledge from the
data being produced. To this end, multiple-trait models are

Table 10 Average Pearson’s
correlation (Cor) and average
mean square error of prediction
(MSEP) for each
trait–environment combination
for the experimental HTP data
set resulting from the testing set
of the 10 random partitions

Drought Irrigated Reduced Irrigated

Traita Cor SE Cor SE Cor SE

GY 0.080 0.009 −0.054 0.007 0.152 0.006

DH 0.812 0.005 0.734 0.005 0.771 0.004

RNDVI 0.085 0.009 0.160 0.008 0.027 0.005

GNDVI 0.150 0.012 0.290 0.012 0.047 0.011

SRa 0.179 0.007 0.276 0.011 0.202 0.012

RARSa 0.167 0.007 0.304 0.015 0.150 0.010

RARSb 0.224 0.012 0.326 0.017 0.238 0.015

RARSc 0.195 0.015 0.391 0.013 0.078 0.009

NPQI 0.135 0.010 0.237 0.007 0.141 0.011

PR −0.062 0.010 0.342 0.020 0.046 0.007

Trait Drought Irrigated Reduced Irrigated

MSEP SE MSEP SE MSEP SE

GY 0.298 0.005 0.464 0.005 0.143 0.002

DH 3.695 0.169 11.726 0.163 4.941 0.072

RNDVI 0.000 0.000 0.000 0.000 0.000 0.000

GNDVI 0.000 0.000 0.000 0.000 0.000 0.000

SRa 0.000 0.000 0.000 0.000 0.000 0.000

RARSa 0.000 0.000 0.000 0.000 0.000 0.000

RARSb 0.000 0.000 0.000 0.000 0.000 0.000

RARSc 0.000 0.000 0.000 0.000 0.000 0.000

NPQI 0.000 0.000 0.000 0.000 0.000 0.000

PR 0.000 0.000 0.000 0.000 0.000 0.000

The best predictions for each trait in the three environments are in bold
aTraits are: grain yield (GY), days to heading (DH), red normalized difference vegetation index (RNDVI),
green normalized difference vegetation index (GNDVI), simple ratio (SRa), ratio analysis of reflectance
spectra chlorophyll a (RARSa), ratio analysis of reflectance spectra chlorophyll b (RARSb), ratio analysis of
reflectance spectra chlorophyll c (RARSc), normalized pheophytinization index (NPQI), and photochemical
reflectance index (PR)
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commonly used to take advantage of correlated traits to
improve parameter estimation and prediction accuracy.
However, when there is a large number of traits, imple-
menting these types of models is challenging. Therefore, it
is necessary to develop efficient multiple-trait and multiple-
environment models for whole-genome selection in order to

take advantage of multiple correlated traits. In this paper,
we propose an alternative method for analyzing multi-trait
data that could be useful for whole-genome selection in the
context of an abundance of traits. Some advantages of the
proposed method are: (i) it can be implemented in current
genomic selection software that was built for univariate

Table 11 Parameter estimates
(posterior means of beta
coefficients, genetic and residual
correlation) of the
BMTME_Approx model for the
experimental large EYT data set

bβ
Tr-
ait

BED_5IR FLAT_5IR BED_2IR FLAT_DRIP LHT

GY 6.349 6.407 3.792 2.130 3.302 —

DH 81.810 79.538 80.628 75.410 58.412 —

PH 102.856 102.766 84.986 73.347 68.810 —

aGenetic correlation between traits Residual correlation between traits

Tr-
ait

GY DH Height GY DH Height

GY 1.000 −0.487 0.599 1.000 −0.393 0.580

DH −0.086 1.000 −0.421 — 1.000 −0.178

PH 0.631 0.403 1.000 — — 1.000

Cor MSEP

GY DH Height GY DH Height

Prediction accuracy 0.928 0.894 0.907 0.489 19.688 46.073

Cor and MSEP denote Pearson’s correlation and mean square error of prediction, respectively, between the
observed and predicted values
aGenetic correlation between traits (the upper diagonal corresponds to bΣt1, while the lower diagonal is forbΣt2). Traits are grain yield (GY), days to heading (DH), and plant height (PH)

Table 12 Average Pearson’s
correlation (Cor) and average
mean square error of prediction
(MSEP) for each
trait–environment combination
for the experimental large EYT
data set resulting from the
testing set of the 10 random
partitions

GY DH PH

Env Cor SE Cor SE Cor SE

BED_5IR 0.417 0.012 0.292 0.014 0.110 0.013

FLAT_5IR 0.274 0.012 0.330 0.017 0.276 0.009

BED_2IR 0.247 0.015 0.230 0.015 0.408 0.014

FLAT_DRIP 0.259 0.013 0.259 0.012 0.371 0.017

LHT 0.341 0.011 0.278 0.006 0.213 0.009

Average 0.308 0.013 0.278 0.013 0.276 0.012

Env MSEP SE MSEP SE MSEP SE

BED_5IR 0.528 0.008 31.793 0.513 24.620 0.321

FLAT_5IR 0.514 0.008 18.144 0.272 23.882 0.435

BED_2IR 0.390 0.004 19.859 0.448 63.251 1.168

FLAT_DRIP 0.545 0.010 19.800 0.327 102.330 1.217

LHT Env 0.654 0.010 15.662 0.363 33.657 0.416

Average 0.526 0.008 21.051 0.385 49.548 0.712

The best predictions for each trait in the five environments are in bold; the comparisons are made by column
(trait). Traits are grain yield (GY), days to heading (DH), and plant height (PH)
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analysis (e.g., BGLR, ASREML, package Sommer of R);
(ii) it can be implemented with a large number of traits and,
in general, with a large data set since this model is imple-
mented in four steps; and (iii) this method can be more
efficient in terms of implementation time because univariate
analyses for each trait (step 2 of the procedure) are required
for its implementation, which allows an implementation in
parallel and with low dimensions compared to the BMTME
model that models all the traits simultaneously and also (iv)
decreases the probability of having collinearity and con-
vergence problems, since when more correlated traits are
added to the multivariate analysis, both problems increase
(Schulthess et al. 2016).

In Supplementary material, we provide the R code for
implementing the proposed method. When the matrix of
response variable (Y) shows a considerable departure from
normality, the proposed BMTME_Approx model is
expected to be inefficient due to the fact that uncorrelated
traits do not imply independence for non-normal data. For
this reason, under these circumstances, in Supplementary
material we also provide a solution to this situation based on
the ICA that transforms the original unnecessary Gaussian
matrix of response variables (Y) into a matrix of indepen-
dent variables (Y*).

Also, it is important to point out that the BMTME_-
Thompson version is more efficient computationally than
the original BMTME model since it allows sampling
independently for each trait the random effects of b1 and b2,
which improves computational efficiency because it avoids
sampling from huge multivariate normal distributions. More
specifically, the dimensions of the full conditionals are L
times smaller than the original BMTME model. Another
advantage is that the BMTME_Thompson model is not an
approximation to the BMTME model, since it is only a
reparametrization of the original model, which allows
obtaining exactly the same parameter estimates and pre-
diction accuracy at a lower cost in terms of implementation
time, since the sampling process of the full conditionals of
the random effects of b1 and b2 is done individually for each
trait.

The proposed BMTME_Approx model takes advantage
of the fact that optimal point estimates of any linear com-
bination of the means and variances of the various separate
analyses for each response variable can be obtained.
Therefore, our proposed method uses a linear transforma-
tion of the separate parameter estimates to provide reason-
able estimates of the beta coefficients (β), random effects (b1
and b2), and variance–covariance matrices (Σt1, Σt2, and Re)
for a multivariate model. However, although the proposed
model is able to provide reasonable approximate parameter
estimates for the multivariate model by doing a separate
analysis for each trait, it is unable to provide estimates of

the standard error for off diagonal elements in the
variance–covariance estimates.

Based on the results of the simulated and real data sets,
we have reason to argue that the proposed BMTME_Ap-
prox model produces competitive predictions compared to
those produced by the BMTME model, even though the
parameter estimates resulting from the proposed
BMTME_Approx model are quite different from those
resulting from the BMTME model (mainly in the wheat real
data set). However, the differences in parameter estimates
between the BMTME and the BMTME_Approx models
can be attributed to the fact that the BMTME_Approx
model estimates two genetic variance–covariance matrices
for traits (one for the interaction term genotype × trait and
the other for the three-way interaction term environment ×
genotype × trait), while the BMTME only estimates one
variance–covariance for both interaction terms. Also, in
terms of prediction accuracies for simulated data set 1
(simulated with environments and correlated traits), the
BMTME was better than the BMTME_Approx model, but
in the second simulated data set, we observed that the
BMTME_Approx (that assumes independence between
environments and correlated traits) was better than the
BMTME (that assumes correlated traits between environ-
ments and traits), which can be attributed to the fact that this
second data set was simulated assuming independence
between environments and correlated traits.

It is also important to point out that the proposed
BMTME_Approx model can be implemented when there
are many traits. For example, in the HTP and Large EYT
data sets where there are a large number of traits, the
application of the BMTME model becomes almost impos-
sible due to the fact that samples are extracted from a very
large number of multivariate normal distributions, and the
modeling process is performed jointly for all the traits and
not separately for each trait, as in the proposed
BMTME_Approx model. This is a key element for
achieving an efficient estimation process in terms of
implementation time. Additionally, the proposed
BMTME_Approx model can be implemented simulta-
neously since the procedure for estimating the required
parameters requires a separate analysis for each trait.

Another point that we would like to highlight is that our
proposed model is multiple-trait and multiple-environment
but with the restriction that an identity matrix is assumed for
the variance–covariance matrix of environments. However,
even with this restrictive assumption in the
variance–covariance matrix of environments, the model has
the advantage of taking into account the interaction
terms environment × trait, genotype × trait, and the three-way
interaction environment × genotype × trait. Furthermore, it
takes into account the correlated traits and can be
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implemented using conventional software for whole-genome
prediction.

Conclusions

The results of the simulated and real data sets show that the
proposed alternative method produced results that are
similar to those of the conventional multiple-trait analysis.
For this reason, the proposed method is an attractive alter-
native for analyzing multiple-trait data in the context of a
large number of traits. However, it is important to point out
that the significant differences found in parameter estimates
between the proposed BMTME_Approx model and the
BMTME model can be attributed mainly to the fact that the
BMTME_Approx model allows the estimation of two
genetic variance–covariance matrices for traits, one for the
interaction term genotype × trait, and the other for the term
environment × genotype × trait, while the BMTME model
only estimates one genetic matrix of variance–covariance
for traits.
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